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Energy efficiency can depend on clock rate

David Frank (IBM) discussed 
adiabatic and reversible 
computing at RCS 2, where 
energy efficiency varies by clock 
rate

Adiabatic circuits have behavior 
close to

Energy/op ∝ f (clock rate)
Power ∝ f 2

This would be equivalent to slope 
1 on chart at left
This effect depends on

Adiabatic circuitry
Devices – 11 nm adiabatic CMOS 
and nSQUID on David Frank’s 
chart, but many other options

Let’s work with this

From David Frank’s presentation at RCS 2; viewgraph 23 
https://ieeetv.ieee.org/player/html/viewer?dl=#-reversible-adiabatic-classical-computation-an-overview-rebooting-computing

https://ieeetv.ieee.org/player/html/viewer?dl=#-reversible-adiabatic-classical-computation-an-overview-rebooting-computing
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A plot will reveal what we will call
 Optimal Adiabatic Scaling (OAS)

Optimal Adiabatic 

 
Scaling

Clock rate f

 

Hz

Zetta

 

Gate‐ops

 
per dollar

$purchase + $energy (f 2)
Opslifetime (f)Qchip = 

$energy = Cf 2 (A, B, and C constants)

Opslifetime = Bf, and

Where $purchase = A

Impact of manufacturing cost
At RCS 2, David Frank put forth 
the idea that a computer costs 
should include both purchase 
cost and energy cost.
However, let’s adapt this idea to 
a situation where manufacturing 
cost drops with time, as in 
Moore’s Law

Let’s plot economic quality of a 
chip:

Assume manufacturing costs 
drops to ½ every three years
Top of ridge rises with time
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Scaling

Clock rate f Hz

Reversible 

 
computing

Period of rapidly

 
rising clock rate

 
(through ~2003)

Dual core
Single core

Quad core

Year

Zetta

 

Gate‐ops

 
per dollar

Prior to around 2003, purchase 
costs dominated energy

The economically enlightened 
approach would be to raise clock 
rate, which happened

Around 2003, technology went 
over the optimal point

Multi‐core was the technical 
remedy to the economic 
problem – had lower clock rate

Reversible computing would be 
an advance in the right direction, 
but too extreme for now
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Arguably, this scaling rule explains multi‐core
 and the non‐emergence of reversible computing
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Resulting scaling scenario
 (standard chart with additional column)

Lgate

W, Lwire

V

C

Ustor = ½ CV2

f

Ntran /core

Ncore /A

Pckt

f Ntran Ncore

P/A

1/α 1/α 1/α 1/α 1/α

1/α 1/α 1/α 1 1/α

1/α 1 1 1 1

1/α 1/α 1/α 1 1/α

1/α3 1/α 1/α 1 1/α

1*

N=α2†

1/√N=1/α‡

1

1

α 1 1 1α 1/√N=1/α

α2 1 1α2 1α2

1 1 11 √N=αα

1/α2 1 11/α 1/√N=1/α1/α

1 1α 1§1α2

1α2α3α3 α √N=α

Const 
field Max f Const f Const f, 

Ntran

Multi 
core

Constant V Optimal 
Adiabatic 
Scaling

Theis and Solomon

* Term redefined to be line 
width scaling; 1 means no line 
width scaling
† Term redefined to be the 
increase in number of layers; 
previously was 1 for no scaling 
‡ Term redefined to be heat 
produced per step. Adiabatic 
technologies do not reduce 
signal energy, but “recycle” 
signal energy so the amount 
turned into heat scales down
§

 

Term clarified to be power 
per unit area including all 
devices stacked in 3D

Ref: T. Theis, In Quest of the “Next 
Switch”: Prospects for Greatly 
Reduced Power Dissipation in a 
Successor to the Silicon Field-Effect 
Transistor, Proceedings of the IEEE, 
Volume 98, Issue 12, 2010

New

If C and V stop 
scaling, throughput 
(f Ntran Ncore ) stops 
scaling.

Under OAS, throughput 
continues to scale even 
with fixed V and C
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Physical implementation in 3D

Same device behavior
If there are improvements in device behavior, they create an 
improvement over and above what is illustrated

Exponentially improving manufacturing cost (Moore’s Law)

1cm

True 3D manufacture
100 nm3

 

gates
1015

 

gates
300×

 

increase in

 
power efficiency

300×

 

increase in

 
throughput

~10 MHz100 nm2

 

gates

From RCS 2
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Need a new architecture; von Neumann 
 architecture won’t do

OAS scales throughput
Device count scales up by N (N = α2)
Clock rate scales down by 1/√N
Throughput scales up by N × 1/√N = √N

The von Neumann architecture cannot exploit this throughput
Processor and memory contribute independently to performance
Slower computer with more memory – not viable

We need an architecture whose performance is the product 
of memory size and clock rate

Processor‐in‐memory?
Easily said, but we need a specific architecture that
scales properly and has good generality



We class this as an “ALU on column” “processor‐in‐memory” (PIM) 
architecture, with persistent storage

We use PIM as a descriptive phrase, but it is often used as a name for their 
specific architecture (GilgaMesh, DIVA, etc.)

Example chip (one layer of stack):

Architecture characteristics
Like a storage‐augmented 
systolic array
Must be adiabatically clocked, 
which is mainly a constraint on 
the memory
Replication unit described as 
GPU‐‐

1 Megabit 
adiabatic 
memory or 
storage

ALUs

In
st

ru
ct

io
n

…

…

Chip is 128×128 
array of above

Equivalent density to 128 gb Flash
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Processor‐In‐Memory‐and‐Storage (PIMS)
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Bus to processor
Small μP

Row

 
logic

Column logic

Storage array

 
layers

Vertical interconnect

Potential physical implementation

Like array of 

 
minimalist GPUs

Storage/Memory
Flash, ReRAM (memristor), STM, 
DRAM

Base layer
PIMS logic

3D
Whole structure is layered

External processor?
Might be needed for applications 
without sufficient parallelism
Might be needed for 
programmers who don’t want to 
recode
More on this later

External μP

 
(sometimes)



10

Adiabatic memory

Source:

Energy-recycling row drive of a memory: Result: 85×

 

energy efficiency improvement:
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What applications scale like PIMS?

We already decided it would not make good components for 
a von Neumann machine
However, PIMS scales like an overall computer system

“Kryder’s law” reveals that disk storage has grown at about twice the 
rate of Moore’s Law

PIMS also scales like a brain
Example scale up sequence

roundworm, fruit fly, honeybee, mouse, rat, human

Brain = robot controller function

Scales like a parallel supercomputer, but not like an individual
node
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Go right for rows

Memory array

Sparse

matrix

Step 1

Step 2

Step n

a

 

‘y’
a

 

‘y’

w00 w01w10

w20 w02w11 w12

w21 w13w22w31

a

 

‘y’
a

 

‘y’
a

 

‘y’

+× +× +×+× +×

Memory 
array

Logic

Rearrange- 
ment registers

Neural networks frequently 
compute as sparse matrices

Vector‐matrix multiply
Delta learning rule

matrix += vector outer product

Efficiency example loads sparse 
matrix at 45° angle

Architecture encodes sparse 
matrix structure in 
memory/storage array
Permits MIMD PIM operation 
with high power efficiency

Apparently novel

PIMS example: sparse matrix for
 neural networks, Deep Learning, etc.
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Exemplary ALU

Note that this is neither a microprocessor nor a GPU

8‐bit 

 
×

16‐bit

 
+

16‐bit t0

16‐bit t1

16‐bit register

Array 
read data

Array write 
data

Left 

 
shift 

 
out; 

 
right 

 
shift in

Right 

 
shift 

 
out; 

 
left 

 
shift in

Control unit

Array
code words

Green 

 
pointer 

 
code 

 
word

Red 

 
pointer 

 
code 

 
word

Synapse value: 8 bits as signed integer, 

 
but often interpreted at a higher level as a 

 
fixed point number

2 bits + 2 bits8 bits +12 bits total:

Storage array format:

ALU (one for each 12 storage bits):
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Performance on Deep Learning example

Scale to human brain size of 1011 neurons and 1015 synapses
Energy subdivides into two components

Memory access energy (energy per bit × bits)
Options: non‐adiabatic DRAM PIM, adiabatic memory, NVIDIA GTX 750 Ti

Synapse evaluation energy (depends on number of bits precision)
Options: TFET and extrapolated CMOS , NVIDIA GTX 750 Ti

Result
Non‐adiabatic DRAM about 2000×more energy efficient than GPU
Additional 50×more efficient with adiabatic memory
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Performance on Deep Learning example
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Conclusions

There is plenty of room for continued improvement
Device physics

Dimensions are small enough and signal energy is low enough
Now work in the third dimension and recycle signal energy

Architecture
Microprocessor and memory are just components and they must be 
connected by a non‐scalable bus
So build the system instead of the components and leave out the bus

Software
We program via large numbers of manipulations of small data types, 
which requires physically unrealistic clock rate scaling
Instead, develop larger primitives and program them at a higher level

Use sparse matrices, neurons, etc. as the primitives
Like 3D graphics on a GPU
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Data model for Processor‐In‐Memory‐and‐
 Storage (PIMS)

A. von Neumann model with input/output:

B. Processor-In-Memory-and-Storage:

C. Persistent object store of data in form for optimal access:

Read input
Parse
Process with √N efficiency boost
Format
Write output

Read input
Parse
Process with √N efficiency boost
Format
Write output

Read input
Parse
Process with √N efficiency boost
Format
Write output
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