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Abstract—Graphs in the real-world are often temporal and
can be represented as a “stream” of edges. Estimating the number
of triangles in a graph observed as a stream of edges is a
fundamental problem in data mining. Our goal is to design a
single pass space-efficient streaming algorithm for estimating
triangle counts. While there are numerous algorithms for this
problem, they all (implicitly or explicitly) assume that the stream
does not contain duplicate edges. However, real graph streams are
rife with duplicate edges. The work around is typically an extra
unaccounted pass (storing all the edges!) just to “clean up” the
data. Furthermore, previous work tends to aggregate all edges
to construct a graph, discarding the temporal information. It
will be much more informative to investigate temporal windows,
especially multiple time windows simultaneously.

Can we estimate triangle counts for multiple time windows
in a single pass even when the stream contains repeated edges?
In this work, we give the first algorithm for estimating the
triangle count of a multigraph stream of edges over arbitrary
time windows. We build on existing “wedge sampling” work
for triangle counting. Duplicate edges create significant biasing
issues for small space streaming algorithms, which we provably
resolve through a subtle debiasing mechanism. Moreover, our
algorithm seamlessly handles multiple time windows. The final
result is theoretically provable and has excellent performance
in practice. Our algorithm discovers fascinating transitivity and
triangle trends in real-world temporal graphs.

I. INTRODUCTION

The abundance of triangles has been observed in networks
arising from numerous scenarios, such as social interaction,
coauthorship, citations, communications, etc. This abundance
is noted as a critical feature that distinguishes real graphs from
random graphs. In social sciences, triangle counts are used as
a guide to understand graphs [1], [2], [3], [4]. Triangle counts
are also used in some graph mining applications such as spam
detection [5], community detection [6], [7] and finding com-
mon topics on the WWW [8]. Frequency of triadic patterns
is a standard part of motif detection in bioinformatics [9].
Triangles are also used in modeling and characterizing real-
world networks [10], [11].

Many massive graphs are truly temporal and manifest in
practice as a stream of edges. People call each other on
the phone, exchange emails, or co-author a paper; computers
exchange messages; animals come in the vicinity of each other;
companies trade with each other. Each such interaction is
modeled as an edge in the graph, and has a natural timestamp.

Due to the sheer volume of such transactions, there is
much interest in processing temporal graphs using fast, limited-
memory algorithms. Formally, think of the input as a sequence
of edges e1, e2, . . . , em. Some of the edges may be repeated,
meaning that we may have, for example, e1 = e100 = e125 =
(u, v). We are interested in small space streaming algorithms
that make a single pass over the stream e1, e2, . . . , em. At any
timestep t, such an algorithm retains a very small (possibly
random) subset of the edges seen so far. This is called the
“sketch” and is updated rapidly as new edges appear. Using
the sketch and some auxiliary data structures, the algorithm
computes an accurate estimate for the number of triangles for
the graph seen so far. The size of the data structures is orders
of magnitude smaller than the size of the graph. Because of the
single pass and small space, the algorithm cannot revisit edges
that it has forgotten. Furthermore, it cannot always determine
if the new edge, et, has already appeared before.

There is much work on streaming graph algorithms [12],
[13], [14], [15], [16] (see theoretical survey [17]). Yet all of
the practical algorithmic work ignores important issues such
as repeated edges and temporal aggregation that arise when
looking at a real-world graph stream.

Graph vs multigraph: Previous results assume that the
edge stream forms a simple graph, and no edge is ever repeated
in the stream. Indeed, a recent survey on network sampling
explicitly defines a graph stream as a permutation of the
edges of the underlying simple graph [14]. This is a useful
assumption for algorithmic progress; on the other hand, it is
almost never true in practice. Real-world graph streams are
truly multigraphs, in that same edges can repeatedly occur in
the data stream. The simple graph representation is obtained
by removing duplicate edges. For example, the classic Enron
email dataset is really a multigraph with 1.14M edges, while
the underlying simple graph has only 297K edges. Similarly, a
DBLP co-authorship graph recently collected is a multigraph
with 3.63M edges, but the underlying simple graph has only
2.54M edges. Close to 10 million edges in a popular dynamic
Flickr network dataset (see [18], [19]) are repeated.

The assumption of simplicity is actually implemented in
practice with an extra pass to remove duplicate edges. This
pass requires storage of the entire simple graph, which is
completely ignored in all previous work. Our aim is to count
the triangles in the underlying simple graph in a single pass
over the multigraph stream. There is no existing result that can
do this. We posit that for streaming algorithms to be actually
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(a) Transitivity (b) Triangles

Fig. 1: Transitivity and triangles estimates for varying window lengths for DBLP coauthorship graph: Our algorithm stores less
than 3% of the multigraph stream yet produces fine-grained triangle results.

useful in practice, the aspect of multiple edges must be dealt
with.

Aggregation over time: Given a stream of edges, what
is the actual graph? The most common answer is to simply
aggregate all edges ever seen. Again, this is a useful assump-
tion for algorithmic progress, but ignores the temporal aspect
of the edges. Time is a complex issue and there are no clear
solutions. One may consider sliding windows in time or have
some decay of edges. For the sake of this paper, let us focus
on sliding time windows (like edges seen in the past month, or
past year). Even for sliding windows, it is not clear what the
width should be. Observations can often by an artifact of the
window size [20]. Therefore, it is essential to observe multiple
time windows at the same time, instead of committing to single
one.

A. Triangle counting

Our focus is on the classic problem of triangle counting
in graph streams, which has received much attention in recent
years [12], [13], [14], [15], [16]. We stress that none of these
results deal with multigraphs or time aggregation.

Formally, we are processing a multigraph stream
e1, e2, . . . , em. At every time t, consider the underlying simple
graph Gt formed edges et−∆t, . . . , et. (So take all these edges,
and remove duplicates.) We wish to output the triangle count
(alternately, the transitivity) of Gt for all times t. The window
length ∆t may be defined in different ways. It could either be
in terms of number of edges (say, the past 10K edges), or in
terms of the semantics of timestamps (say, edges seen in the
past month). Most importantly, we want a single-pass small
space algorithm to handle multiple windows lengths and do
not want different passes for each window length.

Challenges: Multigraphs are a major headache for stream-
ing algorithms, especially for triangle counting. Edges appears
with varying frequencies, and (in our setting) we do not wish
to be biased by this. Furthermore, triangles can be formed
in different ways. Consider edges a, b and c that form a
triangle. These edges may appear in the multigraph stream in

many different ways. For example, these edges could come as
a, a, . . . , b, b, . . . , c, c, . . ., or a, b, c, a, b, c, a, b, c, . . .. (Observe
how this is not an issue for simple graphs.) These patterns
create biases for existing triangle counting algorithm, which
we explain in more detail later. For now, it suffices to say
that existing algorithms [12], [13], [14], [15], [16] will give
different estimates for triangle counts of different multigraphs
streams that contain the same simple graph. Previous work
on multigraph mining explicitly states triangle counting of
streaming multigraphs as an open problem [21].

Maintaining unbiased estimates for numerous time win-
dows is tricky. State-of-the-art triangle counting algorithms
keep degrees of vertices to appropriately set sampling prob-
abilities [15], [16] or use fairly involved wedge replacement
methods [13]. It is not clear whether such information can
be maintained for multiple time windows without significantly
increasing storage. Compounded with multiple edges, where
the same edge can have different frequencies for different time
windows, previous algorithms are only able to report results
for the entire history of edges.

B. Our Contributions

We design a small space streaming algorithm that estimates
transitivity and triangle counts for multiple time windows on
multigraphs. This is the first streaming algorithm for triangle
counting to handle either of these aspects. We consider this
work as a first step towards small space streaming analytics
for real-world graph streams.

• Multiple time window estimates in real-world graph
stream: An example output of our algorithm is given in Fig. 1.
We consider a DBLP coauthorship graph stream, where each
edge represents two individuals writing a paper together. The
graph stream has over 3 million multiedges, and 2 million
simple edges. Our algorithm makes a single pass and stores
less than 100K edges (< 3% of total stream). It gives estimates
for the transitivity and triangles count at every year for
window sizes of 5, 10, 15, 20 years, and all of time. In other
words, at year (say) 2013, it gives triangle estimates for the
simple graphs obtained by aggregating edges in the following



intervals: [2008, 2013], [2003, 2013], [1998, 2013], [1993,
2013], and [1900, 2013].

We immediately detect specific trends for different windows,
like increasing window size decreases transitivity (even though
triangle count naturally goes up). Also note the overall de-
crease of transitivity over time. We also perform such analyses
on an email network and a social network, and observe
differences between these graphs.

• Theoretical and empirical proofs of convergence: We
give mathematical proofs of convergence for our algorithm.
Our randomized algorithm is inspired by previous work on
wedge sampling [22], [23] and borrows techniques from [13].
It is relatively simple and clean, and is provably correct on
expectation. Leveraging previous work, we can show variance
bounds, but the algorithm has much better performance in
practice than such bounds would indicate. We perform detailed
experiments on numerous datasets to prove that our algorithm
gives accurate estimates with little storage (less than 5% of
the stream in all instances).

• Debiasing multiedges: Even to give an estimate for the
entire stream of edges (so no limited time windows), previous
results did not work for multigraphs. We demonstrate this by
showing that the algorithm [13] fails quite spectacularly on the
DBLP stream. We require a subtle debiasing mechanism, and
empirically (and theoretically) show it is necessary for accurate
estimates.

• Low storage required on real-world graphs: Our
algorithm stores less than 5% of the stream in all instances,
and gives accurate estimates for transitivity and triangles esti-
mates. For example, we converted a 223M edge orkut graph
obtained from SNAP [24] to a half a billion edge multigraph
to test our results. On this synthetic dataset, our algorithm
produced triangles estimates accurate within 1% relative error
and transitivity estimates matching the exact value up to three
decimal places. The storage required was just 1.2M edges
(< 0.5% of the stream). Our algorithm’s worst performance
(on a livejournal social network) only led to 0.04 additive error
in transitivity, and 8.7% relative error in triangle count.

C. Related Work

The most closely related work from the perspective of
computing on multigraph streams are [25] and [21]. As men-
tioned earlier, [21] explicitly mentions the question of counting
subgraphs in multigraph as directions for future work.

There is significant history on triangle counting in various
settings. There are algorithmic methods to deal with such
massive graphs, such as random sampling [22], [26], [23],
MapReduce paradigm [27], [28], distributed-memory paral-
lelism [29], [30], adopting external memory [31], [32], and
multithreaded parallelism [33]. There is much work on triangle
counting in graph streams [34], [12], [35], [36], [16], [15],
[13]. All of these methods start with preprocessing the data
to remove duplicate edges, an expensive operation. We also
refer the reader to a recent tutorial on network sampling for
an overview of random sampling techniques [37].

A reader may wonder why we ignore duplicates, and not
consider them for a more involved triangle analysis. We agree
that this is an interesting problem, and duplicates have their

own significance. On the other hand, it is standard to focus on
simple graphs for network analysis, and there is no consensus
on how to define triangle counts, clustering coefficients, etc.
on true multigraphs. We feel that this is an exciting avenue for
future work.

D. Preliminaries

The edge stream is denoted by e1, e2, . . . , em. We focus on
undirected graphs, so each edge is an unordered pair of vertex
ids. The simple graph formed by edges et′ , . . . , et is denoted
by G[t′, t]. A wedge is a path of length 2. The set of wedges
in a simple graph G is denoted W (G), and the set of triangles
by T (G). A wedge in W (G) is closed if it participates in a
triangle and open otherwise. The transitivity is the fraction of
closed wedges, τ(G) = 3|T (G)|/|W (G)|.

Our aim is to maintain the transitivity and triangle count
(for all t) of the graph G[t −∆t, t], where ∆t is the desired
window of aggregation. The window is usually specified as a
fixed number of edges or a fixed interval of time (like month,
year, etc.), though the algorithm works for windows lengths
that change with time. For convenience, we denote Gt = G[t−
∆t, t], Et = E(Gt), Wt = W (Gt), Tt = T (Gt), and τt =
τ(Gt).

II. THE ALGORITHM

Our main algorithm is estimate, which takes as input
sampling rates α, β ∈ (0, 1) and a time window ∆t. The
window is usually specified as a fixed number of edges, a
fixed interval of time (like month, year, etc.), though the
algorithm works for windows lengths that change with time.
We describe the important variables and data structures used
by estimate.

• Lists e-list, w-list: These are random lists of edges and
wedges, respectively. This is the bulk of the storage. The sizes
of these lists are controlled by α and β.

• Flags Xw: For each wedge w ∈ w-list, we have a boolean
flag Xw supposed to denote (but not quite) whether it is open
or closed.

We will use a hash function, denoted hash. It is convenient
to think of hash as a uniform random function into the range
(0, 1). Abusing notation, we will use hash to map various
different objects1 such as edges, wedges, etc.

A. High level description and challenges

Maintaining lists by hash-based sampling: The first step
on encountering edge et is to update the lists e-list and w-
list. This is done in the procedure update. The idea is
based on standard hash-based sampling. We add et to e-list
if hash(et) ≤ α and et is not already in e-list. Then, we look
at all the wedges that et creates with existing edges in e-list.
We apply another round of hash-based sampling to put these
wedges in w-list.

The critical aspect to note is that if an edge e enters e-list,
then it never leaves. Furthermore, e will enter e-list the first
time it appears in the stream. So, the probability of an edge
entering e-list is independent of its frequency in the stream.

1This can easily be implemented by appropriately concatenating vertex ids.



Algorithm 1: estimate(α, β,∆t)
1 foreach edge et in the stream do
2 Call update(et).
3 foreach wedge w in e-list do
4 Let w = {(u, v), (u,w)}.
5 if et is the closing edge (v, w) then
6 Set Xw to 1.
7 else if et ∈ {(u, v), (u,w)} then
8 Reset Xw to 0. // bias-correction
9 Let W ⊆ w-list be the set of wedges that formed in

time [t−∆t, t].
10 Output T̂t = (α2β)−1

∑
w∈W Xw.

11 Output Ŵt = |W| and τt = 3T̂t/Ŵt (if Ŵt = 0, set
τt = 0).

Algorithm 2: update(et)
1 if hash(et) ≤ α and et /∈ e-list then
2 Insert et in e-list.
3 foreach wedge w = (e, et) where e ∈ e-list do
4 if hash(w) ≤ β and w /∈ w-list then
5 Insert w in w-list.

This is vital to get unbiased samples of edges in the underlying
simple graph Gt. Similar statements hold for wedges.

Checking for closures and debiasing: This is the step
where we actually look for triangles. We encounter edge et
and have updated e-list and w-list. For each wedge w ∈ w-list,
we have a boolean variable Xw. If et closes w (so w and et
form a triangle), we set Xw = 1. This is the standard wedge-
sampling approach [22], [23], [13]. But this approach creates
biases in multigraphs. We elaborate below.

Suppose there are three edges e, f, g that form a triangle
and the stream had e, e, e, . . . , f, f, f, . . . , g, g, g . . .. So each
edge occurred in a disjoint stretch of time. The probability that
estimate finds triangle {e, f, g} is exactly the probability
that wedge {e, f} enters w-list. This is α2β (Lem. 2.1). Thus,
there is a specific wedge in {e, f, g} which must be present in
w-list.

Consider edges e′, f ′, g′ that form a triangle and the
stream e′, f ′, g′, e′, f ′, g′, . . .. So the stream cycles through
these edges. The probability that estimate finds triangle
{e′, f ′, g′} is larger. If any of the wedges {e′, f ′}, {f ′, g′}, or
{e′, g′} enters w-list, the triangle is detected. This is because
for all the wedges, the closing edge occurs in the future. The
probability that this triangle is detected is roughly 3α2β.

This is a major problem for triangle counting, since trian-
gles do not have the same probability of detection. One may
solve this probem by storing the entire histories of an edge, and
trying to figure out this bias. Surprisingly, we have a solution
that requires no storage of history. This is the critical debiasing
step, which is deceptively simple.

We have wedge w ∈ w-list and encounter et. If et is already
part of w, we simply reset Xw to 0. So even though w may
be closed, we just assume it is open. This completely resolves
the biasing, and we give a formal proof in Thm. 2.4.

Outputting the estimate: Finally, we need to output
estimates (denoted by hatted variables) for |Tt|, |Wt|, τt. This

is the only step where the time window ∆t is used. We look
at all wedges in w-list that formed in the time [t−∆t, t]. The
total number of these wedges can be scaled to estimate |Wt|.
The number of these wedges w where Xw = 1 is scaled to
estimate |Tt|, and the appropriate ratio estimates τt.

B. Theoretical analysis

We prove that the estimate is correct on expectation,
and prove some (weak) concentration results bounding the
variance. We also show some basic bounds on the storage of
estimate. A key (and simple) fact is the uniform sampling
of edges and wedges. Throughout this section, we focus at
some time t and the simple graph Gt. We stress that there is
no distributional assumption on the graph or the stream. All the
probabilities are over the internal randomness of the algorithm
(which is encapsulated in the random behavior of hash).

Lemma 2.1: Consider time t. For any edge e ∈ Gt, the
probability that e ∈ e-list is α. For any wedge w ∈ Wt, the
probability that w ∈ w-list is α2β.

Proof: Consider edge e. Its first occurrence is at some
time s ≤ t. At time s, e enters e-list iff hash(e) ≤ α. From
the randomness of hash, this happens with probability α. For
wedge w to be in w-list, both its constituent edges must be
present in e-list. This happens with probability α2. After this,
it needs to be selected to go into w-list, which happens with
probability β.

A simple application of linearity of expectation proves the
storage bound (which depends on the entire graph, not just
Gt).

Theorem 2.2: The expected storage of estimate at time
t is O(αE(G[1, t]) + α2βW (G[1, t])).

Proof: The storage is dominated by the sizes of the lists
e-list and w-list. For each edge e, let Ze be the indicator
for e being in e-list at time t. The expected size of e-list
is E[

∑
e∈E(G[1,t]) Ze]. By the previous claim E[Ze] = α,

and linearity of expectation completes the proof. An identical
arguments holds for w-list.

A similar argument shows Ŵt is correct on expectation.

Theorem 2.3: E[Ŵt] = |Wt|.

Proof: For any wedge w ∈ Wt, let Yw = 1 if w ∈ w-list
and 0 otherwise. Note that Ŵt = (α2β)−1

∑
w∈Wt

Yw. We
have E[Yw] = α2β by Lem. 2.1. By linearity of expectation,

E[Ŵt] = (α2β)−1E[
∑

w∈Wt

Yw]

= (α2β)−1
∑

w∈Wt

E[Yw] = |Wt|

Now we come to a key theorem that shows that T̂t is correct
on expectation. This is where we prove that the debiasing
works.

Theorem 2.4: E[T̂t] = |Tt|.



Proof: We extend the definition of random variable Xw

to every wedge w in Wt. Let Xw be 0 if w is not present in
w-list (at time t). Note that T̂t = (α2β)−1

∑
w∈Wt

Xw.

For every edge e in Et, let tmax(e) be the maximum time
s (up to t) such that es = e. Fix a triangle A = {a, b, c} ∈ Tt
formed by edges a, b and c and assume (by relabeling if re-
quired) that c is the last edge to appear in the stream among a,
b, and c. In other words, tmax(c) > max{tmax(a), tmax(b)}.
Since {a, b}, {b, c}, {c, a} are wedges, it makes sense to talk
about X{a,b}, etc. The following is the debiasing argument,
showing that exactly only one wedge in A has Xw = 1.

Lemma 2.5: X{b,c} = X{c,a} = 0. Moreover, X{a,b} = 1
iff {a, b} is in w-list.

Proof: Consider the moment s = tmax(c) when es = c.
If wedge {b, c} is not in w-list, then by definition, X{b,c} is 0.
On the other hand, if the wedge is in e-list, then by Step 8 of
Algorithm 1, the value of X{b,c} is reset to 0. No subsequent
change is made to this value. An identical argument shows the
same for X{c,a}. Finally, X{a,b} is set to 1 at this moment iff
if wedge {a, b} is in e-list, and once again, this value is not
changed subsequently.

From the above lemma, it follows that E[X{b,c}] =
E[X{c,a}] = 0, while E[X{a,b}] is the probability that this
wedge is in w-list. This is exactly α2β. Therefore, the sum
of expectations of Xw over all three wedges w of the triangle
A = {a, b, c} is

∑
w∈A E[Xw] = α2β. Observe this is true

for any fixed triangle in Tt. For any wedge w that does not
participate in a triangle, Xw is obviously zero. By linearity of
expectation,

E[T̂t] = (α2β)−1E[
∑

w∈Wt

Xw]

= (α2β)−1
∑
A∈Tt

∑
w∈A

E[Xw]

= (α2β)−1 · α2β|Tt| = |Tt|

Not only are T̂t and Ŵt correct on expectation, we can also
prove (weak) concentration results. This is done by bounding
their variance. We need some assumptions: α, β should be
large enough to ensure that enough wedges of Wt are actually
in w-list, and there are at least as many wedges in Gt as edges.
Once we prove these concentration bounds, similar bounds can
be shown for τ̂t. Note that this is much trickier, since τ̂t is
the ratio of two random variables. All the proofs are quite
technical, and closely follow analogous arguments in previous
streaming triangles work [13]. We move all these proofs into
a separate subsection, which can be ignored during a first
reading.

The exact statement requires an additional parameter γ that
controls the quality of the estimate.

Theorem 2.6: Fix some sufficiently small γ > 0. Suppose
that (α2β)|Wt| (the expected number of wedges in Wt that
are in w-list) is at least 1/γ6. Furthermore |Wt| ≥ |Et| (there
are at least as many wedges in Gt as edges).

Then,

Pr[|Ŵt − |Wt|| > γ|Wt|] < γ

Pr[|T̂t − |Tt|| > γ|Wt|] < γ

Using these, we can prove bounds on τ̂t.

Theorem 2.7: Assume the conditions of Thm. 2.6. |E[τ̂t]−
τt| ≤ 10γ and Pr[|τ̂t − τt| > 8γ] < 4γ.

C. Proofs of concentration

The most important step is to prove a variance bound
for Ŵt and T̂t. After this, the proofs follow from a routine
application of Chebyschev’s inequality.

Lemma 2.8: max(V ar[Ŵt], V ar[T̂t]) ≤ (α2β)−1|W (Gt)|
+2α−1|W (Gt)|3/2.

Proof: We deal with Ŵt first.

V ar[Ŵt] = E[(Ŵt)
2]− (E[Ŵt])

2

= (α2β)−2E[
∑

w∈Wt

∑
x∈Wt

YwYx]− |Wt|2

The double summation can be split based on three cases: (i)
w = x, (ii) w and x are disjoint (they do not share an edge),
and (iii) w and x have a common edge. For convenience, we
will use

∑
w as shorthard for

∑
w∈Wt

. We use the definition
of indicator Yw from Thm. 2.3.

E[
∑
w

∑
x

YwYx]

=
∑
w

E[Y 2
w ] +

∑
w∩x=∅

E[YwYx] +
∑

w∩x 6=∅

E[YwYx]

The first and second are relatively easy to deal with. Since
Yw is an indicator, Y 2

w = Yw and
∑

w E[Yw] = (α2β)|Wt|.
When w ∩ x = ∅, note that Yw and Yx are independent. This
is because we assume that hash is a random function. Hence,∑
w∩x=∅

E[YwYx] =
∑

w∩x=∅

E[Yw]E[Yx] ≤
∑
w,x

E[Yw]E[Yx]

= (
∑
w

E[Yw])2 = (α2β)2|Wt|2

Now for the interesting part. Suppose w ∩ x 6= ∅, so w =
{e1, e2} and x = {e1, e3}. The product YwYx is 1 iff e1, e2, e3

are all in e-list and both w and x get selected in w-list. The
probability of this is α3β2. How many pairs of wedges w∩x 6=
∅ are there? This is exactly

∑
i

(
di

3

)
, where di is the degree

of vertex i in Gt. In the following, we use the fact that the
`3-norm is smaller than the `2-norm. (We also use the bound∑

i d
2 ≤ 2|Wt|, which follows because |Wt| ≥ |Et| =

∑
i di.)∑

w∩x 6=∅

E[YwYx] = (α3β2)
∑
i

(
di
3

)
≤ (α3β2)

∑
i

d3
i

≤ (α3β2)(
∑
i

d2
i )3/2

≤ 2(α3β2)|Wt|3/2



Putting it all together,

V ar[Ŵt] ≤ (α2β)−2[(α2β)|Wt|+ (α2β)2|Wt|2

+2(α3β2)|Wt|3/2]− |Wt|2

= (α2β)−1|Wt|+ 2α−1|Wt|3/2

Note that T̂t = sumwXw. We apply an argument identical to
that above for V ar[T̂t].

Thm. 2.6 follows fairly directly from the variance bound.

Proof: (of Thm. 2.6) To prove a concentration bound, we
will use Chebyschev’s inequality. Let V ar[Ŵt] be the variance
of Ŵt. Then Pr[|Ŵt − E[Ŵt]| > h] ≤ V ar[X]/h2. Using
Lem. 2.8,

Pr[|Ŵt − |Wt|| > γ|Wt|]
≤ [(α2β)−1|Wt|+ 2α−1|Wt|3/2]/(γ2|Wt|2)

= 1/(α2β|Wt| · γ2) + 1/(α|Wt|1/2 · γ2)

Since α2β|Wt| ≥ 1/γ6, α|Wt|1/2 ≥ 1/γ3. Plugging this
bound in, the final probability is at most γ.

An identical argument holds for T̂t.

We apply a Bayes’ rule argument to prove bounds of τ̂t.

Proof: (of Thm. 2.7) We have τ̂t = 3T̂t/Ŵt if Ŵt 6= 0 and
0 otherwise. Let E denote the event that |Ŵt− |Wt|| ≤ γ|Wt|
and |T̂t − |Tt|| ≤ γ|Wt|.

Conditioned on E ,

3T̂t/Ŵt ≤ (3|Tt|+ 3γ|Wt|)/(1− γ)|Wt| ≤ (1 + 2γ)τt + 6γ

Similarly, conditioned on E 3T̂t/Ŵt ≥ (1 − 2γ)τt − 6γ. By
Thm. 2.6, Pr[E ] ≥ 1 − 2γ. This proves that Pr[τ̂t] − τt| >
8γ] ≤ Pr[E ] ≤ 2γ. To bound the expectation, we simply use
Bayes’ rule.

E[τ̂t] = E[τ̂t|E ] Pr[E ] + E[τ̂t|E ] Pr[E ]

Since τ̂t ∈ (0, 1), the latter term is in the range (0, 2γ). This
completes the proof.

D. Implementation aspects

Our implementation is basically identical to the pseudocode
presented in estimate and update. We describe a few
changes for handling the choice of parameters.

As described, estimate takes as input a single time
window length ∆t. But observe that the primary data structures
e-list, w-list, and Xws are independent of this window. As
a result, estimate can handle multiple time windows with
the same data structure. This is critical for getting a small
space algorithm that provides multi-resolution views of the
edge stream.

We note that if the time window [t−∆t, t] is too small, it
is unlikely that e-list will have any edges from this window.
For any reasonable estimate, e-list must have sufficiently many
edges (as the assumption in Thm. 2.6 states). On the other
hand, small time windows can be stored explicitly to get exact
answers. The volume of data is not a concern. For this reason,
our algorithm and experiments focus on time windows of
sufficiently large size.

The parameters α, β are described as fixed parameters.
These can be tuned automatically, if we provide a fixed space
bound for e-list and w-list. We initialize α = β = 1. As soon
as e-list reaches the space bound, we halve α. We delete from
e-list any edges whose hash value is above (the new) α, and
remove all wedges from w-list that include these edges. When
w-list reaches its space bound, we halve β, and perform a
similar cleaning. This is completely equivalent to the original
algorithm.

We do not need to maintain any time histories for the edges
in e-list, but we maintain the latest timestamp for each edge.
This is necessary to check if some w ∈ w-list actually formed
in the time window [t−∆t, t].

III. EMPIRICAL RESULTS.

We implemented our algorithm in C++, and ran it on a
MacBook Air laptop with 1.7 GHz Intel Core i7 processor
and 8 GB 1600 MHz DDR3 RAM. We apply estimate
on a variety of real-world datasets, both for the sake of data
analysis and validation. Refer to Tab. I for details about these
datasets.

• DBLP: This is our primary workhorse. It is a co-
authorship network generated from the metadata entry of pa-
pers on ‘The DBLP Computer Science Bibliography’ website.
Since our approach allows working directly with the raw
data in time order, we downloaded the raw XML data from
DBLP [38]. We extracted 786,719 papers from the XML file
where we ignored papers (i) authored by a single author,
(ii) papers with more than 100 authors, and (iii) papers with
missing “year” metadata. For each paper we put an edge
corresponding to every distinct pair of co-authors resulting in
a total of 3,630,374 (multi)edges.

• Enron: This is the classic email network derived from
emails sent between employees of Enron between 1999 and
2003. (We obtained the data from [18].) The nodes in the net-
work correspond to the employees at Enron while edges rep-
resent their email correspondence. Naturally, multiple emails
between the same pair of individuals results in the network
being a multigraph.

• Flickr: This dataset consists of friendship connections
of users of Flickr (a popular photo sharing website) which we
obtained from [18]. Originally, the data was collected in the
work of [19].

• Validation list: For a thorough empirical study, we have
extended our data set to include networks obtained from the
SNAP database [24]. We synthetically replicate edges of these
datasets to get a multigraph for validation purposes.

The number of edges stored by the algorithm is measured by
the total size of e-list and w-list. These are determined up to
expectation by α and β, as given in Thm. 2.2. In general, we
increase the total space by fixing β and increasing α (which
increases the sizes of both lists). We will work with numerous
time windows, either defined in terms of real-world time, or
in terms of number of edges. We do not deal with very small
windows, since estimate does not get enough samples in
such a window. In any case, such windows can be handled by
a brute force algorithm that stores the entire window.
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Fig. 2: Comparing our algorithm with JSP13 and no debiasing for DBLP

The multigraph issue: Even ignoring time windows,
we show that previous work fails on multigraphs. We run
estimate and the algorithm of [13] (arguably a state-of-
the-art streaming triangles algorithm, referred to as JSP13) on
the DBLP graph. We gradually increase the storage up to 100K
for both algorithms, and plot both the transitivity and triangles
estimate. For comparison’s sake, the triangles are given log-
scale. Observe how JSP13 is converging to an incorrect value
of transitivity in Fig. 2. Furthermore, the triangle estimates is
off by 4 orders of magnitude. Increasing the space does not
help.

We also show that the mysterious debiasing step is essential
for correctness. In Fig. 2, we show the output of estimate
without the debiasing (we remove Step 8 from estimate).
Again, the transitivity converges to an incorrect value. The
triangles estimate is also incorrect and increasing the space
does not help.

Convergence of estimate: Our estimates converge rapidly,
as we demonstrate in the next series of results. We explain
how a single plot is generated (Fig. 3). For DBLP, we picked
specific time windows, namely, [2003,2008], [1988, 2008],
and [1900, 2013] (the entire stream). This is mostly for
demonstrating the convergence of differing window sizes. We
fix β to 0.1 and gradually vary α in small steps to increase
the space. We take the transitivity and triangles estimate for
each run. We plot these results with the x-axis of increasing
space (equivalently, increasing α) and the y-axis having the
estimate.

Across the board, we see rapid convergence of the output
at storage increases. For DBLP, storage of 200K is enough
to guarantee extremely accurate results (relative errors within
5%), for all the time windows. This is even true for the 5 year
window, which is quite small compared to the entire stream of
data. (estimate will not work window sizes of a year, since
there simply are not enough samples from such a window.
But the number of edges in a year is small enough to store
explicitly.)

Runs of numerous graphs: For more validation of
estimate, we run it on a large set of real-world graphs.
Most of these graphs are neither temporal nor multigraphs.
We construct a multigraph stream from each graph as follows:
every edge e of the graph is independently replicated with

probability 1/3 (specifically r times where r is uniform in
{2, 4, 8, 16, 32}). The stream is obtained by randomly permut-
ing these multiedges. For each graph, we only use estimate
to record to transitivity and triangle count of the entire stream
(the graph G[1,m]). The results are presented in Tab. I. For
these runs, we set α = 0.01 and capped the size of wedge
reservoir to 50K (by choosing β appropriately). We observe
that transitivity estimates are very sharp (matching the true
values up to the third decimal point in many cases). The
relative error in triangles estimates is less than 3% for most
cases and never exceeds 8.6%. The overall space used by
the algorithm is at most 4% of the number of edges of the
underlying simple graph. We point out that for orkut which
has nearly half a billion edges (after injecting duplicate edges
described above), the transitivity estimate closely matches with
the true value and the relative error in triangles is less than 1%.
The total storage used is less than 0.5% of the edge stream.

Triangle trends in DBLP: In our opinion, the following
results are the real achievement of estimate. We wish
to understand transitivity and triangle trends for DBLP in
various time windows. We focus on 5-year, 10-year, 15-year,
20-year, and entire history windows. So think of a (say) 5-
year sliding time window in DBLP, and the aim is to report
the transitivity in each such window. Refer to Fig. 1. (“All”
refers to the window that contains the entire history.) The
algorithm estimate makes a single pass over DBLP without
preprocessing, and provides results for all these windows at
every year.

The transitivity reveals intriguing trends. Firstly, smaller
windows have higher transitivity. It shows that network clus-
tering tends to happen in shorter time intervals. This is
probably because of the affiliation structure of coauthorship
networks. The increase of triangle counts over time (for the
same window size) may not be too surprising, given that the
volume of research increasing. But juxtapose this with the
decreasing of transitivity over time. This means that (say) the
transitivity in [2003,2008] is higher than [2008,2013], even
though there are more papers (and more triangles) in the latter
interval. Why is this the case? Is it because of increasing of
interdisciplinary work, which might create more open wedges?
Or is it simply some issue with the recording of DBLP data?
Will the decreasing transitivity converge in the future, or do we
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Fig. 3: DBLP convergence: We show that both transitivity and triangles estimates converge to true values as we increase the space
available to the algorithm. The top three plots show transitivity convergence while the bottom three show triangles convergence.
The plots are arranged in the order of increasing window length: 5 years, 20 years, and the entire past.

expect it to simply go to zero? Can we give a reasonable model
of this behavior? We believe that the output of estimate
will lead to many data science questions, and this is the real
significance of the algorithm.

Triangle trends in Enron: In Fig. 4, we present triangles
and transitivity estimates for Enron for various windows. For
this dataset, we think of a window as being defined by a certain
number of past edges. In particular, apart from considering the
entire past, we look at windows formed by past 200K, 400K,
and 800K edges. Observe that in the beginning of the stream
all these windows coincide, since the windows are equivalent.
Focusing on the triangles estimate, it is clear that the estimate
corresponding to the larger window size will dominates that of
a smaller window size. What is interesting for Enron dataset
is that the same ordering is observed even for transitivity
estimates. That is, in general, a transitivity estimate curve
corresponding to the larger sized window dominates the one
corresponding to the smaller size. We observe a completely
opposite behavior with DBLP transitivity curves, see Fig. 1.

Another interesting observation is that in case of Enron,
the curves for triangles estimates for smaller window lengths
flattens out whereas that in dblp the curves for triangle
estimates continue to rise even for smaller time windows.
This indicates that the growth of total number of triangles
is superlinear in dblp (with respect to the number of years)
whereas it is nearly linear (with respect to the number of edges

seen so far) in case of Enron. Indeed the final estimate for
the number of triangles in Enron is almost the same as the
number of edges in the stream.

Triangle trends in Flickr: This is much larger dataset
with 33M multiedges. We focus on time windows formed by
the past 4M, 8M, 16M, and all history. These results are given
in Fig. 5. We are able to get these results with merely 640K
edge storage, less than 2% of the edge stream.

IV. CONCLUSIONS

We have described a streaming algorithm to compute the
number of triangles and the transitivity of a multigraph. Our
algorithm can seamlessly compute estimates for stream win-
dows of various sizes in real-time. It would be very interesting
to carefully study the behavior of estimate on more real-
world edge streams, to understand the evolution of triangles
over time. It appears that estimate reveals phenomena at
different timescales, which might be an aid to finding the
“right” window for aggregation. Designing good models for
temporal graphs is a big open problem, and our findings on
DBLP and Enron might provide some useful information
towards that objective.
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TABLE I: A run of our algorithm on a variety of real-world and synthetic graphs. We ran the algorithm with α = 0.01 and
choosing β so that size of w-list is at most 50K. Here the third column gives the number of edges in the multigraph while the
fourth column (Space) gives the space (in terms of number of edges) used by the algorithm. The first three datasets are raw
real-world datasets whereas the remaining datasets were synthetically made multigraphs starting with graphs from [24].

Dataset n m multi m Space Transitivity exact Transitivity estimate Triangles exact Relative error in triangles estimate
DBLP 755K 254K 3.63M 31K 0.269 0.282 5.50M 3.09%
Enron 86K 297K 1.15M 8K 0.069 0.071 1.18M 3.38%
Flickr 2302K 22M 33.1M 251K 0.110 0.108 837M 1.24%
as-skitter 1.6M 11M 53M 160K 0.005 0.005 28M 6.50%
cit-Patents 3.7M 16M 79M 199K 0.067 0.066 7.51M 0.33%
web-Google 0.8M 4M 20M 79K 0.055 0.057 13.3M 3.79%
web-NotreDame 0.3M 1M 5M 42K 0.088 0.088 8.91M 3.93%
youtube 1.1M 2M 14M 64K 0.006 0.006 3.05M 1.86%
livejournal 5.2M 48M 205M 473K 0.124 0.118 310M 8.65%
orkut 3.0M 223M 562M 1.2M 0.041 0.041 627M 0.09%
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Fig. 4: Given the temporal Enron stream, we use number of edges to define time windows. We run our algorithm with α = 0.04
and β = 0.4.
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