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Extinction in steady-laminar flames
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• Extinction occurs when 
chemistry is slower than mixing.
• Heat losses exceed reactant 

consumption rates.
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• Critical dissipation rate, �q, well 
known.

• Steady-state T-� ‘S-curve.’

 Upper (and lower) branches 
stable.

 Middle branch unstable.
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Flame state during dissipation rate fluctuations

Fluctuations in dissipation rate move flame state away from steady-state S-curve.

 Consider state after period of high dissipation-rate:

 If state is above middle branch, return to fully burning state.

 If state is below middle branch, move to extinguished state.
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Formulating unsteady extinction criterion.

 Criterion motivated by trajectories in T-� phase space (S-curve).

• Estimate heat loss to get temperature decrement:

• Integrate:

• Critical value for T2 on middle branch

Hewson, Comb Flame, 160: 887-897, 2013 
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 Reaction rate is at �q rate.

 Consider time � > �q.

 Estimate 2nd derivative 
using stoichiometry, 
reaction zone thickness. 
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Unsteady extinction frequency

 How often does                                      occur where
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 How often does each of these happen in 
intermittent turbulence (below)?

 Statistics of q?

 Dissipation rate intermittent 
(log normal).



Simple stochastic model for dissipation rate

 Ornstein-Uhlenbeck process can be used to simulate lognormal 
dissipation rate fluctuations.
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 Normalized diss. impulse:
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 Statistics for *: area 
under peaks and 
above  �q
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Decreasing �q

Statistics of the dissipation impulse

 Based on assumptions of OU evolution, statistics for * as 
function of σln�, �q/<�>,  
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 Reporting cumulative 
frequency  exceeds
given value in t* units 
as function of �q/<�>.

 Frequency increases 
with easier extinction 
(as expected).





Increasing σ

�q/<�>

Statistics of the dissipation impulse

 Based on assumptions of OU evolution, statistics for * as 
function of σln�, �q/<�>,  
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• As �q/<�> increases 
(harder to 
extinguish) the 
frequency exceeded 
decreases.

• Reduction in 
frequency strongest 
for smaller σ (when 
large dissipation 
rates less frequent).  





Increasing q

Normalized extinction frequencies
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 Normalized frequency 
then decreases 
approximately as 
power law in Prob(��

q). 

 Normalize rate by Prob(��q) (cumulative distribution) as 
measure of time and magnitude of ��q when ��q.



Summary

 Criterion defining magnitude of scalar-dissipation impulse 
leading to extinction defined:  q.

 Involves time integrated excess dissipation over �q.

 Critical value, q, related to shape of S-curve.

 Statistics for  based on Ornstein-Uhlenbeck process

 Normalized extinction frequency increases with ‘easier 
extinction’ based on (all as expected)

 average dissipation rate (larger <�>/�q).

 shape of S-curve (smaller q)

 Power law scaling of extinction frequency in Prob(� �q) 
observed in relevant regime when frequency normalized by 
cumulative Prob(� �q).
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Backup material
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An unsteady extinction criterion

  estimates heat losses during unsteady extinction

 q gives heat loss for extinction based on middle-branch 
crossing

 Best agreement with extinction criterion for

 Relevant for order of magnitude fluctuations.
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Motivation

• Results for turbulent flames indicate local extinction can be 
prevalent even when the most typical dissipation rate is well 
below q.

14

Probability (>q)  <<  Probability extinguished.

J. C. Hewson and A. R. Kerstein, “Local Extinction and Reignition in Nonpremixed Turbulent CO/H2/N2 Jet Flames,” Combust. 
Sci. Tech., 174 (5-6):35-66, 2002



Scalar dissipation rate fluctuations

• Dissipation rate PDF nominally 
lognormal.

• Fluctuations are order of 
magnitude.

• Extinction associated with brief 
transients to large  that must 
also be short-lived, being 
dissipated at Bachelor scales.
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Scalar dissipation rate PDF

Scalar dissipation rate 
history generated using 
Ornstein-Uhlenbeck process


