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Abstract. Peridynamic theory is a theory of continuum mechanics that is formulated in 
terms of integro-differential equations without spatial derivatives. Its equations remain 
valid regardless of fractures or other discontinuities that may emerge in a material due to 
loading. This theory provides a consistent treatment of both deformation and failure of 
materials under dynamic loading. In bond-based peridynamics, material properties are 
specified through the pairwise force function. We apply the work-energy theorem to 
obtain the pairwise force function for a gas. With gas detonation products  represented as 
peridynamic materials, we then use the Zeldovich, Von Neumann, and Doering 
detonation model and the volume-burn algorithm to formulate a detonation model in 
peridynamic theory. We discuss a numerical method and implementation of the 
detonation model, concomitant with addressing time-step stability and short-range forces. 
Finally, we illustrate this formulation with simulations of a cylinder-expansion test and a 
cylinder fragmenting under explosive loading. 
*Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a 
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National 
Nuclear Security Administration under contract DE-AC04-94AL85000 
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Introduction 
 

Peridynamic theory (PD) is a theory of 
continuum mechanics that is formulated in terms of 
integro-differential equations without spatial 
derivatives. Its equations remain valid regardless of 
fractures or other discontinuities that may emerge 
in a material due to loading. PD provides a 
consistent treatment of both deformation and 
failure of materials under dynamic loading. In this 
paper, we review bond-based PD and material 
modeling in PD. In bond-based PD, material 
properties are specified through the pairwise force 
function (PFF). We discuss some properties of the 
PFF. We discuss a numerical method to solve the 
fundamental equation of bond-based PD and 

outline development of a condition for time-step 
stability. We apply the work-energy theorem to 
obtain the PFF for a gas. This formulation only 
requires knowledge of the isentrope of the gas in 
the pressure, specific-volume plane, and may be 
used with any equation of state from which the 
isentrope may be obtained analytically or 
numerically. With gas detonation products 
represented as PD materials, we employ the 
Zeldovich, Von Neumann and Doering (ZND) 
detonation model and the volume-burn algorithm. 
In PD, repulsive short-range forces act when points 
are sufficiently close. We discuss these forces since 
they provide for the transfer of momentum from an 
expanding gas to structures. We summarize the 
implementation of the detonation model. We 
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illustrate this formulation with simulations of a 
cylinder-expansion test and a cylinder fragmenting 
under explosive loading. 

Nomenclature 

CJ Chapman-Jouguet 
CMD cumulative mass distribution 
exp(x) exponential function 
JWL Jones, Wilkins, Lee  
PD peridynamic theory or peridynamic(s) 
PFF pairwise force function 
π ratio of circumference to diameter of a 

circle 
ZND Zeldovich, Von Neumann, and Doering 
{A: P} set of all A with property P 
×  cross product 
• dot product 
|A| magnitude of scalar or vector A 

Peridynamic Theory (PD) 

The version of PD introduced in 2000 is called 
bond-based PD1. A more general version, state-
based PD, was introduced later2. Here, we will 
only consider bond-based PD. 

Fundamental Equation of Bond-Based PD 

Consider a peridynamic body that occupies a 
domain R as shown in Fig. 1. a   

 
Fig. 1. A peridynamic body occupying a domain. 

In Fig. 1 (left), ξ is the relative position of 
points x and x´ in the reference configuration and η 
is the difference in displacements at these points. 
Then, η +ξ is the relative position of the points 
originally at x, x´ in the deformed configuration. 
The scalar quantity s in this figure is called the 
stretch and is a measure of relative deformation. 

a In this figure and elsewhere, bold quantities are 
vectors unless stated otherwise. 

The relative displacement in the undeformed 
configuration, ξ, and the deformation, η, are also 
defined in Fig. 1. Thus, the quantity η + ξ is the 
relative displacement after deformation as shown 
in this figure. Quantities in the right graphic in 
Fig.1 will be discussed later. 

The force density at x at time t in bond-based 
PD, is given by 

𝜌(𝒙) 
𝑑2

𝑑𝑡2
 𝒖(𝒙, 𝑡) = �𝒇(η, ξ)𝑑𝑉′ +  𝒃(𝒙, 𝑡)

𝑹
 (1)  

where x is a point in the reference configuration, t 
is the time, ρ(x) is the density at x, u is the 
displacement vector, R is the domain of the body, f 
is the pairwise force function (PFF), η and ξ are 
defined in Fig. 1, and b is the body-force density. 
The integral in (1) is taken over the volume 
occupied by R. All functions are assumed to be 
sufficiently well behaved that the integral exists. 

(1) is based on Newton’s second law for all 
points within the domain of analysis and does not 
contain any spatial derivatives. The PFF gives the 
force per unit volume squared on a point at x due to 
the point at x´. In conventional continuum-
mechanics theory, this functional is replaced by the 
divergence of the stress tensor. All constitutive 
properties of a material in bond-based PD are given 
by specifying the PFF. 

Fig. 1 (right) shows a sphere of radius δ 
centered at the point x, Sδ (x) = {xi: |xi– x| < δ}. It is  
assumed that there is a distance δ such that the 
PFF function vanishes outside Sδ (x) for each point 
x in the domain of analysis. The quantity δ is called 
the horizon since a point cannot “see” a force 
beyond its horizon. All points within Sδ (x) are said 
to belong to the family of x. The appropriate value 
of δ depends on the physical nature of the 
application. However, in numerical modeling at the 
macroscale, typically δ is chosen to be three times 
the grid spacing.  

Properties of the Pairwise Force Function 

Newton’s laws not only lead to the 
fundamental equation of peridynamics, but also 
imply properties of the PFF. Newton’s third law 
states that the force at  x due to point x´ must be the 
negative of the force at x´ due to point x. Therefore 

                                                 



for (1) to satisfy Newton’s third law, f(η,ξ) must 
satisfy 

𝒇(−η ,−ξ) =  −𝒇(η , ξ)  for all  η , ξ (2)  
Thus, f (η,ξ) is an odd function of (η,ξ). 

Another property of the PFF follows from the 
requirement to conserve angular momentum in the 
absence of external forces. If angular momentum 
were not conserved, then two points initially at rest 
would move even in the absence of external 
torques. Thus, to insure conservation of angular 
momentum, f (η,ξ) must satisfy 

(η + ξ) × 𝒇(η , ξ) =   0 (3)  
where “×” is the cross product. This expression 
implies that the force between any two points in the 
continuum must be parallel to their current relative 
position. Therefore, (3) implies that  f (η,ξ) must 
have the functional form 

𝒇(η , ξ)  =   𝐹(η , ξ)(η + ξ)  for all  η , ξ (4)  
where F is a scalar-valued function. Since f (η,ξ) is 
an odd function of (η,ξ), F(η,ξ) must be an even 
function of (η,ξ). 

Material Modeling in Peridynamic Theory 

All constitutive properties of a material are 
given by specifying the PFF.  Here we summarize 
only aspects of material modeling that are needed 
for understanding the solid models used in the 
examples and gases as PD materials. 

The Micro-Potential 

A PD material is said to be micro-elastic if and 
only there exists a scalar-valued function w(η,ξ) 
such that 

𝒇(η, ξ) =  
𝜕𝑤(η, ξ)
𝜕η

 (5)  

The function w is called the micro-potential. It is 
important to realize that the derivatives in (5) are 
not the spatial derivatives that are to be avoided by 
using PD. 

The micro-potential has units of energy per 
unit volume squared. It represents potential energy 
density associated with a bond. We may define a 
functional that for a displacement u is the local 
displacement energy density, 

𝑊𝑢(𝒙, 𝑡) =  
1
2
�𝑤(η, ξ)𝑑𝑉′

𝑅
 (6)  

(6) is the energy density at the point x and time t 
associated with a displacement u of all the points in 
domain R. The factor of 1/2 is present since only 
half the energy is associated with each endpoint of 
the bond. Integration of (6) over the body yields 
the total macroscopic energy functional. 

Proportional Materials 

A class of PFF’s that is useful for modeling 
solid materials is called proportional materials. 
Such materials are a further development of the 
idea that micro-elastic materials may be considered 
materials in which two points are connected by a 
spring that, in general, may be non-linear. The PFF 
for a proportional material has a magnitude 
proportional to the stretch s, where 

𝑠 =  
𝑝 − 𝑟
𝑟

 , 𝑝 =  |η + ξ| , 𝑟 =  |ξ| . (7)  

The most general form of the PFF for this  
material is 

𝒇(𝜼, 𝝃) =   
𝑔(𝑠, 𝑟)
𝑝

(𝜼 + 𝝃) (8)  

where g(s,r) is a piecewise linear function of the 
stretch s.  The function g is called the bond force 
between two points for a proportional PD material.  

Material Failure in Peridynamic Theory 

A bond in a PD material fails irreversibly 
when the stretch s exceeds a value, sc, called the 
critical stretch. Not only does the critical stretch 
define failure of a material, but it also assures the 
existence of a horizon for proportional materials. 

Numerical Method 

To solve the fundamental PD equation of 
motion, (1), the domain is discretized into a set of 
nodes, {xi}, as depicted in Fig. 3. Each node has a 
known volume in the reference configuration. The 
nodes form a computational grid. 

The fundamental equation of motion (1) is 
replaced by a finite sum, which at time tn is 

ρ𝑖
𝑑2

𝑑𝑡2
𝒖𝑖𝑛 =  �𝒇�𝒖𝑗𝑛 − 𝒖𝑖𝑛,𝒙𝑗 − 𝒙𝑖�𝑉𝑗

𝑗

+ 𝒃𝑖𝑛 (9)  



where ρi = ρ(xi) , ui
n = u(xi,tn), bi

n = b(xi,tn), and Vj 
is the volume of node j.  The sum is taken over all 
nodes within the horizon δ of xi .   

 
Fig. 2. Computational grid. 

The acceleration term in (9) is approximated 
by an explicit central difference 

𝑑2

𝑑𝑡2
𝒖𝑖𝑛 =  

𝒖𝑖𝑛+1 − 2𝒖𝑖𝑛 +  𝒖𝑖𝑛−1

(∆𝑡)2
 (10)  

where ∆t is the time step. 
(9) and (10) are solved to obtain the 

displacements ui
n+1. The error in (10) is well 

known to be second order in time.3 

 Gases as Peridynamic Materials 
 

Since the detonation products in an explosion 
are gases, we must determine how to model gases 
as PD materials. In this section, we develop a 
general expression for the PFF of a gas. This 
development generalizes the development that is 
documented in Demmie and Silling4.  

Pairwise Force Function for a Gas 

The PFF for a gas can be determined from the 
change in internal energy per unit volume of the 
gas and expressed in terms of the expansion of the 
gas, X, where 

𝑋 =  
𝑣
𝑣0

=  
ρ0
ρ

 (11)  

v and v0 are the deformed and reference specific 
volumes of the gas, ρ and ρ0 are the deformed and 
reference densities, respectively. Implementation of 
a gas model requires computing the expansion at a 
node from the undeformed and deformed bond 
lengths between this node and all gas nodes in its 
family. 

To derive a general expression for the PFF of 
a gas, consider (5) and (6). From (5), the micro-
potential, w, may be written as 

𝑤(𝒙, 𝑡) =  � 𝒇(η, ξ)• 𝑑η
η(𝒙,𝑡)

η0

 (12)  

where η0 is some fiducial state of stretch. Since the 
integral (6) vanishes outside the horizon of x, H(x), 
(6) may be written using (12) as 

𝑊𝑢(𝒙, 𝑡) =  
1
2
� �� 𝒇(η, ξ)• 𝑑η

η(𝒙,𝑡)

η0

� 𝑑𝑉ξ
𝐻(𝒙)

 (13)  

Let all the bonds be held fixed except for bond 
k at a given value of ξ. Then, for an incremental 
stretch dpk in bond k, (13) becomes dW, where 

𝑑𝑊 =  
1
2
𝒇• η 𝑑𝑉ξ =  

1
2
𝒇• (η + ξ) 𝑑𝑉ξ

=  
1
2
𝑓𝑘𝑑𝑝𝑘𝑉𝑘 

(14)  

In (14), fk is the magnitude of the PFF at bond k 
due to this incremental stretch dpk in this bond, and 
Vξ and Vk are volume elements associated with 
bond k.  The latter two equalities follow since ξ is 
fixed under the stretch and f is parallel to η+ξ as 
stated in (4).  

The quantity fk in (14) is the PFF for a gas. 
This quantity can be expressed in terms of the 
expansion X as follows. 

Changes in the energy per unit volume, dW, 
result from the stretch dpk. Therefore, using the 
definition of dW and the chain rule, (14) may be 
written as 

𝑑𝑊 =  
𝜕𝑊
𝜕𝑝𝑘

𝑑𝑝𝑘 =  
𝜕𝑊
𝜕𝑋

𝜕𝑋
𝜕𝑝𝑘

𝑑𝑝𝑘 (15)  

since W depends on pk through its dependence on 
X. 

Equating (14) and (15) and solving for fk yields 
a general expression for the PFF of a gas 

𝑓𝑘 =  
2
𝑉𝑘
𝜕𝑊
𝜕𝑋

𝜕𝑋
𝜕𝑝𝑘

 (16)  

The PFF can be obtained from (16) once the 
energy per unit volume, W, is known as a function 
of the expansion X, and X is known as a function of 
the incremental stretches for all gas bonds within 
the horizon of a node. 

There are many possible ways to approximate 
the expansion X. We now describe the method 
currently implemented. Consider the ratio of the 



reference density to the deformed density. This 
ratio is X. We approximate X at a given node by 

𝑋 =  �
1
𝑉
��

𝑟𝑗
𝑝𝑗
� 𝑉𝑗

𝑗

�

−3

,𝑉 =  �𝑉𝑘
𝑘

 (17)  

where the sum is taken over the nodes inside the 
horizon of the given node, pj = |ηj+ξj|,  rj = |ξj|, and 
Vj is the reference volume of node j. We refer to 
the nodes inside the horizon of a given node as its 
family. Hence, V is the total reference volume of 
the family of the given node. 

Calculating the derivatives in (16) using (17), 
we obtain 

𝑓𝑘 =  
6
𝑟𝑘𝑉

𝜕𝑊
𝜕𝑋

�
𝑟𝑘
𝑝𝑘
�
2
𝑋4/3 (18)  

If we identify W with the internal energy per unit 
volume of the gas, then (18) and knowledge of the 
dependence of W on the expansion X yield an 
expression for the PFF at node k.    

From the standard axiomatic formulation of 
thermodynamics5, the pressure is an intensive 
variable defined as minus the partial derivative of 
the internal energy with respect to specific volume 
at constant entropy. Therefore, the derivative in 
(18) is the negative pressure, P, which implies that 
the magnitude of the PFF for node k in a gas is 

𝑓𝑘 =  −
6𝑃
𝑟𝑘𝑉

�
𝑟𝑘
𝑝𝑘
�
2
𝑋4/3 (19)  

Implementation of (19) requires knowledge of the 
pressure P as a function of the expansion X on an 
isentrope. The negative sign indicates that the force 
is repulsive. 

Volume Burn Algorithm 

Implementation of the PFF for gases given by 
(18) requires knowledge of P as a function of X 
along an isentrope. To determine the isentrope to 
use, we employ the ZND model6 and the volume 
burn algorithm.  

Fig. 2 depicts the pertinent features of the 
ZND modelb and shows the integral that states the 
volume burn algorithm. This figure shows an initial 
state of specific volume v0 and pressure P0 and the 
Rayleigh line R(v) emanating from this point. The 

b The Hugoniot for the unreacted explosive and the 
Von Neumann spike are not shown in Fig. 3.  

Chapman-Jouguet (CJ) point is shown with 
specific volume vCJ and pressure PCJ. This point is 
defined as the point where the Rayleigh line and 
Hugoniot for the detonation products are tangent. 
The isentrope for the detonation products is also 
tangent to the Rayleigh line at the CJ point.. 

 
Fig. 3. Detonation Process. 

The volume burn algorithm, 

� 𝑅(𝑣)𝑑𝑣 + � 𝑃𝐷𝑃(𝑣)𝑑𝑣
∞

𝑣𝐶𝐽

𝑣𝐶𝐽

𝑣0

=  � 𝑃𝑆(𝑣)𝑑𝑣
∞

𝑣𝑆0
 , 

(20)  

is a statement of conservation of energy for the 
detonation products. Given the isentrope for the 
detonation-product gases and the Rayleigh line7, 

𝑅(𝜐) −  𝑃0 =  
𝑈2

𝑣0
−  
𝑈2

𝑣02
𝑣, (21)  

where U is the detonation speed. (20) is solved to 
determine the reference pressure, PS0, to be used in 
this isentrope for the detonation products in (18). 
For an ideal gas this procedure yields a reference 
pressure half the CJ pressure. 

Time-Step Stability 

It is possible to obtain a stability condition for 
the linearized equations for one-dimensional 
motion with a PFF  

𝑓(𝜂, 𝜉) = 𝐶(ξ)η, 𝐶(ξ) =  
𝜕𝑓
𝜕η

(0, ξ) (22)  

Applying the standard assumption for a von 
Neumann stability analysis8 

𝑢𝑖𝑛 =  𝜁𝑛𝑒𝑥𝑝�𝜅𝑖√−1� (23)  

Pr
es

su
re

 (P
)

Specific Volume (v)

Isentrope for Detonation 
Products, PDP(v)

(v0, P0)
Rayleigh Line, R(v)

(v0, PS0)
Isentrope for Detonation Products 
Referenced to P0 , PS(v)(vCJ, PCJ)

• Algorithm is statement of energy conservation.
• P0 is density of unreacted explosive.
• Rayleigh line, reaction product Hugoniot, and reaction 

product isentrope are tangent at the CJ point.
• For an ideal gas, PS0 = ½ PCJ.

                                                 



where κ is a positive real number and ζ is a 
complex number, we obtain the stability condition3 

∆𝑡 < min�
2ρ

∑ 𝑉𝑘𝐶𝑖𝑘𝑘
 for all 𝑖 (24)  

where Cik = C(xk – xi).  
To insure stability, it is essential to use the 

density, ρ, in (24) given by (11), i.e., 

ρ =  
ρ0
𝑋

 (25)  

where ρ0 is the initial density of the unreacted 
explosive and X is the expansion. For an explosive, 
it is essential that ρ0 is the initial, unreacted value 
and X be the expansion given by (17). Otherwise 
the solution process is not stable and unrealistic 
fragmentation will occur under explosive loading. 
For solids under reasonable loadings, the expansion 
is about one and ρ ∼ ρ0. However, if X is given by 
some model, especially for high-impulse loading, 
(25) is used with ρ0 the initial density. 

For nonlinear material models, including (19), 
the form of the stability condition used is  

𝐶(ξ) =  �
𝜕𝑓
𝜕𝑝

(0, ξ)� (26)  

In this case, we apply a safety factor to the estimate 
in (24) to account for possible nonlinear material 
response that would make the estimated stable time 
step based on (24) too large. 

Short-Range Forces 

In bond-based PD, repulsive short-range forces 
act when nodes are sufficiently close. These forces 
prevent bonds from compressing indefinitely and 
violating non-impenetrability of matter. They are 
responsible for loading a solid material with an 
expanding gas. Without these forces, a container 
with a detonating explosive would not expand and 
fragment. The expanding gas would simply diffuse 
through the container. 

When two nodes, i and j, are sufficiently close, 
the repulsive force, fij

SR, between them is given by 

𝑓𝑖𝑗  𝑆𝑅 = 𝐹𝑆𝑅𝑘𝑃𝐷𝑉𝑖𝑉𝑗(𝑝 − 𝑝𝑐𝑜𝑛𝑡𝑎𝑐𝑡) (27)  
where FSR is a force factor input by the user, kPD is 
the PD spring constant for the bond connecting 
nodes i and j, p is the separation given in (7), pcontact 
is the separation where short-range forces begin to 
act, and Vi and Vj are the respective volumes of 

nodes i and j. Short-range forces are included in the 
estimate of a stable time step. 

The quantity pcontact is calculated from the 
input parameters by the user for the material and 
short-range forces. Since (27) is only applied when 
p < pcontact, the force is negative and repulsive. 

The PD spring constant in (27) is given by 

𝑘𝑃𝐷 =  
18𝐾
𝜋𝛿4

 (28)  

where K is the bulk modulus and δ is the horizon. 

Peridynamic Detonation Model 

In this section, we discuss propagation of the 
detonation, EOSs for the detonation products, and 
summarize the implementation of our detonation 
model. 

Propagation of Detonation (Program Burn) 

The detonation times must be determined at 
each node containing an explosive. These times are 
calculated during input processing using a 
Huygen’s construction procedure. This method is 
called program burn. 

Program burn proceeds as follows. There are a 
set of nodes whose detonation times are specified 
user in the input. Initial detonation times at the 
other nodes are initially set to a large number. The 
construction proceeds by sweeping through the 
grid and examining at each node the detonation 
times of the nodes in a spherical neighborhood of 
this node. The detonation time at this node is the 
smallest time for a detonation to propagate from 
any detonated node in this neighborhood to this 
node. This process continues until detonation times 
are computed for all nodes. This Huygen’s 
construction procedure insures that detonations 
propagate around obstacles and isolated regions of 
explosive material do not detonate. However, if 
there are no obstructions or isolated regions of 
explosive, a detonation radius may be specified. In 
this case, the detonation time at a particular node is 
the minimum of the times for the detonation to 
propagate along a straight line from the initially 
detonating nodes to this node. 

Equations of State for Detonation Products 

In  our  implementation  of  the PD  detonation  



model, two EOSs are available, an ideal gas and 
the Jones, Wilkins, Lee (JWL) model. 

For an ideal gas, the pressure, PS, along an 
isentrope is given as a function of the expansion, X, 
is given by9 

𝑃𝑆(𝑋) =  𝑃𝑆0 �
𝑉0
𝑉
�
𝛾

=  𝑃𝑆0𝑋−𝛾 (29)  

where PS0 is the reference pressure in Fig. 2 and γ 
is the ratio of molar specific heat at constant 
pressure to the molar specific heat at constant 
volume. 

In the JWL model, this pressure is given by10 

𝑃𝑆(𝑋) =  �𝐴𝑖𝑒𝑥𝑝(−𝑅𝑖𝑋)  +   𝐶𝑋−(𝜔+1)
2

𝑖=1

  (30)  

where the Ai, Ri, C, and ω are parameters 
determined for explosives by cylinder-expansion 
tests. 

A Detonation Model for Peridynamic Theory   

Fig. 4 summarizes the implementation of our 
PD detonation model. This figure shows three 
aspects of the implementation – the inputs, the 
determination of detonation times during input 
processing, and the treatment of reaction products 
after detonation. 

 
Figure 4. Implementation of PD detonation model. 

The user specifies inputs listed in this figure 
for the explosive-material. These inputs are the 
locations of the detonation points and their 
respective detonation times, the detonation speed, 
the density of the explosive, and the equation of 
state (EOS) for the detonation products. We use the 
ideal gas and the JWL EOSs. 

From the explosive-material input, the 
detonation times for all explosive nodes are 

computed prior to time advancement. Once the 
explosive in a node has detonated, the detonation 
products are treated as ideal or JWL gases 
undergoing an adiabatic expansion from the 
reference state shown in Fig. 3. The energy of the 
detonation products is conserved using the volume-
burn algorithm. The PD interactions between 
explosive-material nodes are given by (18). 
Interactions with non-explosive material nodes are 
given by the short-range forces in (26). 

Examples 

The PD detonation model was implemented in 
a computer code. In this section, we provide two 
example simulations to illustrate the application of 
this model – a cylinder expansion and a 
fragmentation test. Both tests use a hollow 
cylindrical tube with open ends. These tubes were 
filled with explosive that was detonated. 

Cylinder-Expansion Test 

Fig. 5 compares displacement versus time for a 
cylinder-expansion test using a cylinder made of 
copper (Cu) filled with explosive and a simulation 
of this test. 

 
Fig. 5. Comparisons of displacements versus time 
for an exploding Cu cylinder test. 

This figure also shows a schematic of the Cu 
tube. Initially, it was 25.8 cm long, had an inside 
diameter of 2.54 cm, and had 0.26-cm thick walls. 

The material model used for Cu is the 
proportional model given by (8). The parameters 
that must be specified for this model are the 
material density, bulk sound speed, which is the 
square root of the bulk modulus divided by the 
density, the yield strength, and the critical stretch. 

• Program burn model for detonation times.
• Detonation times computed prior to time advancement 

using Huygen’s construction.
– Detonations can propagate around obstacles.

• Upon detonation:
– Detonation products are treated as ideal or JWL gas 

undergoing an adiabatic expansion.
– Energy is conserved using volume-burn algorithm.
– The PD interactions between nodes are given by (19).
– Interactions with solids given by short-range forces (28)

• Detonation model inputs:
– Location of detonation points and initial detonation 

times, density of explosive, and detonation speed.
– Parameters for equation of state (ideal gas or JWL).

25.8 cm

2.54 cm

3.06 cm

Cu 
Cylinder

C4



The respective values used for this simulation are 
8930 kg/m3, 3602 m/s, 324 MPa, and 2.0. The JWL 
model was used for the explosive. 

The agreement between the simulation and 
data is excellent. The small deviations early in the 
test should be well within any experimental errors 
and uncertainties in the simulation. 

Fragmenting-Cylinder Test 

Fig. 6 compares cumulative mass distributions 
(CMD) from a fragmentation test using a cylinder 
made of steel filled with explosive and a simulation 
of this test. Initially, it was 4.25 in. long, had an 
inside diameter of 1.0 in., and had 1/8th thick walls. 
This test was performed at a facility that can 
capture 99% of the fragments from an exploding 
object. 

 
Figure 6. Comparisons of CMDs for a fragmenting 
steel cylinder test. 

The steel was modeled as a proportional, 
micro-plastic material. A micro-plastic material 
uses (8), but differs from the micro-elastic model 
only on unloading. In the code implementation, a 
micro-elastic material unloads reversibly, but a 
micro-plastic material does not. The values for the 
steel density, bulk sound speed, yield strength, and 
critical stretchc are 7850 kg/m3, 3212 m/s, 750 

c Damage stretch coefficient and minimum stretch 
coefficient models were used for the steel. These 

MPa, and 0.11, respectively. The JWL parameters 
model was used for the explosive. 

The agreement between the simulation and 
data is excellent. The main disparities are for large 
mass fragments, which may caused by interactions 
with the capture media (sawdust) or the container 
walls which are not represented in the simulation. 

Summary and Conclusions 

In this paper, we described a detonation model 
for peridynamic theory (PD). After a concise 
discussion of the aspects of bond-based PD and 
numerical method needed for completeness, we 
showed how to represent gases as PD materials by 
deriving a pairwise force function (PFF) for a gas. 
This derivation was based on the work-energy 
theorem. The volume burn algorithm was then 
discussed. This algorithm is a statement of 
conservation of energy for the detonation products 
and provides a reference pressure to use in the 
pressure isentropes needed in the gas PFF. This 
algorithm is based on the ZND detonation model. 
Time-step stability was addressed since it is 
essential to obtain solutions to the PD equation for 
explosive loadings. The stability condition 
obtained is needed to provide for solutions as the 
explosive material changes from a solid to a gas 
which undergoes expansion. We discussed short-
range forces. These forces prevent bonds from 
compressing indefinitely and violating non-
impenetrability of matter. They are responsible for 
loading a solid material with an expanding gas. 
Without these forces, an expanding gas would 
simply diffuse through the solid. We provided an 
outline of the details of implementing our PD 
detonation model in a computer code. Finally, we 
showed comparisons of simulations with 
expanding-cylinder and fragmenting-cylinder tests. 
The simulation results are in excellent agreement 
with the data. We conclude that the PD with the 
detonation model described in this paper is a viable 
technology for studying explosive loading. 
  

models increase the critical as damage increases or 
in compression, respectively. 

an
code
data
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	The PD detonation model was implemented in a computer code. In this section, we provide two example simulations to illustrate the application of this model – a cylinder expansion and a fragmentation test. Both tests use a hollow cylindrical tube with ...

