SAND2014- 18638C

Sandia
National

Laboratories

Exceptional service in the national interest

Spectrum Adjustment

Student Information

Name: Richard Vega

School: Texas A&M University

Degree Pursued: Ph.D.

Discipline: Nuclear Engineering

Manager: Ken Reil

Mentor: Ed Parma

Org Name: Applied Nuclear
Technologies

Org Number: 1384

Sandia National Laboratories, NM

U.S. Department of Energy

Abstract

Neutron spectrum adjustment, or unfolding as it is commonly called, is an optimization problem. Modern Monte Carlo
neutron transport codes can produce high resolution neutron energy spectra. As computing power increases, the
statistical error due to the stochastic solution method can be made vanishingly small. Unfortunately, the error incurred
by the uncertainty in model parameters and transport cross sections still remains. The goal in spectrum adjustment is
to adjust the spectrum produced by a transport code so that it agrees more closely with measured data. Over the past
few decades, genetic algorithms have shown the ability to solve optimization problems in logistics such as the traveling
salesman and number partitioning problems. The use of a genetic algorithm by NASA in 2006 for antenna design
revealed even further potential for this abstract computational method. These and other successes led to the
development of a genetic algorithm for spectrum adjustment presented here. The algorithm was used to adjust the
spectrum at the center of the ACRR central cavity in the PLG bucket environment, and is compared to the adjustment
performed using LSL-M2. Although much work is still to be done, the results are promising.

Introduction

Neutron energy spectrum measurement is complicated by the fact that neutron detectors with high energy
resolution simply do not exist. The only information that can be gained experimentally are integral
quantities such as the total reaction rate for a given reaction. This information is gained through the use of
activation foils, where the activity after irradiation is proportional to the reaction rate. The reaction rate is
the integral of the product of the neutron flux and the reaction cross section over energy. As there are
typically less than 50 feasible activation foils, each leading to a single equation, this produces an under-
determined problem if the desired number of energy groups in the final spectrum, each of which is treated
as a variable, is greater than the number of activation foils at the experimenter’s disposal. For comparison,
codes like MCNP can produce spectra with hundreds of energy groups and very low statistical error.
Recently, LSL-M2 has been used to adjust the MCNP produced spectrum at the center of the PLG bucket in
the ACRR central cavity. The result is shown in Figure 1. The MCNP spectrum contained 89 energy groups
and a total of 37 activation foils were used. The LSL-M2 adjustment shows that the MCNP spectrum over-
predicted the flux in the low-energy range and under-predicted the flux in the high-energy range. This could
be due to several factors. For instance, the density of HDPE in the MCNP model of the PLG bucket could have
been too high, leading to an overestimation of the number of neutrons scattered to low energies. BV oy Bl B BH W M B R RE
Unfortunately, there is not such a simple explanation for the dips and peaks created by LSL-M2 in the mid- °**" % o 0 w©° 00 F 10 07 1 0 o
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energy range. These unrealistic peaks are one of the main reasons for the development of a new method. Figure 1. LSL-M2 adjustment of the PLG spectrum
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Genetic algorithms attempt to solve an optimization problem by mimicking the
theory of natural selection. A population of possible solutions to the problem is
formed, and each specimen is assigned a fitness value based on the gquantity
being optimized. To produce children, specimens are then chosen for mating
based on their fitness values; high fitness specimens mate more frequently than
low fitness specimens. In addition, the genes of each child are subject to a
random mutation with a pre-defined probability. The children produced should
inherit the good qualities of their parents, carrying them into further
generations. Mating is performed until the number of children equals the
number of specimens in the original population. This process is then repeated
for a pre-defined number of generations. Thus, for a genetic algorithm to work,
techniques for setting the population, assigning fitness values, specimen mating,
and gene mutation must be properly chosen.

Setting the population: In light of the unrealistic peaks produced by other
adjustment methods, it was desired to produce a smooth adjustment. A total of
13 points in the energy domain of interest were chosen. These points will be
referred to as sites. For each site, a Gaussian distributed random number with a
mean of zero and a standard deviation of 0.07 was added to unity and then a
least squares polynomial fit was generated, resulting in what will be referred to
as the shift function. Each specimen is characterized by the perturbation at each
site and the associated shift function. Thus, each specimen has 13 genes and the
shape of each specimen is determined by a polynomial fit through these 13
values. The shift functions of the initial population along with the spectra
themselves are shown in Figure 2. The results of Figure 2 are for a 5% order
polynomial fit, however the polynomial order is flexible in the code.
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Figure 2. (left) Shift functions for the first 20 specimens in the initial population. (right)
The associated specimen’s spectral shape functions (arbitrary magnitude).

Fitness function: The ultimate goal of spectrum adjustment is to produce a
spectrum that agrees more closely with measured data. In addition, the fitness
is typically a quantity to be maximized. Thus, a large fitness should correspond
to a small difference between measured and calculated reaction rates. This
leads to the following fitness function:
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where f is the fitness, C is a constant, o is the reaction cross section, @ is the
neutron flux, and AE is the bin width of the energy group.

Mating: In order to produce new
solutions from the population of
possible solutions, gene crossover is
chosen as the mating algorithm. This
is performed by choosing a cutting
point between the 13 genes and
exchanging the genes of each parent
to produce two new solutions. This
process is shown schematically in
Figure 3. In the genetic algorithm pre-
sented here, each gene is a value perturbed from unity through which a poly-
nomial fit is generated. The product of the polynomial fit and the trial spectrum
is the specimen spectrum. This crossover guarantees that if two specimens of
relatively high fitness are chosen for mating, the children will be likely to inherit
the best qualities of both. Although multiple crossover points can be used, the
algorithm presented here uses single point crossover.

Parent | Genotype

Parent 2 Genotype

Crossover

Child | Genotrype

Child 2 Genotype

Figure 3. Depiction of the crossover method.

Mutation: It is often the case that several maxima exist for a given problem. To
avoid having the population converge on a fitness that is not the absolute
maximum fitness, there has to be competition to said convergence. This is the
purpose of mutation. Even after a solution has been converged upon, mutation
ensures that other areas of the solution space are being explored. The genetic
algorithm presented here uses gene-wise mutation. This is accomplished by first
setting a mutation probability m. During the mating process, each gene of each
of the children will have a set probability m of being perturbed randomly from
its inherited value. The perturbation is a Gaussian distributed random number
that is added to the previous value of the gene site.




Convergence speed: In
converge in less than 100 generations. In addition, the convergence showed the
characteristics of a successful genetic algorithm; namely that the minimum,
average, and maximum fitness increased with increasing number of generation
at roughly the same rate and converged at nearly the same time. This general
trend can be seen in Figure 6.

Effect of polynomial order: By far the most significant variable in the method
presented here is the order of the polynomial used when determining the shift
function for each specimen. As previously mentioned, to obtain a smooth
adjustment and to not introduce unrealistic peaks in the final result, a
polynomial shift function is fitted to the perturbation values that make up the
genes of each specimen. If the method converges on a maximum fitness, we
would expect for the shift functions of all specimens in the population to

all cases considered, the algorithm was shown to

migrate towards that which produces the maximum fitness. In fact, this is
exactly what is observed as can be seen in Figure 4. Each panel in Figure 4
represents the shift functions of the population at the end of 500 generations.
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Figure 6. Minimum, average, and maximum fitness as a function of generation.

Final adjustment and LSL-M2 comparison: The final results of the genetic
algorithm can be seen in Figure 7 and Table 1. Figure 7 should be compared to
the LSL-M2 adjustment of Figure 1. Table 1 shows the reaction rates predicted
by the LSL-M2 and genetic algorithm spectra, as well as the measured reaction
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Figure 4. Shift functions for the first 20 specimens in the final population for various

rates and percent error for each. The foil labeled ** is the reference foil.
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Figure 7. Final adjustment by the genetic algorithm of the PLG Spectrum

Tablel. Comparison of reaction probabilities for LSL-M2 and the genetic algorithm.

OI nomial orders Foil identification LSL Genetic Measured LSL % diff Genetic % diff
p y ' al27a#-ml3x-bahl 3.736E-13 3.768E-13 3.774E-13 1.008% 0.171%
au197g#-di|3-bah| 2.439E-07 2.386E-07 2.404E-07 1.467% 0.756%
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From Figure 4, it appears that not only does the shift function for the entire au197g#-dil3-cdhl 1.803€-07 1.777€-07 1.788E-07 0.841% 0.630%
) . . . co59g#-mil2-bahl 2.797E-08 2.720E-08 2.724E-08 2.694% 0.140%
population converge to that of the highest fitness, it also appears that the shape co59g#-mil2-cdhl 5.391E-09 5.591E-09 5.329E-09 1.165% 4.918%
. . . . . co59p#-mil2-cdhl 8.216E-13 8.014E-13 8.157E-13 0.723% 1.753%
r r
of the maximum fitness shift function converges for polynomial orders greate i e ST e s S aaee
than 6. However, as the polynomial order approaches the number of sites, it is cu63a#-milS-bahl 3.014E-13 2.933€-13 3.596E-13 16.182% 18.426%
. . . . . cu63g#-mi|5-bahl 3.310E-09 3.220E-09 3.305E-09 0.162% 2.577%
expected that the polynomials will swing wildly in an attempt to pass through all s e T e S5 e
13 values. This is expected to impact the maximum fitness negatively, which can feSap#-milS-bahl 5.032E-11 5.024E-11 4.970E-11 1.249% 1.089%
b . . feSSp#—milS-bahl 6.122E-13 5.970E-13 6.200E-13 1.255% 3.714%
e Seen In Flgure 5 feSSg#-miIS-bahl 9.783E-10 9.375E-10 9.335E-10 4.804% 0.426%
feSSg#-miIS-cdhl 1.548E-10 1.512E-10 1.493E-10 3.667% 1.304%
in115n#-milS-bahl 1.545E-10 1.564E-10 1.651E-10 6.434% 5.274%
0925 mg24p#-mil5-bahl 8.013E-13 8.042E-13 7.661E-13 4.592% 4.973%
mnSSg#-miIZ-cth 1.490E-09 1.436E-09 1.487E-09 0.209% 3.400%
mnS552#-mil2-bahl 1.168E-13 1.151E-13 1.3/5E-13 15.045% 16.271%
m098g#-mi|5-bah| 8.740E-10 8.642E-10 8.667E-10 0.842% 0.284%
0.920 | m098g#-mi|5-cdh| 7.940E-10 7.881E-10 7.982E-10 0.528% 1.271%
n323g#-pelt-bahl 3.242E-10 3.155E-10 3.057E-10 6.064% 3.219%
?f’; naZBg#—pelt-cth 3.358E-11 3.547E-11 3.245E-11 3.469% 9.305%
§ nb932#-mil5-bahl 2.438E-13 2.435E-13 2.411E-13 1.124% 0.976%
§ ni58p#-mi|x-bah| % 6.879E-11 6.879E-11 6.879E-11 0.000% 0.000%
v 0915}

§ ni582#-milx-cdhl 2.293E-15 2.332E-15 2.152E-15 6.569% 8.382%
§ ni60p#-mi|x-cdhl 1.228E-12 1.189E-12 1.254E-12 2.040% 5.168%
E rmldu#-rmld-fiss 2.250E-10 2.281E-10 2.194E-10 2.546% 3.958%
rmleu#-rmle-fiss 2.463E-09 2.495E-09 2.573E-09 4.257% 3.040%
0.910} rmlpu#-rmlp-fiss 2.796E-09 2.803E-09 2.570E-09 8.776% 9.072%
s32cf#-void-bare 5.845E-02 5.886E-02 5.437E-02 7.501% 8.262%
sc45g#-mil5-bahl 1.802E-08 1.730E-08 1.731E-08 4.087% 0.057%
sc45g#—mil5-cdh| 1.295E-09 1.314E-09 1.352E-09 4.208% 2.791%
0905 tid6p#-milx-bahl 6.700E-12 6.509E-12 6.400E-12 4.684% 1.698%
T2 4 6 8 Pmynomialor;gr 12 14 16 tid7p#-milx-bahl 1.237E-11 1.243E-11 1.265E-11 2.188% 1.723%
tid8p#-milx-bahl 1.639E-13 1.628E-13 1.625E-13 0.839% 0.183%
F. 5 F.t fb t | t. f t. f | . | d zn64p#-milx-bahl 2.403E-11 2.408E-11 2.451E-11 1.940% 1.735%
Igure - FItNESS O est solution as a function o pO ynomla oraer. zr902#-milx-bahl 5.670E-14 5.689E-14 5.748E-14 1.353% 1.023%

Discussion and Future Work
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Despite the promising results shown above, the genetic algorithm presented here lacks one very
important quality; it does not give any information about the uncertainty in the adjusted spectrum as LSL-
M2 does. Unfortunately, the only way to get around this downfall would be to perform many adjustments
given different input data, reflecting the uncertainty in the transport cross sections and other model
parameters. A full run of the algorithm presented here of 500 generations takes less than 10 seconds in
serial. Parallelization may make it feasible to perform several thousand adjustments; however, the largest
computational cost would be in generating a large number of input spectra using MCNP with different
cross section libraries. Quantities that can be varied easily within the code and without generating new
input spectra are the measured activities and dosimetry cross sections, both of which have known
uncertainties. Aside from parallelization, further work in code verification will need to be done. This will
include examining the effect that the input ACRR trial spectrum has on the final adjusted spectrum. For
instance, changing the HDPE density in the MCNP model would significantly change the trial spectrum. It
is hoped that the genetic algorithm will arrive at the same adjusted spectrum shown in Figure 7. Code
verification using known standards in radiation metrology will also be performed.
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