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Outline

« Background on proton direct ionization (PDI)
 Use of a high-energy proton beam to

— 1dentify PDI susceptibility

— predict PDI error rate

 PDI angular effects

e Summary
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[Sierawski et al., TNS 2009]

Background

Historically, protons only
caused SEEs through
nuclear reactions

PDI also causes SEES in
modern ICs
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Presenter
Presentation Notes
Conventional methods use nearly monoenergetic beams to sample IC response to various energies, and this response is folded against space environment
Conventional error rate prediction methods don’t apply.



Proton Energy Straggle
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Ways to minimize energy straggle:
» Test with low initial beam energies, in vacuum, without degraders
» Decapsulate DUT. Thin the substrate if DUT is flip chip
» Test at 0° angle

Proton energy straggle forced previous studies to either
1. Only use data qualitatively
2. Build a calibrated model [Sierawski TNS 2009]
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Presentation Notes
Developing this calibrated model is very complicated, and can require process and circuit design information, circuit sims, device physics sims, Monte-Carlo radiation transport simulations, and heavy ion and proton data.


Space Proton Environments
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Presenter
Presentation Notes
Regardless of shielding thickness (ICs will always be shielded with some packaging material), shielding material, orbit, solar conditions.
3 MeV protons have 16% of LET at Bragg peak.




A space-like energy spectrum, in the lab!
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2 ® 70 MeV, TRIUMF BL2C, 29.4 mm Lucite

& 20 MeV, 1.7 mm Al

« Degraded 20 MeV beam has
insufficient energy straggle
to reproduce space’s sub 3
MeV energy spectrum
 Energy straggle helps us
reproduce environment
of interest
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Presenter
Presentation Notes
Replotting data from previous slide on linear-linear scale, zooming in to low energies.
Normalized along Y axis to match at 2 MeV.
Crème-96 for space environments, SRIM for last 2 series.
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Lucite degrader thicknesses
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TRIUMF’s proton
beamline

* Increasing degrader thickness
decreases the average proton energy

e Certain range of degrader
thicknesses maximizes flux of sub 3
MeV protons

 1-Mbit IBM 65 nm SOl SRAMs were
irradiated at 0.8 V, room temperature
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Presentation Notes
Flux depletion prevents us from further reducing average energy.
Preliminary energy spectra measurements confirm the shapes of these curves from SRIM.  However, at edges of detector only a fraction of total proton energy was measured, so data will be regathered in a few weeks using a collimator.
65 nm SRAMs shown to be susceptible to PDI in previous studies.



SRAM with no substrate

e Substrate removed down to BOX
using XeF, etch [Shaneyfelt et
~®65 degrees al., TNS 2012]
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 Backside irradiation through
only 150 nm BOX =» same
energy spectrum reached SVs at
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 65° cross sections higher due to
higher effective LET
 PDlrate predictions must
account for angular
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Presentation Notes
As we reduce average energy by introducing more degrader material, cross section increases, reaches maximum, then decreases, because the sub 3 MeV flux does the same.
At high energy, the curves converge due to nearly isotropic nuclear reactions



SEU Cross Section (cm?/Mbit)
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Angular response

Irradiated from backside through
BOX and 350 um substrate

Increasing angle

= increases effective LET

= increases peak cross section
= improves PDI susceptibility
detection beyond that of 0° method
from [Schwank et al., TNS 2012]

Tests also work well on
encapsulated parts
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Presentation Notes
Results can be quickly used qualitatively to see that part is susceptible to PDI effects
Al plate 740 um thick.  Also tested through frontside through multilayer PCB and solderballs and got similar peak cross section shifted to higher energy, because more energy required for beam to penetrate extra material.
Energy straggle is helping us here to get similar peak cross section in spite of non-planarities in degrader materials.


PDI Error Rate Calculation
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Presentation Notes
At each peak we know the sub 3 MeV energy spectrum matches that of space. To do rate prediction we just need to know what fraction of the facility-reported fluence penetrated the DUT and reached the SV plane with < 3 MeV. Determined using SRIM.
Divide Eff SEU Xsec by “Frac of Fluence that Matters” to find SEU Xsec to sub 3 MeV space protons.  




Predicted contributions to SEU rate

O Heavy ions
B Proton nuclear interactions
B Proton direct ionization
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Presenter
Presentation Notes
Multiply isotropic xsec by integral flux to find predicted error rates.
Heidel’s paper has heavy ion data on same part at same bias.
SV dimensions were 60 nm thick (Si film thickness), and length and width chosen to be sqrt of saturation cross section at 30 LET (=350nm).


Summary

A high-energy proton beam can be degraded to produce a low-
energy spectrum that matches that of all shielded space

environments
 This observation could dramatically simplify PDI rate prediction,
allowing tests at high-energy facilities, on encapsulated parts,
without knowledge of circuit design

* Increasing beam angle increases proton effective LET and
measured cross sections

o Susceptibility to PDI effects is best identified at large angles of
iIncidence when using a degraded high-energy proton beam
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