Sandia
National
Laboratories

Exceptional
service

in the

national

interest

) "%ﬁ U.S. DEPARTMENT OF 7.\
‘. ENERGY VA D— =4

SAND2014-3216C

Kokkos:
Enabling Performance Portability
Across Manycore Architectures

H. Carter Edwards, Christian Trott,
Daniel Sunderland

Sandia National Laboratories

PADAL Workshop
April 28-29, 2014 | Lugano, Switzerland

SAND2014-####C (Unlimited Release)

S

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporatio f the U.S. D epartment of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

mh

Kokkos: A Layered Collection of Libraries

= Standard C++, Not a language extension
= |n spirit of TBB, Thrust & CUSP, C++AMP.,...

= Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

= Uses C++ template meta-programming
= Rely on C++1998 standard (supported everywhere except IBM’s xIC)
= Prefer C++2011 for its concise lambda syntax
As soon as vendors catch up to C++2011 language compliance

Sandia
National
Laboratories

Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Sandia

Performance Portability Challenge: i) atora
Device-Specific Memory Access Patterns are Required

= CPUs (and Xeon Phi)
= Core-data affinity: consistent NUMA access (first touch)
= Hyperthreads’ cooperative use of L1 cache
= Array alignment for cache-lines and vector units

= GPUs
= Thread-data affinity: coalesced access with cache-line alignment
= Temporal locality and special hardware (texture cache)

= ¢ “Array of Structures” vs. “Structure of Arrays” ?
» This has been the wrong question

Right question: Abstractions for Performance Portability ?

Performance Portability Answer h) S

= Thread parallel computation (for, reduce, scan)
= Dispatched to an execution space (CPU, GPU, Xeon Phi)
= Operates on data in memory spaces (CPU, GPU, CPU-pinned, GPU-UVM, ...)
» Should use device-specific memory access pattern; how to portably?

= Multidimensional Arrays, with a twist
* Layout mapping: multi-index (i,j,k,...) <> memory location
» Choose layout to satisfy device-specific memory access pattern
= Layout changes are invisible to the user code;
» IF the user code uses Kokkos’ simple array API: a(i,j,k,...)

= Manage device specifics under simple portable API
= Dispatch computation to threads in one or more execution spaces
= Polymorphic multidimensional array layout
» Control dispatch O layout = control memory access pattern
= Utilization of special hardware; e.g., GPU texture cache

Multidimensional Array)
Allocation, Access, and Layout

= Allocate and access multidimensional arrays
class View< double * * [3][8] , Device > a(“a”,N,M);
= Dimension [N][M][3][8] ; two runtime, two compile-time
= a(i,j,k,1) : access data via multi-index with device-specific map
* |ndex map inserted at compile-time (C++ template meta programming)

= |dentical C++ ‘View’ objects used in host and device code

= Assertions that ‘a(i,j,k,l)’ access is correct
= Compile-time:
= Execution space can access memory space (instead of runtime segfault)
= Array rank == multi-index rank
= Runtime (debug mode)
= Array bounds checking
= Uses Cuda ‘assert’ mechanism on GPU

Multidimensional Array)
Layout and Access Attributes

= QOverride device’s default array layout
class View<double**[3][8], Layout , Device> a(“a”,N,M);
= E.g., force row-major or column-major

» Multi-index access is unchanged in user code
= Layout is an extension point for blocking, tiling, etc.

= Example: Tiled layout VWl Al12 1A
class View<double**, TileLeft<8,8> , Device> b(“b”,N,M); / / /
> Layout changes are transparent to user code ARARAR’

» IF the user code honors the a(i,j,k,...) API
= Data access attributes — user’s intent
class View<const double**[3][8], Device, RandomRead> x = a;

= Constant + RandomRead + GPU - read through GPU texture cache
= Transparent to user code

Kokkos Core: Deep Copy Array Data)
NEVER have a hidden, expensive deep-copy

= Only deep-copy when explicitly instructed by user code

= Avoid expensive permutation of data due to different layouts

= Mirror the layout in Host memory space
typedef class View<...,Device> MyViewType ;

MyViewType a(“a”,...);

MyViewType::HostMirror a_h = create_mirror(a);

deep_copy(a,a_h); deep_copy(a_h,a);

= Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view(a);

= |f Device uses host memory or if Host can access Device memory space
(CUDA unified virtual memory)

= Then ‘a_h’is simply a view of ‘a’ and deep_copy is a no-op

Evaluate Performance Impact of Array Layout

« Molecular dynamics computational kernel in miniMD
. Simple Lennard Jones force model: F.= 6¢ [() 2(]
Jr<r Vi ij

« Use atom neighbor list to avoid N2 computations

pos_i = pos(i);
for(jj = 0; jj < num neighbors(i); jj++) {
J = neighbors(i,J]);
r ij = pos_ i - pos(j); //random read 3 floats
if (|r_ij| < r_cut)
£ i += 6*e*((s/r_ij)~7 - 2*(s/r_ij)+13)
}
f(i) = £ i;

« Moderately compute bound computational kernel

Sandia
National
Laboratories

Sandia

Evaluate Performance Impact of Array Layout k..
« Test Problem (#Atoms = 864k, ~77 neighbors/atom)

o Neighbor list array with correct vs. wrong layout
« CPU and GPU have different layouts

« Random read of neighbor coordinate via GPU texture fetch

200
150 M correct layout (with texture)
>
© 100 .
u.é # correct layout (without texture)
50
= wrong layout (with texture)
0
Xeon Xeon Phi K20x

o Large loss in performance with (forced) wrong layout
« Even when using GPU texture fetch
> Kokkos, by default, selects the correct layout

Lock-Free Unordered Map) i,
= Essential building block for algorithms modifying dynamic data
structures: graph construction, mesh adaptivity, ...

= State-of-practice: non-scalable lock-based implementations

= Performance evaluation stress tests

= Parallel insert to 88% full with 16x redundant inserts (near/far threads)
= NVidia Kepler K40X vs. Intel Xeon Phi COES2

- 20 = K40X dramatically better

9 —Phi-240, far

2 15 _ performance

g 10 =i—Phi-240, near | = Xeon Phi implementation

c . . o .« o

S 2 —KAOX, far optlmlzet.i using explicit

2 5 Ak—k—tk—tr—tr—tr—t—a non-caching prefetch

o =4 KA40X, near

© Y o — """ " Theory: due to cache

1E+04 1E+05 1E+06 1E+07 coherency protocols and

map capacity atomics’ performance

Thread Scalable Sparse Matrix Construction ()=

= First time we could move graph construction to manycore
= Thread scalable algorithm with dynamic data structure

1. Parallel-for to fill unordered map with finite elements’ node-node pairs
2. Parallel-scan sparse matrix rows’ column counts
3. Parallel-for over unordered map to fill sparse matrix column-index array
4. Parallel-for to sort rows’ column-index subarray

o 2

8

915

b .

0 1 =4 Phi-60

g 05 —Phi-240

2 | —KA0X

1E+03 1E+04 1E+05 1E+06 1E+07
Number of finite element nodes

= Matrix graph construction 2x-3x longer than one Element+Fill

= Linearized hexahedron finite element for: —k AT + T? = 0
= 3D spatial Jacobian with 2x2x2 point numerical integration

Conclusion) e,

Laboratories

= Kokkos: layered collection of libraries

= Performance portability to CPU, GPU, Xeon Phi

= Parallel dispatch (for, reduce, scan)

= Multidimensional arrays with polymorphic layout

= Dispatch O polymorphic layout = memory access pattern

= A0S versus SoA solved with appropriate abstractions

= UnorderedMap with thread scalable insertion

