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Summary: Z Fe opacity measurements reveal that modeled Fe 
opacities are underestimated at solar interior conditions

• Fe opacity measurements are important to solve a puzzle with the Sun

• Fe opacity are measured at multiple conditions with SNL Z opacity platform

At lower Te and ne At higher Te and ne (〜 solar interior)

• The observed discrepancies are likely to be real
• Platform is ready to test hypothesis to explain the discrepancies

• Various concerns are synthetically investigated

• Self-emission
• Tamper effects
• Time- and space-integration effects

The effects are small
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Solar models disagree with observation due to mean 
opacity underestimate

S. Basu et al, Physics Reports 457, 217 (2008).

• Simulation: standard solar models

• Observation: Helioseismology

• Opacity • Abundance

• etc

Input: 

Simulated mean opacity is somehow 
lower than observed mean opacity 

Problem

• (r), c(r), T(r)
• CZB location: 13-30 

Discrepancies

Convection zone 
base (CZB)



Disagreement could be resolved if the true opacity is higher 
than predicted

CZB condition:
Te=182 eV

ne=9x1022 cm-3
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Fe L-shell

• Fe opacity is a likely suspect
• Significant contribution
• Most difficult to model

Let’s measure Fe opacity at the CZB conditions !



Z-pinch dynamic hohlraum

Above 150 eV Fe opacities are measured using the Z-Pinch dynamic 
hohlraum (ZPDH) opacity science platform

J.E. Bailey et al, Physics of Plasmas 16, 058101 (2009).
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Z-pinch dynamic hohlraum
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• Heating to uniform conditions:

• Transmission:

T = I/ I,0

ZPDH radiation
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• Heating to uniform conditions:

• Transmission:

• Opacity:

T = I/ I,0

 -ln(T)/L

ZPDH radiation
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Modeled opacity agrees with the data at lower Te and ne

(CZB: 185 eV, 9e22 e/cc)

Z data
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Model-data agreement deteriorates as Te and ne increase 
approaching the CZB conditions (185 eV, 9e22 e/cc)
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Model-data agreement deteriorates as Te and ne increase 
approaching the CZB conditions (185 eV, 9e22 e/cc)

Experiments need to be scrutinized for potential systematic uncertainties.
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Systematic uncertainties are synthetically investigated 
accounting for sample/backlighter dynamics
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• Concerns
• Self-emission
• Tamper effects
• Time- and space-integration effects



Systematic uncertainties are synthetically investigated 
accounting for sample/backlighter dynamics
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Drive radiation

• Concerns
• Self-emission
• Tamper effects
• Time- and space-integration effects

Drive radiation: VISRAD

• 3D view factor code, VISRAD
• Gated pinhole images of ZPDH 

J.J. MacFarlane, J Quant Spectr Radiative Transfer 81, 287 (2003).
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Systematic uncertainties are synthetically investigated 
accounting for sample/backlighter dynamics

• Concerns
• Self-emission
• Tamper effects
• Time- and space-integration effects

Hydrodynamics: 1D Lagrangian, HELIOS

J. MacFarlane et al, Phys. Rev. E 72, 066403 (2005).
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• Concerns
• Self-emission
• Tamper effects
• Time- and space-integration effects

Backlighter: Gated pinhole images
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Investigated concerns do not explain the observed 
discrepancies
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Self-emission, tamper effects, and time- and space-integration effects do 
not explain the observed discrepancies
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