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Introduction Implementation algorithm:

Problem: 1) Replace array allocations with Kokkos::Views (in Host space)

Kokkos::View<ScalarType****, Device> jacobian("Jacobian", worksetNumCells, numQPs, numDims, numDims);
2) Replace array access with Kokkos::Views
B[k][j] = jacobian(iO, i1, k, j);

Modern HPC applications, Finite Element Assembly codes in particular, need to be run on many
different platforms and performance portability has become a critical issue: parallel code needs

to be executed correctly and performant despite variation in the architecture, operating system Kokkos::deep_copy (jacobian, host_jacobian);
and software libraries. 3) Replace functions with Functors, run in parallel on Host
Ap p roa C h : E;T::loec;::mpme Jacobian :an::)lc::ri;:ZSSZig)eaica{larType, clas DeviceType, int numQPs_, int numDims_, int numNodes_ >
. HR . . . 1 or(int cell = 0; cell < worksetNumCells; cell++ Array3 basisGrads_;
Kokkos programming model from Trilinos: C++ library, which provide performance portability f (fofon(t"qp(i’o; %)pqufn&gsbqﬁl)’{ "){” Ay scobion
. . . . or(int row = 0; row < numDims; row++ Array3_const coordVec_;
across diverse devices with different memory models. for(int col = 0; col < numDims; col++) publc

for(int node = 0; node < numNodes; node++){ typedef DeviceType device_type;

° . . jacobian(cell, gp, row, col) +=
F u n d I ng : ASC Exa sSca Ie Cod esl g N P rOJ e Ct coordVec(cell, node, row) compute_jacobian(Array3 &basisGrads, Array4 &jacobian, Array3 &coordVec)
*basisGrads(node, gp, col); : basisGrads_(basisGrads) , jacobian_(jacobian), coordVec_(coordVec){}
}// node KOKKOS_INLINE_FUNCTION

} /I col

} /I row (
Hiap .

Y cell for(int gp = 0; gp < nUMQPs_; gp++) {

[
for(int row = 0; row < numDims_; row++){
O O S O a m m I n m O e for(int COI ) O; COI ) numDims_; COI++){
| l Kokkos Implementation: l for(int node = 0; node < numNodes_; node++){

jacobian_(cell, gp, row, col) += coordVec_(cell, node, row)*basisGrads_(node, gp, col);
Kokkos::parallel_for ( worksetNumCells, }// node
compute_jacobian<ScalarT, Device, numQPs, numDims, numNodes>
. ) ) }// col
(basisGrads, jacobian, coordVec));
}// row

void operator () (const std::size_t cell) const

Kokkos [1] - C++ library from Trilinos [2] to provide i
scientific and engineering codes with an intuitive ;
manycore performance portable programming model. 4) Call Kokkos::parallel for<..>(...) over the number of elements in workset:
» Provides portability across manycore devices (Multicore CPU, NVidia GPU, Intel Xeon —Loop over the nu\{,nber of worksets l
Phi (potential: AMD Fusion) ) Copy solution vector to the Device
» Abstract data layout for non-trivial data structures J

: . Device:
» Uses library approach: Kokkos::parallel_for

» Maximize amount of user (application/library) code that can be compiled without over the # of elements in workset ===
modification and run on these architectures e
» Minimize amount of architecture-specific knowledge that a user is required to have '
» Performant: Portable user code performs as well as architecture-specific code

Main abstractions: v

Copy residual vector to the Host

» Kokkos executes computational kernels in fine-grain data parallel within an Execution
space.

» Computational kernels operate on multidimensional arrays (Kokkos::View) residing in 5) Set Device to ‘Cuda’, ‘OpenMP’ or ‘Threads’ and run on specified Device
Memory spaces. typedef Kokkos::Cuda Device; or typedef Kokkos::OpenMP Device; or typedef Kokkos::Threads Device,

» Kokkos provides these multidimensional arrays with polymorphic data layout, similar to

the Boost.MultiArray flexible storage ordering. Pe rfo r m a n ce Re S u Its 3
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Project objectives:

* Develop a robust, scalable, unstructured-grid finite
element code for land Ice dynamics.

* Provide sea level rise prediction
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