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Application & Library Domain Layer
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Kokkos: A Layered Collection of Libraries

 Standard C++, Not a language extension
 In spirit of TBB, Thrust & CUSP, C++AMP,...

 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

 Uses C++ template meta-programming
 Rely on C++1998 standard (supported everywhere except IBM’s xlC)

 Prefer C++2011 for its concise lambda syntax

 As soon as vendors catch up to C++2011 language compliance

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core
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Performance Portability Challenge:
Device-Specific Memory Access Patterns are Required 

 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)

 Hyperthreads’ cooperative use of L1 cache

 Array alignment for cache-lines and vector units

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment

 Temporal locality and special hardware (texture cache)

 ¿ “Array of Structures” vs. “Structure of Arrays” ?

This has been the wrong question

Right question: Abstractions for Performance Portability ?
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Performance Portability Answer

 Thread parallel computation (for, reduce, scan)
 Dispatched to an execution space (CPU, GPU, Xeon Phi)

 Operates on data in memory spaces (CPU, GPU, CPU-pinned, GPU-UVM, ...)

 Should use device-specific memory access pattern; how to portably?

 Multidimensional Arrays, with a twist
 Layout mapping: multi-index (i,j,k,...)  memory location

Choose layout to satisfy device-specific memory access pattern

 Layout changes are invisible to the user code;

IF the user code uses Kokkos’ simple array API: a(i,j,k,...)

 Manage device specifics under simple portable API
 Dispatch computation to threads in one or more execution spaces

 Polymorphic multidimensional array layout

 Control dispatch ○ layout → control memory access pa�ern

 Utilization of special hardware; e.g., GPU texture cache
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Multidimensional Array
Allocation, Access, and Layout

 Allocate and access multidimensional arrays
class View< double * * [3][8] , Device > a(“a”,N,M); 

 Dimension [N][M][3][8] ; two runtime, two compile-time

 a(i,j,k,l) : access data via multi-index with device-specific map

 Index map inserted at compile-time (C++ template meta programming)

 Identical C++ ‘View’ objects used in host and device code

 Assertions that ‘a(i,j,k,l)’ access is correct 
 Compile-time: 

 Execution space can access memory space (instead of runtime segfault)

 Array rank == multi-index rank

 Runtime (debug mode)

 Array bounds checking

 Uses Cuda ‘assert’ mechanism on GPU
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Multidimensional Array
Layout and Access Attributes

 Override device’s default array layout
class View<double**[3][8], Layout , Device> a(“a”,N,M); 

 E.g., force row-major or column-major

 Multi-index access is unchanged in user code

 Layout is an extension point for blocking, tiling, etc.

 Example: Tiled layout
class View<double**, TileLeft<8,8> , Device> b(“b”,N,M); 

 Layout changes are transparent to user code

 IF the user code honors the a(i,j,k,...) API

 Data access attributes – user’s intent
class View<const double**[3][8], Device, RandomRead> x = a ;

 Constant + RandomRead + GPU → read through GPU texture cache

 Transparent to user code
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Kokkos Core: Deep Copy Array Data
NEVER have a hidden, expensive deep-copy

 Only deep-copy when explicitly instructed by user code

 Avoid expensive permutation of data due to different layouts

 Mirror the layout in Host memory space

typedef class View<...,Device> MyViewType ;

MyViewType a(“a”,...); 

MyViewType::HostMirror a_h = create_mirror( a );

deep_copy( a , a_h ); deep_copy( a_h , a ); 

 Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view( a );

 If Device uses host memory or if Host can access Device memory space 
(CUDA unified virtual memory) 

 Then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op



Evaluate Performance Impact of Array Layout
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 Molecular dynamics computational kernel in miniMD

 Simple Lennard Jones force model:

 Use atom neighbor list to avoid N2 computations

 Moderately compute bound computational kernel

F i= ∑
j , r ij< r cut

6 ε[(ς

r ij)
7

− 2(
ς

r ij)
13

]
pos_i = pos(i); 
for( jj = 0; jj < num_neighbors(i); jj++) {
j = neighbors(i,jj); 
r_ij = pos_i – pos(j); //random read 3 floats
if ( |r_ij| < r_cut )
f_i += 6*e*( (s/r_ij)^7 – 2*(s/r_ij)^13 )

}
f(i) = f_i;



Evaluate Performance Impact of Array Layout
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 Test Problem (#Atoms = 864k, ~77 neighbors/atom)
 Neighbor list array with correct vs. wrong layout

 CPU and GPU have different layouts

 Random read of neighbor coordinate via GPU texture fetch 

 Large loss in performance with (forced) wrong layout
 Even when using GPU texture fetch

 Kokkos, by default, selects the correct layout
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Lock-Free Unordered Map

 Essential building block for algorithms modifying dynamic data 
structures: graph construction, mesh adaptivity, ...

 State-of-practice: non-scalable lock-based implementations

 Performance evaluation stress tests
 Parallel insert to 88% full with 16x redundant inserts (near/far threads)

 NVidia Kepler K40X  vs. Intel Xeon Phi COES2

0

5

10

15

20

1E+04 1E+05 1E+06 1E+07

n
an

o
se

c 
/ 

at
te

m
p

te
d

 
in

se
rt

map capacity

Phi-240, far

Phi-240, near

K40X, far

K40X, near

 K40X dramatically better 
performance

 Xeon Phi implementation 
optimized using explicit 
non-caching prefetch

 Theory: due to cache 
coherency protocols and 
atomics’ performance



Thread Scalable Sparse Matrix Construction
 First time we could move graph construction to manycore

 Thread scalable algorithm with dynamic data structure
1. Parallel-for to fill unordered map with finite elements’ node-node pairs

2. Parallel-scan sparse matrix rows’ column counts

3. Parallel-for over unordered map to fill sparse matrix column-index array

4. Parallel-for to sort rows’ column-index subarray
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 Matrix graph construction 2x-3x longer than one Element+Fill
 Linearized hexahedron finite element for: −�	∆� + �� = �
 3D spatial Jacobian with 2x2x2 point numerical integration



11

Conclusion

 Kokkos: layered collection of libraries

 Performance portability to CPU, GPU, Xeon Phi

 Parallel dispatch (for, reduce, scan)

 Multidimensional arrays with polymorphic layout

 Dispatch ○ polymorphic layout → memory access pa�ern

 AoS versus SoA solved with appropriate abstractions

 UnorderedMap with thread scalable insertion


