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Conclusions

• GST is ready for use, robust, 
and capable of unprecedented 
accuracy.

• Long-sequence experiments 
reveal non-Markovian noise in 
multiple qubit technologies.

• Long-sequence experiments 
allow the accuracy of GST to 
scale with sequence length.

• GST succeeds with high 
probability, even with short 
sequences and few 
experiments.

As illustrated below, GST treats a 
quantum system (e.g. qubit) as a 
black box.

Gate Set Tomography 
(GST) is a new tomographic 
procedure for characterizing 
q u a n t u m s t a t e s a n d 
processes.  Unlike state and 
process tomography, GST 
does no t re ly on pr io r 
k n o w l e d g e o f e i t h e r 
p reca l ib ra ted s ta tes o r 
operations.  (E.g., process 
tomography requires prior 
knowledge of which different 
measurements are being 
performed.)  Instead, GST 
seeks to characterize an 
experimental set of state 
preparations, processes, and 
measurements (the gate set) 
in a self-consistent manner.

Gate set tomography is able to provide estimates of quantum states and processes with unprecedented accuracy, consistency, and success. 

Badness-of-fit.
We can measure badness-of-fit by computing χ2 
statistics.  These diagnose whether and which data 
our estimate fails to fit.

Given a GST gate set estimate, one may calculate the 
expected probability of a measurement outcome 
following any gate sequence Gi …Gk.  If we denote the 
probability estimate of observing a +1 measurement 
following a particular gate sequence as p and the 
corresponding experimentally observed frequency as f, 
then the χ2 statistic for the gate set estimate with 
respect to that gate sequence is given by:

�2 = N
(p� f)2

p(1� p)
This statistic indicates how well the estimator fits the 
data, with a lower value indicating a better fit.  

We show χ2 values in figures (e) and (f).  Each small 
box gives a χ2 value for a single gate sequence.  The 
sequences naturally organize into 6 x 6 blocks (see 
Robin Blume-Kohout’s poster for further detail).

Fig. (e):  We compute a gate set estimate using 
experimental data (from an SNL ion trap).  The plot in 
(e) shows the estimate’s χ2 badness-of-fit for individual 
gate sequences, using sequences of lengths L=1,…,
512 with a subset of the underlying periodic 
sequences.
Fig. (f):  Using the gate set estimate from (e) as the 
“true gate set”, we simulate and analyze GST data.  
The plot in (f) shows the simulated estimate’s χ2 
badness-of-fit for individual gate sequences, using 
sequences of lengths L=1,…,512 with a subset of the 
underlying periodic sequences.

Note that the gate set estimate of experimental data 
(e) performs much worse at long sequences than the 
gate set estimate of the simulated data.  This indicates 
a degree of non-Markovianity in the gates.  (As the 
simulated data is by fiat Markovian, we can see what 
how a gate set estimate performs on Markovian data, 
and we see that its performance is insensitive to 
sequence length, unlike the experimental data.)

Through simulation, we can  explore how 
maximum sequence length (L) and number of 
experiments (N) affect accuracy.
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GST will succeed in producing a 
high-accuracy estimate with high 
probability.
In (c) and (d), we compute what how 
many GST estimates succeed (by 
following 1/

p
N  error scaling) out of 

100 trials.  In (c), the underlying gate 
set is subject to small unitary error;
the underlying gate set is subject to 
1% depolarizing noise.

We see that, even with decoherence 
present, GST succeeds with high 
probability, failing at most 8% of the 
time.  To guarantee success, only 32 
experiments per gate sequence are 
required.

We can achieve 1/L scaling in 
e r r o r , l i m i t e d o n l y b y 
decoherence.
In (a), we compute gate set 
estimates from simulated data 
generated by a gate set with unitary 
noise present.  The error in our 
estimates scales as  1/L.
In (b), we perform the same 
c o m p u t a t i o n , b u t u s i n g a n 
underlying gate set with 1% 
depolarizing noise.  

We see that 1/L scaling is achieved 
until the sequences are long 
enough to significantly depolarize 
the qubit. 

GST protocols begin with experiments, each repeated 
some number of times to build up good statistics.  The 
following steps constitute a single experiment:

1.  State preparation (push the ρ button). 
2.  Execution of a fixed gate sequence (push buttons 
Gi…Gk. ).
3.  Measurement (push the M button).

What we get from repeating each of these experiments is 
good estimates of many probabilities:

(|·ii denotes the vectorization operation.)

Prob. = hhM |Gk . . . Gi|⇢ii

prepare

apply'gates

measure

outcome

GST can use both short and long gate 
sequences for gate set analysis.  Using a small 
set (~100) of short gate sequences (<10 gates per sequence), 
we can provide a rough estimate of the gate set, using only 
linear algebra.  (For details on this procedure, cf. arXiv: 
1310.4492; Robin Blume-Kohout’s poster “Gate Set Tomography 
with Long Sequence of Gates”.)

However, GST can also incorporate data from long gate 
sequences — and these can provide literally unprecedented 
tomography accuracy.  In particular, sequences that repeat a 
short “germ” many times (in contrast to the random sequences 
used in randomized benchmarking) can amplify small deviations 
from ideal gates, proportional to the length (L) of the sequence.  
We have developed algorithms to efficiently analyze the 
resulting data.

Results (shown in following plots)
Using GST with long-sequence data, we demonstrate (for a single qubit) that:

1.  In simulated data, estimate accuracy that scales linearly with gate sequence length (up to decoherence time).

2.  In simulated data, gate set estimates succeed in approximating the true gates with high probability.

3.  In simulated and experimental data, gate set estimates fit the data to a high degree; we can also use this fit data to 
diagnose non-Markovian behavior.
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