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Abstract. Peridynamic theory is a theory of continuum mechanics that is formulated in
terms of integro-differential equations without spatial derivatives. Its equations remain
valid regardless of fractures or other discontinuities that may emerge in a material due to
loading. This theory provides a consistent treatment of both deformation and failure of
materials under dynamic loading. In bond-based peridynamics, material properties are
specified through the pairwise force function. We apply the work-energy theorem to
obtain the pairwise force function for a gas. With gas detonation products represented as
peridynamic materials, we then use the Zeldovich, Von Neumann, and Doering
detonation model and the volume-burn algorithm to formulate a detonation model in
peridynamic theory. We discuss a numerical method and implementation of the
detonation model, concomitant with addressing time-step stability and short-range forces.
Finally, we illustrate this formulation with simulations of a cylinder-expansion test and a
cylinder fragmenting under explosive loading.
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Introduction

Peridynamic theory (PD) is a theory of
continuum mechanics that is formulated in terms of
integro-differential  equations  without  spatial
derivatives. Its equations remain valid regardless of
fractures or other discontinuities that may emerge
in a material due to loading. PD provides a
consistent treatment of both deformation and
failure of materials under dynamic loading. In this
paper, we review bond-based PD and material
modeling in PD. In bond-based PD, material
properties are specified through the pairwise force
function (PFF). We discuss some properties of the
PFF. We discuss a numerical method to solve the
fundamental equation of bond-based PD and

outline development of a condition for time-step
stability. We apply the work-energy theorem to
obtain the PFF for a gas. This formulation only
requires knowledge of the isentrope of the gas in
the pressure, specific-volume plane, and may be
used with any equation of state from which the
isentrope  may be obtained analytically or
numerically. With gas detonation products
represented as PD materials, we employ the
Zeldovich, Von Neumann and Doering (ZND)
detonation model and the volume-burn algorithm.
In PD, repulsive short-range forces act when points
are sufficiently close. We discuss these forces since
they provide for the transfer of momentum from an
expanding gas to structures. We summarize the
implementation of the detonation model. We



illustrate this formulation with simulations of a
cylinder-expansion test and a cylinder fragmenting
under explosive loading.

Nomenclature

CJ Chapman-Jouguet

CMD  cumulative mass distribution
exp(x) exponential function
JWL  Jones, Wilkins, Lee

PD peridynamic theory or peridynamic(s)
PFF  pairwise force function

T ratio of circumference to diameter of a
circle
ZND  Zeldovich, Von Neumann, and Doering

{A: P} setofall A with property P
X cross product
. dot product

|A| magnitude of scalar or vector A
Peridynamic Theory (PD)

The version of PD introduced in 2000 is called
bond-based PD®. A more general version, state-
based PD, was introduced later?. Here, we will
only consider bond-based PD.

Fundamental Equation of Bond-Based PD
Consider a peridynamic body that occupies a

domain R as shown in Fig. 1. *

s=(g+<= )/ IS

=x'-x (

n§=u(x"r)-u(xr) "\

Bond is interaction between x and x”.

Fig. 1. A peridynamic body occupying a domain.

In Fig. 1 (left), & is the relative position of
points x and X" in the reference configuration and #
is the difference in displacements at these points.
Then, n +£& is the relative position of the points
originally at x, x” in the deformed configuration.
The scalar quantity s in this figure is called the
stretch and is a measure of relative deformation.

% In this figure and elsewhere, bold quantities are
vectors unless stated otherwise.

The relative displacement in the undeformed
configuration, £ and the deformation, #, are also
defined in Fig. 1. Thus, the quantity n + £ is the
relative displacement after deformation as shown
in this figure. Quantities in the right graphic in
Fig.1 will be discussed later.

The force density at x at time t in bond-based
PD, is given by
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where X is a point in the reference configuration, t
is the time, p(x) is the density at x, u is the
displacement vector, R is the domain of the body, f
is the pairwise force function (PFF), n and & are
defined in Fig. 1, and b is the body-force density.
The integral in (1) is taken over the volume
occupied by R. All functions are assumed to be
sufficiently well behaved that the integral exists.

(1) is based on Newton’s second law for all
points within the domain of analysis and does not
contain any spatial derivatives. The PFF gives the
force per unit volume squared on a point at x due to
the point at x". In conventional continuum-
mechanics theory, this functional is replaced by the
divergence of the stress tensor. All constitutive
properties of a material in bond-based PD are given
by specifying the PFF.

Fig. 1 (right) shows a sphere of radius &
centered at the point x, Ss(x) = {x;: |[xi— X| < 6}. It is
assumed that there is a distance ¢ such that the
PFF function vanishes outside S;s(x) for each point
x in the domain of analysis. The quantity J'is called
the horizon since a point cannot “see” a force
beyond its horizon. All points within S;(x) are said
to belong to the family of x. The appropriate value
of & depends on the physical nature of the
application. However, in numerical modeling at the
macroscale, typically & is chosen to be three times
the grid spacing.

Properties of the Pairwise Force Function

Newton’s laws not only lead to the
fundamental equation of peridynamics, but also
imply properties of the PFF. Newton’s third law
states that the force at x due to point X" must be the
negative of the force at x” due to point x. Therefore



for (1) to satisfy Newton’s third law, f(7,&) must
satisfy

fn,-8=—f(n,Q forall n,& (2
Thus, f (n,€) is an odd function of (7,&).

Another property of the PFF follows from the
requirement to conserve angular momentum in the
absence of external forces. If angular momentum
were not conserved, then two points initially at rest
would move even in the absence of external
torques. Thus, to insure conservation of angular
momentum, f (n,&) must satisfy

(n+Oxf(n,9)= 0 ©)
where “x” is the cross product. This expression
implies that the force between any two points in the
continuum must be parallel to their current relative
position. Therefore, (3) implies that f (7,&) must
have the functional form

f(7.9 = F(n,9)(n + & forall n,&  (4)
where F is a scalar-valued function. Since f (,¢&) is
an odd function of (n,8), F(n,& must be an even
function of (7,8).

Material Modeling in Peridynamic Theory

All constitutive properties of a material are
given by specifying the PFF. Here we summarize
only aspects of material modeling that are needed
for understanding the solid models used in the
examples and gases as PD materials.

The Micro-Potential

A PD material is said to be micro-elastic if and
only there exists a scalar-valued function w(7,&)

such that
ow(n,%)
fn¢)=—3 7 ()
The function w is called the micro-potential. It is
important to realize that the derivatives in (5) are
not the spatial derivatives that are to be avoided by
using PD.

The micro-potential has units of energy per
unit volume squared. It represents potential energy
density associated with a bond. We may define a
functional that for a displacement u is the local
displacement energy density,

1
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(6) is the energy density at the point x and time t
associated with a displacement u of all the points in
domain R. The factor of 1/2 is present since only
half the energy is associated with each endpoint of
the bond. Integration of (6) over the body yields
the total macroscopic energy functional.

Proportional Materials

A class of PFF’s that is useful for modeling
solid materials is called proportional materials.
Such materials are a further development of the
idea that micro-elastic materials may be considered
materials in which two points are connected by a
spring that, in general, may be non-linear. The PFF
for a proportional material has a magnitude
proportional to the stretch s, where

s=P"p=lg+dr=1d. @

The most general form of the PFF for this
material is
g(s,7)
fm$ = T(U"‘f) 8
where g(s,r) is a piecewise linear function of the
stretch s. The function g is called the bond force
between two points for a proportional PD material.

Material Failure in Peridynamic Theory

A bond in a PD material fails irreversibly
when the stretch s exceeds a value, s;, called the
critical stretch. Not only does the critical stretch
define failure of a material, but it also assures the
existence of a horizon for proportional materials.

Numerical Method

To solve the fundamental PD equation of
motion, (1), the domain is discretized into a set of
nodes, {x;}, as depicted in Fig. 3. Each node has a
known volume in the reference configuration. The
nodes form a computational grid.

The fundamental equation of motion (1) is
replaced by a finite sum, which at time t;, is

d2
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where o = ,O(Xi) ) Uin = U(Xi,tn), bin = b(Xi,tn), and Vj
is the volume of node j. The sum is taken over all
nodes within the horizon s of x; .
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Fig. 2. Computational grid.

The acceleration term in (9) is approximated
by an explicit central difference
d? utt —2ul + ul?t

— ut= 2=
”l (an)?

dt?
where At is the time step.
(9) and (10) are solved to obtain the
displacements u"*. The error in (10) is well
known to be second order in time.®

(10)

Gases as Peridynamic Materials

Since the detonation products in an explosion
are gases, we must determine how to model gases
as PD materials. In this section, we develop a
general expression for the PFF of a gas. This
development generalizes the development that is
documented in Demmie and Silling*.

Pairwise Force Function for a Gas

The PFF for a gas can be determined from the
change in internal energy per unit volume of the
gas and expressed in terms of the expansion of the
gas, X, where

v o0,

X = _— (11)
v and v, are the deformed and reference specific
volumes of the gas, p and p, are the deformed and
reference densities, respectively. Implementation of
a gas model requires computing the expansion at a
node from the undeformed and deformed bond
lengths between this node and all gas nodes in its
family.

To derive a general expression for the PFF of
a gas, consider (5) and (6). From (5), the micro-
potential, w, may be written as

7(x,t)
weo = [ fmedn @2
Mo
where 7, is some fiducial state of stretch. Since the
integral (6) vanishes outside the horizon of x, H(x),
(6) may be written using (12) as

1 n(x,t)
W0 = 5 fff [ [ rtngean|ave s
H(x) [ V74

Let all the bonds be held fixed except for bond
k at a given value of & Then, for an incremental
stretch dpy in bond k, (13) becomes dW, where

1 1
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In (14), f, is the magnitude of the PFF at bond k
due to this incremental stretch dpy in this bond, and
Ve and Vi are volume elements associated with
bond k. The latter two equalities follow since & is
fixed under the stretch and f is parallel to 77+£& as
stated in (4).

The quantity f, in (14) is the PFF for a gas.
This quantity can be expressed in terms of the
expansion X as follows.

Changes in the energy per unit volume, dW,
result from the stretch dpy. Therefore, using the
definition of dW and the chain rule, (14) may be
written as

(14)

ow ow oX
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since W depends on py through its dependence on
X.

Equating (14) and (15) and solving for f yields
a general expression for the PFF of a gas

2 oW 90X 16
K7 v, 0X op, (16)

The PFF can be obtained from (16) once the
energy per unit volume, W, is known as a function
of the expansion X, and X is known as a function of
the incremental stretches for all gas bonds within
the horizon of a node.

There are many possible ways to approximate
the expansion X. We now describe the method
currently implemented. Consider the ratio of the



reference density to the deformed density. This

ratio is X. We approximate X at a given node by
-3

X = %Z(ri)v, ,V=ka 17
7 AP k
where the sum is taken over the nodes inside the
horizon of the given node, p; = |7+&|, r; = |4, and
Vj is the reference volume of node j. We refer to
the nodes inside the horizon of a given node as its
family. Hence, V is the total reference volume of
the family of the given node.

Calculating the derivatives in (16) using (17),

we obtain
2
f= (DY s 18)
.V 0X \py

If we identify W with the internal energy per unit
volume of the gas, then (18) and knowledge of the
dependence of W on the expansion X yield an
expression for the PFF at node k.

From the standard axiomatic formulation of
thermodynamics®, the pressure is an intensive
variable defined as minus the partial derivative of
the internal energy with respect to specific volume
at constant entropy. Therefore, the derivative in
(18) is the negative pressure, P, which implies that
the magnitude of the PFF for node k in a gas is

2

fi = —i(r—") X4/3 (19)
1V \py

Implementation of (19) requires knowledge of the

pressure P as a function of the expansion X on an

isentrope. The negative sign indicates that the force

is repulsive.

Volume Burn Algorithm

Implementation of the PFF for gases given by
(18) requires knowledge of P as a function of X
along an isentrope. To determine the isentrope to
use, we employ the ZND model® and the volume
burn algorithm.

Fig. 2 depicts the pertinent features of the
ZND model” and shows the integral that states the
volume burn algorithm. This figure shows an initial
state of specific volume vy and pressure Py and the
Rayleigh line R(v) emanating from this point. The

® The Hugoniot for the unreacted explosive and the
Von Neumann spike are not shown in Fig. 3.

Chapman-Jouguet (CJ) point is shown with
specific volume v¢; and pressure Pc;. This point is
defined as the point where the Rayleigh line and
Hugoniot for the detonation products are tangent.
The isentrope for the detonation products is also
tangent to the Rayleigh line at the CJ point..

vey S w
f R(w)dv + f Ppp(v)dv = J’ Ps(v)dv
vo vey v

« Algorithm is statement of energy conservation.

* Py, is density of unreacted explosive.

* Rayleigh line, reaction product Hugoniot, and reaction
product isentrope are tangent at the CJ point.

« Foranideal gas, Pg, =% Pg;.
(VoPso)

S

(Vs Pey)

e

Rayleigh Line, R(v)

Isentrope for Detonation Products
Referenced to P, Pg(v)

Pressure (P)

(Vo, Po) \
Isentrope for Detonation
Products, Ppp(v)

Specific Volume (v)

Fig. 3. Detonation Process.

The volume burn algorithm,

vey @
fvo R(w)dv +°Ofvc] Ppp(v)dv o)
- [ rwaw,

Vso
is a statement of conservation of energy for the
detonation products. Given the isentrope for the
detonation-product gases and the Rayleigh line’,

U? U?
Rw)— Py = o (21)
o 0

where U is the detonation speed. (20) is solved to
determine the reference pressure, Pg, to be used in
this isentrope for the detonation products in (18).
For an ideal gas this procedure yields a reference
pressure half the CJ pressure.

Time-Step Stability

It is possible to obtain a stability condition for
the linearized equations for one-dimensional
motion with a PFF

of

f@,8) =C(Dn C(§)=E7(0,§) (22)

Applying the standard assumption for a von
Neumann stability analysis®

ul = Z”exp(rci\/—_l) (23)



where x is a positive real number and ¢ is a
complex number, we obtain the stability condition®

f 2p
At < min |=———— foralli (24)
2 VieCix

where Cy = C(Xx — ;).
To insure stability, it is essential to use the
density, p, in (24) given by (11), i.e.,

_ P 25
p=7 (25)

where p, is the initial density of the unreacted
explosive and X is the expansion. For an explosive,
it is essential that py is the initial, unreacted value
and X be the expansion given by (17). Otherwise
the solution process is not stable and unrealistic
fragmentation will occur under explosive loading.
For solids under reasonable loadings, the expansion
is about one and p ~ pp. However, if X is given by
some model, especially for high-impulse loading,
(25) is used with py the initial density.

For nonlinear material models, including (19),
the form of the stability condition used is

- [Zog| (20

In this case, we apply a safety factor to the estimate
in (24) to account for possible nonlinear material
response that would make the estimated stable time
step based on (24) too large.

Short-Range Forces

In bond-based PD, repulsive short-range forces
act when nodes are sufficiently close. These forces
prevent bonds from compressing indefinitely and
violating non-impenetrability of matter. They are
responsible for loading a solid material with an
expanding gas. Without these forces, a container
with a detonating explosive would not expand and
fragment. The expanding gas would simply diffuse
through the container.

When two nodes, i and j, are sufficiently close,
the repulsive force, f;*%, between them is given by

fijSR = FSRkPDViVj(p — Pcontact) (27)
where Fg is a force factor input by the user, kpp is
the PD spring constant for the bond connecting
nodes i and j, p is the separation given in (7), Pcontact
is the separation where short-range forces begin to
act, and V; and V; are the respective volumes of

nodes i and j. Short-range forces are included in the
estimate of a stable time step.

The quantity peonact 1S calculated from the
input parameters by the user for the material and
short-range forces. Since (27) is only applied when
P < Peontact, the force is negative and repulsive.

The PD spring constant in (27) is given by
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kPD = W (28)
where K is the bulk modulus and ¢ is the horizon.

Peridynamic Detonation Model

In this section, we discuss propagation of the
detonation, EOSs for the detonation products, and
summarize the implementation of our detonation
model.

Propagation of Detonation (Program Burn)

The detonation times must be determined at
each node containing an explosive. These times are
calculated during input processing using a
Huygen’s construction procedure. This method is
called program burn.

Program burn proceeds as follows. There are a
set of nodes whose detonation times are specified
user in the input. Initial detonation times at the
other nodes are initially set to a large number. The
construction proceeds by sweeping through the
grid and examining at each node the detonation
times of the nodes in a spherical neighborhood of
this node. The detonation time at this node is the
smallest time for a detonation to propagate from
any detonated node in this neighborhood to this
node. This process continues until detonation times
are computed for all nodes. This Huygen’s
construction procedure insures that detonations
propagate around obstacles and isolated regions of
explosive material do not detonate. However, if
there are no obstructions or isolated regions of
explosive, a detonation radius may be specified. In
this case, the detonation time at a particular node is
the minimum of the times for the detonation to
propagate along a straight line from the initially
detonating nodes to this node.

Equations of State for Detonation Products

In our implementation of the PD detonation



model, two EOSs are available, an ideal gas and
the Jones, Wilkins, Lee (JWL) model.

For an ideal gas, the pressure, Ps, along an
isentrope is given as a function of the expansion, X,
is given by®

Y
Po(X) = Pq, (%) = Po XY (29)

where Pg is the reference pressure in Fig. 2 and y
is the ratio of molar specific heat at constant
pressure to the molar specific heat at constant
volume.

In the JWL model, this pressure is given by°

2
Ps(X) = ZAiexp(—RiX) + Ccx~(@*1  (30)

i=1
where the A;, R;, C, and w are parameters
determined for explosives by cylinder-expansion
tests.

A Detonation Model for Peridynamic Theory

Fig. 4 summarizes the implementation of our
PD detonation model. This figure shows three
aspects of the implementation — the inputs, the
determination of detonation times during input
processing, and the treatment of reaction products
after detonation.

e Detonation model inputs:

— Location of detonation points and initial detonation
times, density of explosive, and detonation speed.

— Parameters for equation of state (ideal gas or JWL).

e Program burn model for detonation times.

« Detonation times computed prior to time advancement
using Huygen’s construction.

— Detonations can propagate around obstacles.
* Upon detonation:

— Detonation products are treated as ideal or JWL gas
undergoing an adiabatic expansion.

— Energy is conserved using volume-burn algorithm.
— The PD interactions between nodes are given by (19).
— Interactions with solids given by short-range forces (28)

Figure 4. Implementation of PD detonation model.

The user specifies inputs listed in this figure
for the explosive-material. These inputs are the
locations of the detonation points and their
respective detonation times, the detonation speed,
the density of the explosive, and the equation of
state (EOS) for the detonation products. We use the
ideal gas and the JWL EOSs.

From the explosive-material input, the
detonation times for all explosive nodes are

computed prior to time advancement. Once the
explosive in a node has detonated, the detonation
products are treated as ideal or JWL gases
undergoing an adiabatic expansion from the
reference state shown in Fig. 3. The energy of the
detonation products is conserved using the volume-
burn algorithm. The PD interactions between
explosive-material nodes are given by (18).
Interactions with non-explosive material nodes are
given by the short-range forces in (26).

Examples

The PD detonation model was implemented in
a computer code. In this section, we provide two
example simulations to illustrate the application of
this model - a cylinder expansion and a
fragmentation test. Both tests use a hollow
cylindrical tube with open ends. These tubes were
filled with explosive that was detonated.

Cylinder-Expansion Test

Fig. 5 compares displacement versus time for a
cylinder-expansion test using a cylinder made of
copper (Cu) filled with explosive and a simulation
of this test.
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Fig. 5. Comparisons of displacements versus time
for an exploding Cu cylinder test.
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This figure also shows a schematic of the Cu
tube. Initially, it was 25.8 cm long, had an inside
diameter of 2.54 cm, and had 0.26-cm thick walls.

The material model used for Cu is the
proportional model given by (8). The parameters
that must be specified for this model are the
material density, bulk sound speed, which is the
square root of the bulk modulus divided by the
density, the yield strength, and the critical stretch.



The respective values used for this simulation are
8930 kg/m®, 3602 m/s, 324 MPa, and 2.0. The JWL
model was used for the explosive.

The agreement between the simulation and
data is excellent. The small deviations early in the
test should be well within any experimental errors
and uncertainties in the simulation.

Fragmenting-Cylinder Test

Fig. 6 compares cumulative mass distributions
(CMD) from a fragmentation test using a cylinder
made of steel filled with explosive and a simulation
of this test. Initially, it was 4.25 in. long, had an
inside diameter of 1.0 in., and had 1/8" thick walls.
This test was performed at a facility that can
capture 99% of the fragments from an exploding
object.

Mass (107 *kg)
Figure 6. Comparisons of CMDs for a fragmenting
steel cylinder test.

The steel was modeled as a proportional,
micro-plastic material. A micro-plastic material
uses (8), but differs from the micro-elastic model
only on unloading. In the code implementation, a
micro-elastic material unloads reversibly, but a
micro-plastic material does not. The values for the
steel density, bulk sound speed, yield strength, and
critical stretch® are 7850 kg/m®, 3212 mi/s, 750

¢ Damage stretch coefficient and minimum stretch
coefficient models were used for the steel. These

MPa, and 0.11, respectively. The JWL parameters
model was used for the explosive.

The agreement between the simulation and
data is excellent. The main disparities are for large
mass fragments, which may caused by interactions
with the capture media (sawdust) or the container
walls which are not represented in the simulation.

Summary and Conclusions

In this paper, we described a detonation model
for peridynamic theory (PD). After a concise
discussion of the aspects of bond-based PD and
numerical method needed for completeness, we
showed how to represent gases as PD materials by
deriving a pairwise force function (PFF) for a gas.
This derivation was based on the work-energy
theorem. The volume burn algorithm was then
discussed. This algorithm is a statement of
conservation of energy for the detonation products
and provides a reference pressure to use in the
pressure isentropes needed in the gas PFF. This
algorithm is based on the ZND detonation model.
Time-step stability was addressed since it is
essential to obtain solutions to the PD equation for
explosive loadings. The stability condition
obtained is needed to provide for solutions as the
explosive material changes from a solid to a gas
which undergoes expansion. We discussed short-
range forces. These forces prevent bonds from
compressing indefinitely and violating non-
impenetrability of matter. They are responsible for
loading a solid material with an expanding gas.
Without these forces, an expanding gas would
simply diffuse through the solid. We provided an
outline of the details of implementing our PD
detonation model in a computer code. Finally, we
showed comparisons of simulations  with
expanding-cylinder and fragmenting-cylinder tests.
The simulation results are in excellent agreement
with the data. We conclude that the PD with the
detonation model described in this paper is a viable
technology for studying explosive loading.

models increase the critical as damage increases or
in compression, respectively.
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