SAND2014-18787C

Kokkos implementation of the Albany:
a performance-portable finite element application

Sandia National Laboratories

Irina Demeshko, H. Carter Edwards, Michael A. Heroux, Eric T. Phipps, Andrew G. Salinger , Roger P. Pawowski
Sandia National Laboratories, New Mexico, 87185

Introduction Implementation algorithm:

Problem: 1) Replace array allocations with Kokkos::Views (in Host space)

Kokkos::View<ScalarType****, Device> jacobian("Jacobian", worksetNumCells, numQPs, numDims, numDims);
2) Replace array access with Kokkos::Views
B[k][j] = jacobian(iO, i1, k, j);

Modern HPC applications, Finite Element Assembly codes in particular, need to be run on many
different platforms and performance portability has become a critical issue: parallel code needs

to be executed correctly and performant despite variation in the architecture, operating system Kokkos::deep_copy (jacobian, host_jacobian);
and software libraries. 3) Replace functions with Functors, run in parallel on Host
Ap p roa C h : E;T::loec;::mpme Jacobian :an::)lc::ri;:ZSSZig)eaica{larType, clas DeviceType, int numQPs_, int numDims_, int numNodes_ >
. HR . . . 1 or(int cell = 0; cell < worksetNumCells; cell++ Array3 basisGrads_;
Kokkos programming model from Trilinos: C++ library, which provide performance portability f (fofon(t"qp(i’o; %)pqufn&gsbqﬁl)’{ "){” Ay scobion
. . . . or(int row = 0; row < numDims; row++ Array3_const coordVec_;
across diverse devices with different memory models. for(int col = 0; col < numDims; col++) publc

for(int node = 0; node < numNodes; node++){ typedef DeviceType device_type;

° . . jacobian(cell, gp, row, col) +=
F u n d I ng : ASC Exa sSca Ie Cod esl g N P rOJ e Ct coordVec(cell, node, row) compute_jacobian(Array3 &basisGrads, Array4 &jacobian, Array3 &coordVec)
*basisGrads(node, gp, col); : basisGrads_(basisGrads) , jacobian_(jacobian), coordVec_(coordVec){}
}// node KOKKOS_INLINE_FUNCTION

} /I col

} /I row (
Hiap .

Y cell for(int gp = 0; gp < nUMQPs_; gp++) {

[
for(int row = 0; row < numDims_; row++){
O O S O a m m I n m O e for(int COI) O; COI) numDims_; COI++){
| l Kokkos Implementation: l for(int node = 0; node < numNodes_; node++){

jacobian_(cell, gp, row, col) += coordVec_(cell, node, row)*basisGrads_(node, gp, col);
Kokkos::parallel_for (worksetNumCells, }// node
compute_jacobian<ScalarT, Device, numQPs, numDims, numNodes>
.)) }// col
(basisGrads, jacobian, coordVec));
}// row

void operator () (const std::size_t cell) const

Kokkos [1] - C++ library from Trilinos [2] to provide i
scientific and engineering codes with an intuitive ;
manycore performance portable programming model. 4) Call Kokkos::parallel for<..>(...) over the number of elements in workset:
» Provides portability across manycore devices (Multicore CPU, NVidia GPU, Intel Xeon —Loop over the nu\{,nber of worksets l
Phi (potential: AMD Fusion)) Copy solution vector to the Device
» Abstract data layout for non-trivial data structures J

: . Device:
» Uses library approach: Kokkos::parallel_for

» Maximize amount of user (application/library) code that can be compiled without over the # of elements in workset ===
modification and run on these architectures e
» Minimize amount of architecture-specific knowledge that a user is required to have '
» Performant: Portable user code performs as well as architecture-specific code

Main abstractions: v

Copy residual vector to the Host

» Kokkos executes computational kernels in fine-grain data parallel within an Execution
space.

» Computational kernels operate on multidimensional arrays (Kokkos::View) residing in 5) Set Device to ‘Cuda’, ‘OpenMP’ or ‘Threads’ and run on specified Device
Memory spaces. typedef Kokkos::Cuda Device; or typedef Kokkos::OpenMP Device; or typedef Kokkos::Threads Device,

» Kokkos provides these multidimensional arrays with polymorphic data layout, similar to

the Boost.MultiArray flexible storage ordering. Pe rfo r m a n ce Re S u Its 3

. : Albany MiniDriver test code
Ice Sheet Simulation Code (FELIX) e Evalaton ronment

§ Compton (Intel MIC cluster) :
& \ . 42 nodes:

We are developing a performance portable E Intel Xeon Phi T Juo Score Sondy Brdge Xeon E5-2670. @

HH implementation of an Ice Sheet simulation code?*, © 0.00001 Intel Xeon e e o 2 ner
Q
S build with the Albany [3] application development “ \ node (57 cores per each)

E—Q 000001 —Initial code (1 Shannon (NVIDIA GPU cluster):

en\"ronment Q 32 nodes:
= core) Two 8-core Sandy Bridge Xeon E5-2670 @
.'5‘0000001 2.6GHz (HT deactivated) per node,

Project objectives:

* Develop a robust, scalable, unstructured-grid finite
element code for land Ice dynamics.

* Provide sea level rise prediction

« 128GB DDR3 memory per node,
10 100 1000 10000 « 2x NVIDIA K20x per node

of elements

“Atomics” vs “+="

 Run on new architecture machines (hybrid systems). Nvidia GPU (k40) Intel Xeon Phi Sandy Bridge
1 1 1
, 01 . . . o 01 _
Nonlinear stokes, Model FU”y ImpIICIt SOIUﬁOﬂ Algorlthm ;g; ool em===atomics separated ;g; 0.1 / em==atomics separated E\ 001 // @m—atomics separated

° F|n|te Element Assembly g ' : em==atomics fused E 0.01 / em==atomics fused E em==atomics fused

for Ice Sheet Stresses e ~50% CPU time 0.001 "+=" separated "+="separated 0.001 "+=" separated
. 0.0001 - - - a—" 4" fUsed 0.001 - - - - —" 4 fused 0.0001 - - - - —y " fused

* Linear Solve ILU + CG 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000

_V i (Zué) . _pgﬁ ° NSO% CPU Tlme # of elements # of elements # of elements
1/ — . : .
gx Problem Size, up to: + “Fused” means that all the Kokkos kernels are fused togeather, when in “Separated” version we have several independent kernels
—V-(2ué,) = — _S * 1.12B Unknowns « ***“Nvidia K20 GPU” and “Initial Implementation” results were obtained on Shannon, “Intel MIC” were obtained on Compton
He2) = —pg dy « 16384 Cores on Hopper

o Greenland lcesheet Albany FELIX code

Performance results CUDA profiling
40
11:10
[=I Process "Albany input_profile.xml...
[=| Thread 2083370784
StokesFOResid<Residual> 30 K t““f‘“me APl i [| 1111 N N R 111
O L Pro[f)'ilril:erop\\:rhead
g \ *CU DA [=] [0] Tesla iZOc I |
[=] Unified Memo!
o 20 _ P | ot |
£ “intelPhi | i iomoms
[=| Context 1 {CUDA)
10:2 10 Serial gmimgtzz | 1] B O O Il
. — @ ot | - i
DOFVeclnterpolation<Residual> . Default | e EE e e 1
0 ——
0 3 # of elements per workset
Gather Surface Height<Residual> ComputeBasisFunctions<Residual>
2:1
References:
@"""”“a“" Vector<Residual> Graph of Finite Element Assembly Kernels 1) Edwards, H. Carter, Trott, Christian R., Sunderland, Daniel Kokkos: Enabling manycore performance portability

through polymorphic memory access patterns. Journal of Parallel and Distributed Computing, 2014.
. : .. 2) Salinger, Andrew G. Component-based Scientific application Development., December 01, 2012 | i
*Fundin rce: PISCEE. iDAC Appli n (BER & ASCR ’ ’ ’ | ¥ B
S e e e N, P 3) Willenbring, James M.,and Michael Allen Heroux. Trilinos Users Guide., August 01, 2003. K "

Authors: A. Salinger, |. Kalashnikova, M. Perego, R. Tuminaro [SNL], S. Price[LANL] y

\ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a Sandla
~. v D) wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear

///’ v A' ' . Security Administration under contract DE-AC04-94AL85000. Natlonal

National Nuclear SecurltyAdmmlstratlon

SAND 2014-3960 P laboratories

