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[ Gate set tomography is able to provide estimates of quantum states and processes with unprecedented accuracy, consistency, and success. ]
i 1 [ GST protocols begin with experiments, each repeated | | )
Gate Set Tomography ¢ ijustrated below. GST treats a some number of times to build up good statistics. The GST can use both short and IOng gate
(GST) is a new tomographic 4 ,antum svstem (e’ ubit) as a following steps constitute a single experiment: sequences for gate set analysis. Using a small
procedure for Characterizing g y g- set (~100) of short gate sequences (<10 gates per sequence),
uantum states and black box. 1. State preparation (push the p button). we can provide a rough estimate of the gate set, using only
9 _ 5. Execution of a fixed gate sequence (push buttons linear algebra.. (For details on this procedure, cf. arXiv:
processes. Unlike state and - g g P 1310.4492; Robin Blume-Kohout’s poster “Gate Set Tomography
process tomography, GST Gj...Gy ). with Long Sequence of Gates”.)

does not rely on prior 3. Measurement (push the M button).

knowledge of either
precalibrated states or
operations. (E.g., process

_ . _ However, GST can also incorporate data from /long gate
outcome What we get from repeating each of these experiments is sequences — and these can provide literally unprecedented

- good estimates of many probabilities: tomography accuracy. In particular, sequences that repeat a

; . short “germ” many times (in contrast to the random sequences
tomography requires prior Prob. = <<M‘Gk . Gz ‘,0>> used in randomized benchmarking) can amplify small deviations
knowledge of which different meastre from ideal gates, proportional to the length (L) of the sequence.
measurements are being (1) denotes the vectorization operation.) We have developed algorithms to efficiently analyze the

performed.) Instead, GST prepare
seeks to characterize an |
experimental set of state apply gates
prepparations, processes, and P HGiHGjHGkJ'[E]: »HGHGHGHGHGHGHGHGHGHGHGH E o
measurements (the gate set)
In a self-consistent manner.

resulting data.

( : - ) Through simulation, we can explore how
Rgsults (shgwn in following plots) | | maximgum sequence length (L) apnd number of
Using GST with long-sequence data, we demonstrate (for a single qubit) that: experiments (N) affect accuracy.

RMS Frobenius Error vs. L and N .
1. In simulated data, estimate accuracy that scales linearly with gate sequence length (up to decoherence time). I B
2. In simulated data, gate set estimates succeed in approximating the true gates with high probability. §
10°¢ ZE:

3. In simulated and experimental data, gate set estimates fit the data to a high degree; we can also use this fit data to |

diagnose non-Markovian behavior. ”

Error vs. L for gate set with small rotation error

10° s . N
We can achieve 1/L scaling in ,(a) o N= Badness-of-fit. _ _ , Do RN DR THER BN AR R E O E R
error, limited onl b 0 e ¢ o N0 We can measure badness-of-fit by computing X ©) LBt BN el RISEH HAE P HH HEH Bl o |
! y y e e statistics. These diagnose whether and which data e ‘ ‘ e
Idec?h)erence. 5t T~ | our estimate fails to fit.
n (a), we compu te g ate set m? . T~
estimates from simulated data 5@ 100 * ~_ ' . | Given a GST gate set estimate, one may calculate the
: : = £ s . ! expected probability of a measurement outcome
Qef‘erated by a gai[l_ehset with L.m'tary 104l ¢ T following any gate sequence G....G,. If we denote the
noise present. € error In our . probability estimate of observing a +1 measurement
estimates scales as 1/L. ol following "a particular gate sequence as p and the
In (b), we perform the same log, L corresponding experimentally observed frequency as f B e e e e e e s e e e )
Computat|on, but US|ng an 2 (Ebr)rorvs.LTforgaTteset'with}Wodegolarizgtiongrror then the X2 StatiStiC for the gate set eStimate W|th () '°y'" o100t fli o oo 2l oz opullocoso ol o:o Moot ;1:§;; i:fibi
underlying gate set with 1% | seN= respect to that gate sequence is given by: ‘ ' ‘ = ‘ ‘
depolarizing noise. R ., — oos_|| ) (p — f)2
We see that 1/L scaling is achieved =2 | I | p(l — p)
until the sequences are long o T o This statistic indicates how well the estimator fits the
enough to significantly depolarize I data, with a lower value indicating a better fit.
the quIt o e e S e W e RN o ( )
\ / log, L We show X2 values in figures (e) and (f). Each small -
© GST failures (out of 100) box gives a x? value for a single gate sequence. The CO“CIUS'O"S
" GST will succeed in producing a ) F sequences naturally,organize into 6 x 6 blocks (see
prObabiIity' 7 0 0 0 0 0 0 0 0 0 |: . I - , ,
- ig. (e): We compute a gate set estimate using
In (c) and (d), we compute what how ¢ I L experimental data (from an SNL ion trap). The plot in and capable of unprecedented
many GST estimates succeed (by o (e) shows the estimate’s x2 badness-of-fit for individual aCCUrac
following 1/vN error scaling) out of . P gate sequences, using sequences of lengths L=1,..., y.
100 trials. In (c), the underlying gate o 0 o o 0 0 0 0 o o g’;gue"r‘]’gg‘s a subset of the underlying periodic - Long-sequence experiments
set is subject to small unitary error; L Eig () Usi - . L
: _ L 0 2 2 5 B g. (f): Using the gate set estimate from (e) as the reveal non-Markovian noise in
the underlying gate set is subject to logy L “true gate set’, we simulate and analyze GST data. _ _ _
1% depolarizing noise. - GST failures (out of 100) The plot in (f) shows the simulated estimate’s x? multiple qubit technologies.
ol l%dpol.rrorngaeset = badness-of-fit for individual gate sequences, using _
We see that, even with decoherence 80 o 0o o0 0o o o o o o 3?133‘39%993pOJri'c‘?Q%tZZqLu=e1r;ge'§12 with a subset of the » Long-sequence experiments
present, GST succeeds with high P allow the accuracy of GST to
probability, failing at most 8% of the = | Note that the gate set estimate of experimental data .
time. To guarantee success on|y 32 B o o o o o o o o o o (e) performs much worse at Iong sequences than the Scale Wlth Sequence Iength
: ’ o o 0o o0 o 0 o 0 1 0 gate set estimate of the simulated data. This indicates . . .
reexguei?e%ents per gate sequence are 40 o o o o o 1 1 1 1 a degree of non-Markovianity in the gates. (As the GST succeeds with h'Qh
: 2 2 2 2 2 2 2 2 simulated data is by fiat Markovian, we can see what T -
\ J 47 KN ' 7 ¢ ¢ how a gate set estimate performs on Markovian data, prObab”'ty’ even with short
’ gL i and we see that its performance is insensitive to
" _ sequence length, unlike the experimental data.) ) Sequences and few
INLSE Coperaton ot e 0.5 st ofEviray's Netorat Mot Soouty miteston o conrac DE-ACOA GARLBS0TD 1 ocxreed et experiments.




