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Outline

• Description of experiments and x‐ray data
• Modeling approach, 2 minimization
• How the data constrains the pinch properties
• Best‐fit conditions
• Conclusions
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Ar puff shots Z 2559‐2561: basic properties  
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8‐cm diameter shell‐on‐shell Ar gas puffs, 1.0 mg/cm mass
load. 1.6:1 inner‐to‐outer shell mass ratio. 2.5 cm height.

Very consistent x‐ray data among the 3 shots: time‐resolved 
K‐shell spectroscopy, filtered PCD’s, bolometers, and a calorim‐
ter. Also, time‐gated K‐shell pinhole imaging.  

K‐yields were ~ 309‐363 kJ, peak K‐shell powers:
10.6‐11.4 TW/cm. Peak soft x‐ray powers: 4.6‐7.1 TW/cm.

Z2560 is modeled in detail. The consistency of the data
indicates that results of this analysis will also likely apply
to Z2559 and Z2661. 

Marx charge: 85 kV, feed current ~ 16 MA (significant 
convolute losses).
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The remarkable consistency
of the x‐ray data is illustrated
at right: key line ratios and
K‐shell powers vs. time for the 
3 shots. This despite the differing
structure of the pinhole images
during the implosion (below).

Z2559

Z2560

Z2561

Time‐resolved K‐shell images 
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Chi‐squared fitting is a well‐established method to determine 
a “confidence level” that a dataset is consistent with model
predictions.

Consider a simple physical system: a rolling pair of dice. 
A “physics model” for this system assumes (1) They are 
cubic, (2) They are of uniform density, (3) They are not              
magnetized, nor electrically charged nor polarized, (4) Rolling
randomizes their positions when they come to rest.

This “physics model” predicts the following probability spectrum*
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* H. D. Young, Statistical Treatment of Experimental Data, McGraw‐Hill, New York, 1962, p. 41.

10 degrees of freedom
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The experiment consists of many rolls of the dice. If number 
n is observed with a measured probability p(n) and standard
deviation (n), the quantity chi‐squared is  
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Note that if each p(n) is measured to be within one standard deviation of 
the model prediction,  is ≤ the number of data points.

 tables based on standard statistics give the probability that the 
measured distribution is consistent with the model, rather than being a 
random excursion due to statistical fluctuation.
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For example, if the dice experiment yielded a 2 of 3.94, that would indicate
a 95% confidence level that our data conformed to the “physics model”,i.e, the dice
are likely not “loaded’. Stated more precisely, 95% of the time,  would be higher
than 3.94 for experiments using fair dice.
If each measurement was exactly one sigma from the model
prediction, 2 would be 11, giving a much smaller ~ 36% confidence level. JA   4 Aug 2014   7

2

Determining confidence level from 
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6 data points are fitted for Z2560. Powers and ratios
are time‐resolved near peak K‐shell power. Diameter
at stagnation is ~ 2.8 mm. 
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Chi‐square minimization is used to select the “most probable” fit using
a detailed CRE atomic‐radiation transport model. Note: since the model is 1D,
a 95% confidence level fit is not expected and may be unachievable.

Besides the experimental uncertainties shown above, additional errors may 
arise from uncertainties in the underlying atomic rates (10%) and extracting
calculated line ratios from the composite spectra (10%).

11.4 TW/cm ± 10%peak K‐shell power

1.0 mg/cm ± 10%mass load

1.20 ± 10%Ly‐/He‐

0.85 ± 10%Ly‐/He‐

2.00 ± 10%Ly‐/(He‐+IC)

4.6 TW/cm ± 20%peak soft x‐ray power
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Fitting procedure to infer pinch conditions

• First step: a fast (37 Ar atomic levels, 51 lines), probability‐of‐
escape based CRE model1 was run for about 105 density‐
temperature combinations. Those yielding the lowest 2 were 
selected for further evaluation. 

• Second step: the best‐fits from the fast model were 
recalculated and fine‐tuned using a more detailed, 186‐level, 
611‐line model that transports 15488 photon energies to 
resolve the line profiles. The best overall fit (minimum  2) is 
selected. 

• The effective ion temperature (50 keV) was determined by 
fitting the width of the He‐ line, whose Stark width (next VG) 
is much less than the observed 14 ± 1 eV FWHM, and is less 
affected by unmodeled satellites.
1. J. P. Apruzese, K. G. Whitney, J. Davis, and P. C. Kepple, JQSRT 57, 41 (1997).  JA   4 Aug 2014   9
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Stark widths of He‐like Ar lines have been calculated by 
Griem, Kepple, and Blaha [Phys. Rev. A 41, 5600 (1990)].
They are much smaller than the measured ~14 eV FWHM. 
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Solid lines are Stark profiles including ion dynamical effects. 
If the entire load is spread uniformly within a 2.8 mm diameter
cylinder, the electron density for Z = 17 would be 4.2 x 1021 cm‐3. 

He- He-

2.2 eV
3.2 eV
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Components of the calculated 14 eV He‐ width

• FWHM of the 50 keV ion temperature Doppler profile: 10.6 eV

• Instrumental broadening: 5.5 eV. Doppler convolved with  
instrumental gives a width ~ (10.62+5.52)1/2 = 11.9 eV. The 
remaining  ~ 7 eV is due to opacity broadening. 

• Opacity broadening: the emitted profile is enhanced on the 
wings compared to the intrinsic profile. This is due to the fact
that photon escape is more probable far from line center. The 
observed profile is thus wider than the intrinsic profile.
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Constraints on the cold mass are provided by the 
measured K‐shell power (11.4 TW/cm), soft x‐ray 

power (4.6 TW/cm), and total load mass (1 mg/cm).
K‐shell power of 11.4 TW/cm 
suggests an ion density near 
7 x 1019 cm‐3. At observed pinch
diameter of 2.8 mm, the radiating
mass would be 0.29 mg/cm. The 
remaining 0.71 mg/cm is too cold
to radiate in the K‐shell.

Assuming that the peripheral mass
extends to about 8 mm (Ref. 2), cal‐
culations with the large Ar model 
show that its temperature can’t 
exceed 125 eV without exceeding 
the observed soft x‐ray power.measured range

2. J. W. Thornhill et al., High Energy Dens. Phys. 8, 197 (2012)
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Properties of the best‐fit case

1.01.0
Mass load 
(mg/cm)

1.271.20Ly‐/He‐

1.070.85Ly‐/He‐

1.522.00Ly‐/He‐

4.44.6Soft x‐ray power
(TW/cm)

10.011.4K‐shell power  
(TW/cm)

K‐shell core:
radius: 1.4 mm
Te = 2.2 keV
Ni = 6.5 x 1019 cm‐3

mass: 0.27 mg/cm

Outer blanket:
radius: 4.0 mm
Te = 0.11 keV
Ni = 2.5 x 1019 cm‐3

mass: 0.73 mg/cm

data                  model fit

experimental spectrum
(at peak power)

calculated spectrum

2 is 5.3: a 51% confidence
level fit
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Conclusions

• Ar gas puffs have produced 330 kJ ± 9% of K‐shell radiation (> 3 keV), 
with remarkable time‐resolved spectral reproducibility, despite quite 
different  morphology at stagnation.

• The K‐shell power of 11.4 TW/cm, combined with the observed 
pinch size at stagnation, implies that no more than 1/3 of the load 
mass participated in the K‐shell radiation (consistent with previous 
results3). 

• The relatively low soft x‐ray power of 4.6 TW/cm places an upper 
limit of about 125 eV on the temperature of the non‐K‐shell‐
radiating mass which is 2/3 of the total load.

• The low‐temperature outer blanket has minimal opacity to the K‐
shell x‐rays emitted from the interior.    

3. H. Sze et al., Phys. Plasmas 8, 3135 (2001)
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