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Composite Structures on 
Boeing 787 Aircraft

Carbon laminate

Carbon sandwich

Fiberglass

Aluminum

Aluminum/steel/titanium pylons

A380 Pressure Bulkhead

Composite Center Wing Box

Program Motivation - Extensive/increasing use of composites on 
commercial aircraft and increasing use of NDI to inspect them

Program Goals: Assess & Improve Flaw Detection 
Performance in Composite Aircraft Structure
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Sources of Damage in Composite Structure

Bird Strike
Towing Damage

Lightning 
Strike on

Thrust 
Reverser

Lightning 
Strike on
Fuselage

Ground Support 
Equipment Impact
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Significant 
Internal Damage

Source: Carlos Bloom (Lufthansa) & S. Waite (EASA)

Inspection Challenge – Hidden Impact Damage

Internal delamination from ice impact

Extent of Visible 
Damage from Outside

Damage from ground vehicle

Extent of visible damage 44 in2 Delamination
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AANC Composite Programs 

• Industry wide NDI Reference Standards
• NDI Assessment: Honeycomb Structures
• NDI Assessment: Solid Laminate Structures
• Composite Heat, UV, and Fluid Ingress Damage
• Composite Repairs and Porosity
• Composite NDI Training and NDI Proficiency Specimens

Composite Impact Study

– Identify which impact scenarios are of major concern to aircraft 
maintenance

– Identify key parameters governing impact damage formation
– Relate damage threat & structural integrity to capabilities of NDI 

to detect hidden impact damage in laminates
– Develop methodology for impact threat characterization

Inspection 
Task Group

Multiple impact parameters must be studied – hardness of impactor, 
low mass-high velocity impact, high mass-low velocity impact, angle of 
impact, surface demarcations & visual clues, panel stiffness
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Still Images from 61 mm Ice Impact 
on 8 Ply Carbon Panel at 72 m/s

Ice Impact Testing at UCSD

UCSD High Velocity Gas Gun

Joint Effort: UCSD (Prof. Hyonny Kim)
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• 112 carbon composite panels were fabricated using BMS8-276N uniaxial 
material; consisted of 8, 16, and 24 ply configurations (12” x 12”)

• All panels are being impacted with ice balls of different diameters and 
velocities to simulate hail and create various levels of impact damage

• The goal was to create damage associated with Failure Threshold ~ BVID 
range & complete NDI to evaluate the sensitivity of each method in 
detecting and sizing the damaged area (reliable, sensitive, gate 
deployment, cost effective)

Composite Impact Study –
Hail Impact Task Description

• NDI methods used for this evaluation 
include: Through Transmission 
Ultrasonics (TTU), Phased Array UT, 
Pulse-Echo UT, Resonance, Flash 
Thermography, Damage Checker (PE-UT), 
Mechanical Impedance Analysis, Low 
Frequency Bond Test

Joint Effort: UCSD (Prof. Hyonny Kim)
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Composite Impact Damage –

Inspection Methods Deployed

TTU
MAUS PE

MAUS MIA
MAUS 

Resonance

Thermography
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Composite Impact Damage –

Inspection Methods Deployed

MAUS LFBT

Omniscan Phased Array UT

V-95
(Mechanical Impedance

Analysis)

Damage Check Device
(Pulse-Echo UT)
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TC-16-25

Picture TTU MAUS PE Omni PE

IR MAUS Resonance Omni PA

Y

Impact Energy (J) - _____________525.1

Impact Velocity (m/s) - _________

Projectile Size (mm) - _______
Flaw Size TTU UCSD  (mm²) - _______

38.1
26439

Flaw Size Omniscan PE (mm²) - ________28,380

Flaw Size MAUS PE (mm²) - ________37,128 212.44

Ramp Damage Checker
(flaw indicated)

Good area Imp. area

Laser UT

Example Result
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TC-24-19

Picture TTU MAUS PE Omni PE

IR MAUS Resonance Omni PA

Y

Impact Energy (J) - _____________1,268.1

Impact Velocity (m/s) - _________

Projectile Size (mm) - _______
Flaw Size TTU UCSD  (mm²) - _______

61
8,022

Flaw Size Omniscan PE (mm²) - ________9,439

Flaw Size MAUS PE (mm²) - ________9,413 153.46

Ramp Damage Checker
(flaw indicated)

Imp. areaGood area

Example Result
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TC-08-29

Picture TTU MAUS PE Omni PE

IR MAUS Resonance Omni PA

A-scan Ref

Impact Energy (J) - _____________306.7

Impact Velocity (m/s) - _________

Projectile Size (mm) - _______50.8

99

0

Flaw Size Omniscan PE (mm²) - ________554

Flaw Size MAUS PE (mm²) - ________703

Flaw Size TTU UCSD  (mm²) - _______

N

Ramp Damage Checker
(flaw indicated)

Imp. areaGood area

Example Result
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Impact-Induced Damage 
Morphology for 8 Ply Panel; 

42.7 mm Ice at 120.4 m/s (267 J) 

Selected panels were sectioned and observed by microscopy to map out the damage. The laminates 
develop the series of classic peanut shaped delaminations/fractures that stack together to give the 

overall appearance shown in the scans

Failure Threshold (Energy) Velocity

D = Impactor Dia.
H = Panel Thickness

Damage in Composite Laminates from Ice Impact
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Full-Scale Fuselage Test 
Panel Fabrication

T800 unidirectional pre-preg tape with a 3900 series resin system (BMS8- 276)

Tapered Region

Hat Section 
Stringer 

Autoclave Cured (350° F at 90 psi)
Skin - Curved Construction

Quasi-Isotropic Lay Up [0,+45,90.-45]2(s)

Not flat, simple structures
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Co-Cured Stringer

Fastened Shear Ties

Full-Scale Fuselage Test Panels

16 Ply Skin

Jet Glow 
Express   

Paint

2 Coats of 
epoxy primer 

4’8” Tall

6’4” Wide
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A

A

3 2c

2b

2a 1

Section A-A

6’4”

4’8”

• On the skin between the stringers (1)
• at the stringer/skin interface (2a-c)
• directly over the center of the stringer (3)
• at the shear-tie/skin interface ((4)not 

shown)

Stringer

Skin

4

Impact Locations of Interest

Ice Impact - Joint Effort: UCSD 
(Prof. Hyonny Kim and Jacqui Le)
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C-Scan Inspection Interpretation

Select Impact Damage Examples

Partially delaminated 
stringer flange

Fully bonded 
stringer flange

Fully delaminated 
stringer flange

Interply delamination in 
the skin

Pristine Area
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UT Amplitude UT Time of 
Flight

UT Resonance

Comparison of NDI Techniques

TOF and Resonance enhance detection of small disbonds
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Ice Impact Testing Results

• Induce both interply delamination and 
substructure disbonding

• No damage was visually detectable from the 
surface

• Damage was initiated at approximately 230 
Joules (~67 m/s)

UT Resonance Y-Plot

2.4 in diameter simulated hail impact tests were 
conducted between 50 and 120  m/s.Mid-Bay Impacts

278.9 Joules

(0.0) / (23.16)

383.2 Joules

(0.0) / (16.09)

• Induce only substructure flange 
disbonding

• No damage was visually detectable 
from the surface

• Damage was initiated at 
approximately 170 Joules (~56 m/s)

Stringer Flange Impacts

Terminal velocity ~ 30 to 35 m/s)



FAA William J. Hughes
Technical Center

Ice Impact Testing Results

Stringer Flange Impacts

Initiated substructure disbonding only, no interply delamination 
detected with these impacts

89 m/s

56 m/s
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388.1 Joules

Ice Impact Testing Results

• Induce both interply delamination and substructure 
disbonding (mostly flange disbonding)

• No damage was visually detectable from the surface
• Possible to initiate damage at less than 400 Joules

All shear tie impacts cracked the impacted shear tie

Mid-Stringer Impacts

• Induce built-up pad section 
delamination and cracked shear ties

• Damage was visually detectable from 
the surface (cracks, surface 
markings at approximately 700 
Joules (115 m/s))

Unique inspection challenge!

Shear Tie Impacts
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iPhoton Solutions Full Panel 

Inspection Results

Displacements are detected 
by a second laser beam and 
an interferometer

iPLUS™ Technology
• Laser-ultrasonic systems for the inspection of composites
• Conventional pulse-echo ultrasonic NDT results
• High speed testing of complex shape composites
• Uses commercial articulated robots



FAA William J. Hughes
Technical Center

Significant Damage with No Visual Indication

40 inch stringer disbond

54 in2 Interply delamination

Co-cured 
stringer
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ConclusionConclusion

• This structure is robust against hail impact

• Large damage can occur with no surface visual indication

• Impacts can initiate substructure damage away from the impact site

• Substructure impacts induce damage at less energy than mid-bay impacts

• Hard tip impacts induce localized, near surface damage that are typically visibly 
detectable from the surface (depends on tip diameter and hardness)

The presented work shows that...

Ongoing efforts...

• Subsurface damage can be difficult to detect with conventional NDI (ref. 
AANC SLE POD)

• Characterized panels are being used to assess emerging NDI technologies

•AANC Composite Impact Studies Include:

Identifying impact scenarios of concern

Identifying key parameters governing impact damage

Characterizing impact damage below the BVID level

Relating damage threat to capabilities of NDI

•NDI ability to detect impact damage was assessed in FTE ~ BVID 
range  sensitivity, sizing, procedures, deployment 
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