
Photos placed in 
horizontal position 
with even amount 

of white space
between photos 

and header

Photos placed in horizontal 
position 

with even amount of white 
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos:
Enabling Performance Portability 
Across Manycore Architectures

H. Carter Edwards, Christian Trott, 
Daniel Sunderland

Sandia National Laboratories

PADAL Workshop

April 28-29, 2014 | Lugano, Switzerland

SAND2014-####C (Unlimited Release)

SAND2014-3216C



Application & Library Domain Layer

1

Kokkos: A Layered Collection of Libraries

 Standard C++, Not a language extension
 In spirit of TBB, Thrust & CUSP, C++AMP,...

 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

 Uses C++ template meta-programming
 Rely on C++1998 standard (supported everywhere except IBM’s xlC)

 Prefer C++2011 for its concise lambda syntax

 As soon as vendors catch up to C++2011 language compliance

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core



2

Performance Portability Challenge:
Device-Specific Memory Access Patterns are Required 

 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)

 Hyperthreads’ cooperative use of L1 cache

 Array alignment for cache-lines and vector units

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment

 Temporal locality and special hardware (texture cache)

 ¿ “Array of Structures” vs. “Structure of Arrays” ?

This has been the wrong question

Right question: Abstractions for Performance Portability ?



3

Performance Portability Answer

 Thread parallel computation (for, reduce, scan)
 Dispatched to an execution space (CPU, GPU, Xeon Phi)

 Operates on data in memory spaces (CPU, GPU, CPU-pinned, GPU-UVM, ...)

 Should use device-specific memory access pattern; how to portably?

 Multidimensional Arrays, with a twist
 Layout mapping: multi-index (i,j,k,...)  memory location

Choose layout to satisfy device-specific memory access pattern

 Layout changes are invisible to the user code;

IF the user code uses Kokkos’ simple array API: a(i,j,k,...)

 Manage device specifics under simple portable API
 Dispatch computation to threads in one or more execution spaces

 Polymorphic multidimensional array layout

 Control dispatch ○ layout → control memory access pa�ern

 Utilization of special hardware; e.g., GPU texture cache



4

Multidimensional Array
Allocation, Access, and Layout

 Allocate and access multidimensional arrays
class View< double * * [3][8] , Device > a(“a”,N,M); 

 Dimension [N][M][3][8] ; two runtime, two compile-time

 a(i,j,k,l) : access data via multi-index with device-specific map

 Index map inserted at compile-time (C++ template meta programming)

 Identical C++ ‘View’ objects used in host and device code

 Assertions that ‘a(i,j,k,l)’ access is correct 
 Compile-time: 

 Execution space can access memory space (instead of runtime segfault)

 Array rank == multi-index rank

 Runtime (debug mode)

 Array bounds checking

 Uses Cuda ‘assert’ mechanism on GPU



5

Multidimensional Array
Layout and Access Attributes

 Override device’s default array layout
class View<double**[3][8], Layout , Device> a(“a”,N,M); 

 E.g., force row-major or column-major

 Multi-index access is unchanged in user code

 Layout is an extension point for blocking, tiling, etc.

 Example: Tiled layout
class View<double**, TileLeft<8,8> , Device> b(“b”,N,M); 

 Layout changes are transparent to user code

 IF the user code honors the a(i,j,k,...) API

 Data access attributes – user’s intent
class View<const double**[3][8], Device, RandomRead> x = a ;

 Constant + RandomRead + GPU → read through GPU texture cache

 Transparent to user code



6

Kokkos Core: Deep Copy Array Data
NEVER have a hidden, expensive deep-copy

 Only deep-copy when explicitly instructed by user code

 Avoid expensive permutation of data due to different layouts

 Mirror the layout in Host memory space

typedef class View<...,Device> MyViewType ;

MyViewType a(“a”,...); 

MyViewType::HostMirror a_h = create_mirror( a );

deep_copy( a , a_h ); deep_copy( a_h , a ); 

 Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view( a );

 If Device uses host memory or if Host can access Device memory space 
(CUDA unified virtual memory) 

 Then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op



Evaluate Performance Impact of Array Layout

7

 Molecular dynamics computational kernel in miniMD

 Simple Lennard Jones force model:

 Use atom neighbor list to avoid N2 computations

 Moderately compute bound computational kernel

F i= ∑
j , r ij< r cut

6 ε[(ς

r ij)
7

− 2(
ς

r ij)
13

]
pos_i = pos(i); 
for( jj = 0; jj < num_neighbors(i); jj++) {
j = neighbors(i,jj); 
r_ij = pos_i – pos(j); //random read 3 floats
if ( |r_ij| < r_cut )
f_i += 6*e*( (s/r_ij)^7 – 2*(s/r_ij)^13 )

}
f(i) = f_i;



Evaluate Performance Impact of Array Layout

8

 Test Problem (#Atoms = 864k, ~77 neighbors/atom)
 Neighbor list array with correct vs. wrong layout

 CPU and GPU have different layouts

 Random read of neighbor coordinate via GPU texture fetch 

 Large loss in performance with (forced) wrong layout
 Even when using GPU texture fetch

 Kokkos, by default, selects the correct layout

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

o
p

/s

correct layout (with texture)

correct layout (without texture)

wrong layout (with texture)



9

Lock-Free Unordered Map

 Essential building block for algorithms modifying dynamic data 
structures: graph construction, mesh adaptivity, ...

 State-of-practice: non-scalable lock-based implementations

 Performance evaluation stress tests
 Parallel insert to 88% full with 16x redundant inserts (near/far threads)

 NVidia Kepler K40X  vs. Intel Xeon Phi COES2

0

5

10

15

20

1E+04 1E+05 1E+06 1E+07

n
an

o
se

c 
/ 

at
te

m
p

te
d

 
in

se
rt

map capacity

Phi-240, far

Phi-240, near

K40X, far

K40X, near

 K40X dramatically better 
performance

 Xeon Phi implementation 
optimized using explicit 
non-caching prefetch

 Theory: due to cache 
coherency protocols and 
atomics’ performance



Thread Scalable Sparse Matrix Construction
 First time we could move graph construction to manycore

 Thread scalable algorithm with dynamic data structure
1. Parallel-for to fill unordered map with finite elements’ node-node pairs

2. Parallel-scan sparse matrix rows’ column counts

3. Parallel-for over unordered map to fill sparse matrix column-index array

4. Parallel-for to sort rows’ column-index subarray

10

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
n

o
d

e

Number of finite element nodes

Phi-60

Phi-240

K40X

 Matrix graph construction 2x-3x longer than one Element+Fill
 Linearized hexahedron finite element for: −�	∆� + �� = �
 3D spatial Jacobian with 2x2x2 point numerical integration



11

Conclusion

 Kokkos: layered collection of libraries

 Performance portability to CPU, GPU, Xeon Phi

 Parallel dispatch (for, reduce, scan)

 Multidimensional arrays with polymorphic layout

 Dispatch ○ polymorphic layout → memory access pa�ern

 AoS versus SoA solved with appropriate abstractions

 UnorderedMap with thread scalable insertion


