
	

Sandia	
 Na(onal	
 Laboratories	
 is	
 a	
 mul(-­‐program	
 laboratory	
 managed	
 and	
 operated	
 by	
 Sandia	
 Corpora(on,	
 a	

wholly	
 owned	
 subsidiary	
 of	
 Lockheed	
 Mar(n	
 Corpora(on,	
 for	
 the	
 U.S.	
 Department	
 of	
 Energy’s	
 Na(onal	
 Nuclear	

Security	
 Administra(on	
 under	
 contract	
 DE-­‐AC04-­‐94AL85000.	

	

Fully	
 Implicit	
 Solu(on	
 Algorithm:	

•  Finite	
 Element	
 Assembly	

•  ~50%	
 CPU	
 (me	

•  Linear	
 Solve	
 ILU	
 +	
 CG	

•  ~50%	
 CPU	
 Time	

•  Problem	
 Size,	
 up	
 to:	

•  1.12B	
 Unknowns	

•  16384	
 Cores	
 on	
 Hopper	

Introduc)on	

Sandia	
 Na)onal	
 Laboratories	

Irina Demeshko, H. Carter Edwards, Michael A. Heroux, Eric T. Phipps, Andrew G. Salinger , Roger P. Pawowski
Sandia	
 Na(onal	
 Laboratories,	
 New	
 Mexico,	
 87185	

Kokkos implementation of the Albany:
a performance-portable finite element application	

SAND	
 2014-3960 P	

Kokkos	
 programming	
 model	

Implementa)on	
 algorithm:	

Performance	
 Results*	

Ice	
 Sheet	
 Simula)on	
 Code	
 (FELIX)	

Problem:	

Modern	
 HPC	
 applica(ons,	
 Finite	
 Element	
 Assembly	
 codes	
 in	
 par(cular,	
 need	
 to	
 be	
 run	
 on	
 many	

different	
 pla^orms	
 and	
 performance	
 portability	
 has	
 become	
 a	
 cri(cal	
 issue:	
 parallel	
 code	
 needs	

to	
 be	
 executed	
 correctly	
 and	
 performant	
 despite	
 varia(on	
 in	
 the	
 architecture,	
 opera(ng	
 system	

and	
 so_ware	
 libraries.	

Approach:	

Kokkos	
 programming	
 model	
 from	
 Trilinos:	
 C++	
 library,	
 which	
 provide	
 performance	
 portability	

across	
 diverse	
 devices	
 with	
 different	
 memory	
 models.	

Funding:	
 ASC	
 Exascale	
 Codesign	
 Project	

	

Computed	
 Surface	
 Velocity	
 [m/yr]	

for	
 Greenland	
 Ice	
 Sheet	

We	
 are	
 developing	
 a	
 performance	
 portable	

implementa)on	
 of	
 an	
 Ice	
 Sheet	
 simula)on	
 code*,	

build	
 with	
 the	
 Albany	
 [3]	
 applica)on	
 development	

environment	

Ø  Provides	
 portability	
 across	
 manycore	
 devices	
 (Mul(core	
 CPU,	
 NVidia	
 GPU,	
 Intel	
 Xeon	

Phi	
 (poten(al:	
 AMD	
 Fusion)	
)	

Ø  Abstract	
 data	
 layout	
 for	
 non-­‐trivial	
 data	
 structures	

Ø  Uses	
 library	
 approach:	

Ø  Maximize	
 amount	
 of	
 user	
 (applica4on/library)	
 code	
 that	
 can	
 be	
 compiled	
 without	

modifica4on	
 and	
 run	
 on	
 these	
 architectures	
 	

Ø  Minimize	
 amount	
 of	
 architecture-­‐specific	
 knowledge	
 that	
 a	
 user	
 is	
 required	
 to	
 have	
 	

Ø  Performant:	
 Portable	
 user	
 code	
 performs	
 as	
 well	
 as	
 architecture-­‐specific	
 code	
 	

Main	
 abstrac)ons:	

Ø  Kokkos	
 executes	
 computa(onal	
 kernels	
 in	
 fine-­‐grain	
 data	
 parallel	
 within	
 an	
 Execu4on	

space.	

Ø  Computa(onal	
 kernels	
 operate	
 on	
 mul(dimensional	
 arrays	
 (Kokkos::View)	
 residing	
 in	

Memory	
 spaces.	
 	

Ø  Kokkos	
 provides	
 these	
 mul(dimensional	
 arrays	
 with	
 polymorphic	
 data	
 layout,	
 similar	
 to	

the	
 Boost.Mul(Array	
 flexible	
 storage	
 ordering.	

Kokkos	
 [1]	
 - C++ library from Trilinos [2] to provide
scientific and engineering codes with an intuitive
manycore performance portable programming model.

Project	
 objec)ves:	
 	

•  Develop	
 a	
 robust,	
 scalable,	
 unstructured-­‐grid	
 finite	

element	
 code	
 for	
 land	
 Ice	
 dynamics.	

•  Provide	
 sea	
 level	
 rise	
 predic(on	

•  Run	
 on	
 new	
 architecture	
 machines	
 (hybrid	
 systems).	

*Funding	
 Source:	
 PISCEES	
 SciDAC	
 Applica(on	
 (BER	
 &	
 ASCR)	

	

	

Authors:	
 A.	
 Salinger,	
 I.	
 Kalashnikova,	
 M.	
 Perego,	
 R.	
 Tuminaro	
 [SNL],	
 S.	
 Price[LANL]	

1)	
 Replace	
 array	
 alloca(ons	
 with	
 Kokkos::Views	
 	
 (in	
 Host	
 space)	

	
 Kokkos::View<ScalarType****,	
 Device>	
 	
 	
 jacobian("Jacobian",	
 worksetNumCells,	
 numQPs,	
 numDims,	
 numDims);	

2)	
 Replace	
 array	
 access	
 with	
 Kokkos::Views	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 B[k][j]	
 =	
 jacobian(i0,	
 i1,	
 k,	
 j);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Kokkos::deep_copy	
 (jacobian,	
 host_jacobian);	

3)	
 Replace	
 func(ons	
 with	
 Functors,	
 run	
 in	
 parallel	
 on	
 Host	

	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

	

	

	

	

	

	

	

	

	

	

4)	
 Call	
 Kokkos::parallel_for<…>	
 (…)	
 	
 over	
 the	
 number	
 of	
 elements	
 in	
 workset:	

	

	

	

	

	

	

	

	

	

	

	

	

	

5)	
 Set	
 Device	
 to	
 ‘Cuda’,	
 ‘OpenMP’	
 or	
 ‘Threads’	
 and	
 run	
 on	
 	
 specified	
 Device	

	
 typedef	
 Kokkos::Cuda	
 Device;	
 or	
 	
 	
 typedef	
 Kokkos::OpenMP	
 Device;	
 or	
 	
 typedef	
 Kokkos::Threads	
 	
 Device;	

	

1	

for(int cell = 0; cell < worksetNumCells; cell++) {
 for(int qp = 0; qp < numQPs; qp++) {
 for(int row = 0; row < numDims; row++){
 for(int col = 0; col < numDims; col++){
 for(int node = 0; node < numNodes; node++){
 jacobian(cell, qp, row, col) +=
 coordVec(cell, node, row)
 *basisGrads(node, qp, col);
 } // node
 } // col
 } // row
 } // qp
 } // cell

Kokkos::parallel_for (worksetNumCells,
 compute_jacobian<ScalarT, Device, numQPs, numDims, numNodes>
(basisGrads, jacobian, coordVec));

template	
 <	
 typename	
 ScalarType,	
 clas	
 DeviceType,	
 int	
 numQPs_,	
 int	
 numDims_,	
 int	
 numNodes_	
 >	

class	
 compute_jacobian	
 	
 {	

	
 	
 	
 Array3	
 basisGrads_;	

	
 	
 	
 Array4	
 jacobian_;	

	
 	
 	
 Array3_const	
 coordVec_;	

	
 public:	

	
 	
 	
 typedef	
 DeviceType	
 device_type;	

	
 	
 	
 compute_jacobian(Array3	
 &basisGrads,	
 	
 Array4	
 &jacobian,	
 Array3	
 &coordVec)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :	
 basisGrads_(basisGrads)	
 ,	
 jacobian_(jacobian),	
 coordVec_(coordVec){}	

KOKKOS_INLINE_FUNCTION	

	
 void	
 operator	
 ()	
 (const	
 std::size_t	
 cell)	
 const	

	
 {	

	
 	
 for(int	
 qp	
 =	
 0;	
 qp	
 <	
 numQPs_;	
 qp++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 for(int	
 row	
 =	
 0;	
 row	
 <	
 numDims_;	
 row++){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for(int	
 col	
 =	
 0;	
 col	
 <	
 numDims_;	
 col++){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for(int	
 node	
 =	
 0;	
 node	
 <	
 numNodes_;	
 node++){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 jacobian_(cell,	
 qp,	
 row,	
 col)	
 +=	
 coordVec_(cell,	
 node,	
 row)*basisGrads_(node,	
 qp,	
 col);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 //	
 node	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 //	
 col	

	
 	
 	
 	
 	
 	
 	
 	
 }	
 //	
 row	

	
 	
 	
 	
 	
 }	
 //	
 qp	

	
 }	

	
 };	

	

Example: Compute Jacobian

Initial code:

Kokkos Implementation:

•  “Fused” means that all the Kokkos kernels are fused togeather, when in “Separated” version we have several independent kernels
•  ** “Nvidia K20 GPU” and “Initial Implementation” results were obtained on Shannon, “Intel MIC” were obtained on Compton

References:	

1)  Edwards,	
 H.	
 Carter,	
 Troy,	
 Chris(an	
 R.,	
 Sunderland,	
 Daniel	
 Kokkos:	
 Enabling	
 manycore	
 performance	
 portability	

through	
 polymorphic	
 memory	
 access	
 pa`erns.	
 Journal	
 of	
 Parallel	
 and	
 Distributed	
 Compu(ng,	
 2014.	

2)  Salinger,	
 Andrew	
 G.	
 Component-­‐based	
 Scien4fic	
 applica4on	
 Development.,	
 December	
 01,	
 2012	

3)	
 Willenbring,	
 James	
 M.,and	
 Michael	
 Allen	
 Heroux.	
 Trilinos	
 Users	
 Guide.,	
 August	
 01,	
 2003.	
 	

Graph of Finite Element Assembly Kernels

Evalua7on	
 Environment:	

Compton	
 (Intel	
 MIC	
 cluster)	
 :	
 	

42	
 nodes:	

•  	
 Two	
 8-­‐core	
 Sandy	
 Bridge	
 Xeon	
 E5-­‐2670	
 @	

2.6GHz	
 (HT	
 ac(vated)	
 per	
 node,	

•  	
 24GB	
 (3*8Gb)	
 memory	
 per	
 node,	
 	

•  Two	
 Pre-­‐produc(on	
 KNC	
 (Intel	
 MIC)	
 2	
 per	

node	
 (57	
 cores	
 per	
 each)	

Shannon	
 (NVIDIA	
 GPU	
 cluster):	

32	
 nodes:	

•  Two	
 8-­‐core	
 Sandy	
 Bridge	
 Xeon	
 E5-­‐2670	
 @	

2.6GHz	
 (HT	
 deac(vated)	
 per	
 node,	

•  128GB	
 DDR3	
 memory	
 per	
 node,	

•  2x	
 NVIDIA	
 K20x	
 per	
 node	

	

	

Device:	

Kokkos::parallel_for	
 	

over	
 the	
 #	
 of	
 elements	
 in	
 workset	

Copy	
 solu(on	
 vector	
 to	
 the	
 Device	

Copy	
 residual	
 vector	
 to	
 the	
 Host	

Loop	
 over	
 the	
 number	
 of	
 worksets	

…

“Atomics” vs “+=”

0.0001	

0.001	

0.01	

0.1	

1	

10	
 100	
 1000	
 10000	

)m
e,
	
 se

c	

#	
 of	
 elements	

Nvidia	
 GPU	
 (k40)	

atomics	
 separated	

atomics	
 fused	

"+="	
 separated	

"+="	
 fused	
 0.001	

0.01	

0.1	

1	

10	
 100	
 1000	
 10000	

)m
e,
	
 se

c	

#	
 of	
 elements	

Intel	
 Xeon	
 Phi	

atomics	
 separated	

atomics	
 fused	

"+="separated	

"+="	
 fused	
 0.0001	

0.001	

0.01	

0.1	

1	

10	
 100	
 1000	
 10000	

)m
e,
	
 se

c	

#	
 of	
 elements	

Sandy	
 Bridge	

atomics	
 separated	

atomics	
 fused	

"+="	
 separated	

"+="	
 fused	

0.0000001	

0.000001	

0.00001	

0.0001	

0.001	

10	
 100	
 1000	
 10000	

)m
e/
#o

f	
 e
le
m
en

ts
	
 (s
ec
)	

#	
 of	
 elements	

NVIDA	
 K20	

Intel	
 Xeon	
 Phi	

Intel	
 Xeon	

Ini(al	
 code	
 (1	

core)	

Albany MiniDriver test code

Albany FELIX code
Performance results CUDA profiling

0	

10	

20	

30	

40	

)m
e,
	
 se

c	

#	
 of	
 elements	
 per	
 workset	

CUDA	

Intel	
 Phi	

	
 Serial	

SAND2014-18787C

