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dof degree of freedom
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x physical displacement dof
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 modal damping ratio

K stiffness matrix
Lfix reduction matrix applying fixed boundary constraint to experimental equations of motion
M mass matrix
T transformation matrix to convert free modal model to modified CB model
              mode shape matrix extracted for experimental substructure with TS attached

              free mode shape matrix of the TS
 eigenvectors resulting from fixed boundary constraint of experimental equations of motion
b subscript for the fixture or boundary
fix subscript for the fixed boundary modes of the experimental substructure with TS as the boundary
free subscript for the free modes obtained in the modal test of the experimental substructure with TS
+ superscript indicating the Moore-Penrose pseudo-inverse of a matrix
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1) Abstract

Experimental dynamic substructures in both modal and frequency response domains using the transmission simulator method 
have been developed for several systems since 2007.  The standard methodology couples the stiffness, mass and damping 
matrices of the experimental substructure to a finite element (FE) model of the remainder of the system through multi-point 
constraints.  This can be somewhat awkward in the FE code.  It is desirable to have an experimental substructure in the Craig-
Bampton (CB) form to ease the implementation process, since many codes such as Nastran, ABAQUS, ANSYS and Sierra 
Structural Dynamics have CB as a substructure option.   Many analysts are familiar with the CB form.  A square 
transformation matrix is derived that produces a modified CB form that still requires multi-point constraints to couple to the 
rest of the FE model.  Finally the multi-point constraints are imported to the modified CB matrices to produce substructure 
matrices that fit in the standard CB form. The physical boundary degrees-of-freedom (dof) of the experimental substructure 
matrices can be directly attached to physical dof in the remainder of the FE model.  This paper derives the new experimental 
substructure that fits in the CB form, and presents results from an analytical and an industrial example utilizing the new CB 
form.

Keywords – Experimental Dynamic Substructures, Substructuring, Craig Bampton

2) Introduction and Motivation

Experimental dynamic substructuring has experienced a resurgence in the last ten years.  Multiple groups have been 
motivated to couple experimental substructures with FE substructures to obtain full system response.  In general, one cannot 
couple the physical connection dof of the experimental substructure to the physical dof of the FE model because small errors 
in the experimental model will cause the coupling to be so ill conditioned that the effort will fail.  There are additional 
challenges including:  

1.  Rotational connection dof are difficult to measure but can be important; 
2.  Translation connection dof may not be measurable either (often the connection dof are in a joint interface where 
transducers cannot be installed);  
3.  The connection dof may not actually be discrete, i.e. the connection may be a large surface contact;  
4.  The basis vectors from a standard free modal test may not span the space of the true connected motion well;  
5.  The joint stiffness and damping are often uncharacterized and usually ignored.  

A method using an instrumented fixture known as a transmission simulator (TS), originally dubbed the method of constraint 
for fixture and subsystem (MCFS)[1], mitigates these problems.  By attaching the fixture to the desired substructure in the 
same way it will be attached to the rest of the system, which will be modeled as a FE substructure, the joint stiffness and 
damping are captured.  The TS can be instrumented at only translational dof that capture the motion of the connected TS in a 
truncated set of the free modes of the TS.  Generally, the TS is a relatively simple structure that can be modeled with FE to 
help plan where to mount the instrumentation. The fixture is designed so that accelerometers may be mounted in convenient 
locations and directions.  Ultimately the generalized dof of the TS are used to couple the experimental substructure to the FE 
model of the rest of the system.  Because the generalized dof inherently contain the rotational dof, these are no longer being 
neglected.  As long as the retained modes of the TS capture the connected motion, the method can even capture continuous, 
not just discrete, connections.  For this reason, the method becomes a tremendous tool for providing a reduced order model.  
Originally, the TS method utilized multi-point constraints (MPC's) to couple the experimental substructure generalized 
coordinates to the FE model of the rest of the system, which removed most of the ill conditioning that is seen when one 
attempts to couple the measured physical dof directly.  This improvement is due to a least squares fitting of the physical 
motion to the generalized dof that does not require that the errors in the experimental measurements have perfect continuity 
with the physical FE dof to which they will ultimately be attached.

However, this approach has been utilized mostly in third party codes such as MATLAB for the coupling, since FE codes 
often do not allow MPC's to couple generalized to generalized or generalized to physical dof.  This makes it awkward to 
implement the experimental model directly in the FE code, which would be the ideal approach for the FE analyst.  However, 
the Craig Bampton substructure is already implemented into several FE codes such as NASTRAN, ABAQUS, ANSYS and 
the Sierra Structural Dynamics code at Sandia National Laboratories.  Researchers have developed a couple of methods to 
utilize the CB form of the TS method in FE codes[2].  Here, another transformation is developed, dubbed the Craig-Mayes 
method, which transforms the free modes from the experimental model with the TS mode shapes into a modified CB form.  
This method preserves the experimentally extracted modal parameters exactly.



This paper will present the theory first, an analytical problem applying the method next, and finally an industrial problem 
applying the method.  Some discussions on maintaining good conditioning for the matrices follows, and then conclusions are 
presented.

3) Theory

Consider an experimental substructure tested with the TS fixture attached. An experimental substructure that can be 
implemented in the Craig-Bampton form is desired. An example, which will be developed fully hereinafter, is the beam 
pictured in Figure 1.  The red beam is the experimental structure for which a substructure in the CB form is desired.  It is 
tested in a free-free modal test with the TS fixture, the magenta beam, attached.  The goal is to transform the test results so 
that there is a substructure of the red beam that fits in the CB form.  To achieve this, the magenta TS must be subtracted.  The 
modal test will produce modal parameters associated with the q dof.  The TS has free modal parameters associated with the s
dof, and the final desired substructure in the CB form will have stiffness, mass and damping matrices associated with the 
physical boundary dof, xb, and the fixed boundary modal dof p.
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Figure 1 - Example Experimental Substructure - Tested Structure - TS = Experimental Substructure

Generally, there is a FE model of the TS.  The FE model is used in test planning to define measurement locations that will 
achieve independent mode shape measurements for all free modes of the TS slightly beyond the frequency band of interest.  
The TS fixture is thus instrumented.  The transmission simulator hardware is attached to the experimental substructure and 
the free TS mode shapes are assumed to span the space of the motion when connected to the experimental substructure.  How 
well it spans the actual connection motion space affects the fidelity of the substructure model.  Ultimately, the TS stiffness, 
mass and damping will be subtracted from the experimental substructure, so that the experimental substructure may then be 
coupled with the FE model of the rest of the system.  The modal parameters from a free modal test of the experimental 
substructure with the TS attached can be used to produce the following equations of motion as

  02 22  qIj freefreefree                                                                       (1)

where the subscript free represents the set of modes obtained from the experimental modal test of the experimental 
substructure attached to the TS in which there are generally no additional constraints added to the structure (The structure is 
typically suspended by bungee cords or some very soft suspension whose mass, stiffness and damping are considered 
negligible).  The mass-normalized mode shapes derived from the test will be contained in the measured mode shape matrix,
 .  For convenience, the rest of this derivation will drop the damping matrices, but they may easily be included.  Now we 
wish to derive a square matrix transformation, T, that will convert eqn. (1) to a modified CB form.  Here we consider the 
generalized coordinates, p as the fixed-boundary modal coordinates and the generalized coordinates, s as the coordinates that 
account for the motion of the TS, which is considered the boundary of the experimental substructure as
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The first constraint ties the TS to the tested structure.  Use the modal approximations to set the motion of the experiment on 
the boundary (TS dof) to match the free modal motion of the TS as

sq bb                                                                                          (3)

where the subscript b dof will actually be a subset of the boundary dof where the measurements are made,   is the 

experimental mode shape and  is the chosen truncated set of free modes of the TS.   usually comes from a TS FE 
model, but could also be measured.  Then the relation between q and s is

Experimental Beam + TS fixture

- =

TS Experimental Beam in CB form



sq bb 
                                                                                         (4)

where the + sign represents the Moore-Penrose pseudo inverse.  This provides the s portion of the transformation, T.  

To obtain the fixed boundary modal dof, p, fix the boundary dof with

     0 qx bb           .                                                                             (5)

Previous work[3] has shown that a practical way to accomplish eqn. (5) is to fix the TS dof with

0 sqbb          .                                                                              (6)

With Rixen's primal assembly[4], the modal dof are replaced with

fixLq                                                                                        (7)

which is substituted back into eqn. (6) to obtain

0 fixbb L             .                                                                       (8)

Since  can be anything, depending on the forcing motion,  fixL is chosen to guarantee satisfaction of the constraint as

)( bbfix nullL             .                                                             (9)

Pre and post-multiply eqn.(1) using the transformation fixL appropriately to give

  022   fixfree
T
fix LIL                     .                                                                (10)

Solve eqn.(10) to get the eigenvectors, , and the eigenvalues to uncouple the dof, p.  Then the relationship between q and
the fixed boundary dof, p, is

pLq fix                                                                                    (11)

which provides the rest of the transformation written from eqn.(4) and (11) as

 bbfixLT  
              .                                                                      (12)

Pre multiplying eqn.(1) by the transpose of T and substituting eqn.(2) into eqn.(1) for q yields the following transformed 
equations of motion for free vibration
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for which the eigenvalue and eigenvector solution have not changed from eqn.(1).  It has exactly as many dof as eqn.(1), but 
now they have been transformed to the fixed base modes associated with p and the TS modes which were on the boundary as 
modal dof s.  The upper left portion of the matrices is diagonal.  Now there are coupling terms between the fixed base modes 

and the TS motion.  The shapes associated with p are  fixL which one can see by pre-multiplying eqn. (11) by  .  To 

obtain the experimental substructure without the TS attached, simply subtract the TS stiffness and mass from the lower right 
partition which corresponds to the boundary motion, as
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This is almost in the form of CB matrices, but the generalized dof, s, must be converted to physical dof, xb, to couple it with 
the FE model of the rest of the system in codes with CB substructure capability.
Since

sx bb                                                                                    (15)

write a transformation
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and, similar to eqn. (10), pre and post-multiply eqn.(14) appropriately by this transformation to produce the modified CB 
form as
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This form is slightly modified from the normal CB in that there are non-zero stiffness coupling terms, Kps, which are zero in 
the normal CB form.  However, this can now be implemented directly in the FE model as a CB type substructure.  The author 
calls this form Craig-Mayes.  Note the damping can be carried along in an analogous way.  One disturbing issue about the 
Craig-Mayes form is that eqn. (17) has become rank deficient, unlike eqn. (14),  so it is not useful to solve eqn. (17) by itself.  

This is because the length of vector bx is greater than the length of vector s .  However, as pointed out by 

Simmermacher[5], when coupled with another FE substructure, the entire system will not be rank deficient because of the 

stiffness and mass added by the FE substructure to the bx dof.  As a final note, the basis shapes chosen in eqn. (3) need not 

necessarily be the free shapes of the TS.  Other basis shapes may prove to give more accurate or robust solutions.  If one uses 
the free shapes, the result in coupling the Craig-Mayes substructure of eqn.(17) with the FE model is exactly what is obtained 
with the standard TS method when eqn. (1) is coupled to a FE substructure through MPC's.

4) Beam Example

In this analytical example, a beam is the experimental structure.  A short beam is attached at one end which is the TS.  This 
system is converted to the Craig-Mayes substructure and coupled to a FE model of a second beam to produce the response of 
two beams attached to one another.  The results are compared to the FE model of the entire system which acts as the truth 
model.  Figure 2 shows the beam substructures.  In this problem the right beam is 15 units long and the TS simulator is a 
short beam 4 units long that overlaps the left most 4 units of the right beam.  The experimental structure is the right beam 
with TS beam attached.  The FE substructure is the left beam that is 20 units long and is ultimately to be coupled with the 
right beam in the substructuring process.  The FE substructure overlaps the right beam by four units. Figure 3 shows the first 
four elastic bending modes of the "truth" assembly.  The circle/asterisk dof in the middle are where the two beam overlap and 
are connected.

Figure 2 - Beam Substructures and Final Assembled Beam

FE Beam
Experimental Beam

TS BeamFinal System Beam



Figure 3 - Bending Mode shapes of Truth Beam

The FE model of seven modes (up 5876 Hz) of the right beam with the short TS attached was used to create the virtual test 
and the resulting experimental structure.  The TS had six measured dof, three vertical translations and three horizontal 
translations at the three nodes located at the TS beam left end, center, and right end.  Four modes of the TS were retained 
(three rigid body modes and one elastic bending mode).  The Craig-Mayes substructure was created using the TS shapes and 
the seven virtual test shapes.  It had three fixed base modes and six connection dof.  This was coupled to the FE model of the 
20 unit long left beam at the six "measured" connection dof.  The frequency comparisons of the truth beam and the 
substructured beam are given in Table 1.
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Table 1 - Comparison of Beam Truth Frequency and Craig-Mayes Substructure Frequency (Elastic Modes Only)

Truth Frequency 
(Hz)

Substructured 
Frequency (Hz)

Error in 
Frequency (%)

    212.0     209.7    -1.1
    574.6     571.5    -0.5
    1,121.0     1,131.4     0.9
    1,867.3     1,877.4     0.5
    2,750.2     2,782.4     1.2
    3,341.7     3,398.4     1.7
    3,949.6     4,034.7     2.2
    5,115.9     5,167.6     1.0
    5,965.5     5,946.9    -0.3

*  Highest frequency experimental substructure mode retained was 5,876 Hz

5) Industrial Example

The industrial hardware consisted of a shell with dozens of internal components.  The shell is chosen as the TS, and a FE 
model of the shell exists.  The shell is relatively easy to model, but the internal parts are not easily modeled with FE.    
Dozens of internal accelerometers measured response of internal components of interest.  Figure 4 shows a schematic 
representation of the test setup.

Figure 4 - Schematic of Free Modal Test of Shell with Internal Components

5.1) Description of Transmission Simulator Model

A FE eigenvalue analysis of a large number of the external translation dof of the empty shell for the first 200 free modes was 
performed.  From this analysis, 38 modes of the TS were chosen to attempt to obtain response out to 2,000 Hz.  Analysis to 
select measurement dof on the outside of the shell was performed.  The algorithm selected measurement dof by attempting to 
keep the condition number of the mode shape matrix to a minimum.  The condition number for the selected 84 measured dof 
and 38 modes was 3.54.  When one more mode was added the condition number jumped to 7.2.  The frequency of the 38th 
mode was 2,285 Hz.  Seven modes had frequencies above the desired 2,000 Hz.  After the dof selection was performed, the 
external shell was instrumented per the dof selection analysis.  Optimal driving points based on the mode shapes of the free 
TS were also chosen.

5.2) Modal Test of Industrial Structure with Transmission Simulator



The structure was supported by bungee cords, and a modal test was performed with an impact hammer.  Twelve reference 
input locations were used in the analysis.  Each reference was analyzed separately because the structure was slightly 
nonlinear, so multi-reference algorithms could not handle the frequency shifts of like modes extracted from one reference to 
another. The SMAC algorithm[6] in automated mode was utilized to extract the modes.  The option to extract real modes 
was utilized. Almost 500 modes were extracted in the twelve data sets.  Many of these were redundant extractions of the 
same mode already in another data set, and some modes were poorly excited.  The modal parameters were culled to 110 
elastic modes with the six rigid body modes (calculated analytically from mass properties) for the experimental model with 
the TS associated with eqn. (1).  

5.3) Craig-Mayes Experimental Substructure Coupled to FE Model - Comparison with Free Modal Model

The TS fixture is the actual part that the internal components are mounted within.  This allows us to have a convenient "truth" 
comparison.  A Craig-Mayes substructure was developed by taking the experimental model and subtracting the 38 mode FE 
TS. The Craig-Mayes substructure was then added to a 200 mode modal substructure of the shell derived from the FE model 
of the shell.  This was coupled together in MATLAB.  This result is utilized to attempt to reproduce the original modal test
FRF data.  In Figure 5 the top level complex mode indicator function (CMIF) is plotted for the experimental data data (blue), 
the extracted modal model (green), and the Craig-Mayes substructure coupled with the 200 mode FE model of the shell
(magenta).  The CMIF plots incorporate all the FRF data together in one plot.  Differences between the experimental and 
modal model CMIFs show errors in the modal fitting.  Differences between the modal model and the substructured CMIF 
show errors due to the truncated modal model used for the TS and errors due to the FE model.  To the extent the TS mode 
shapes do not span the space of the true experimental motion, constraining errors are introduced which can move the resonant 
frequencies and change the amplitudes of certain mode shapes.  If one compares the modal model (green) and substructured 
CMIFs (magenta), one can see that the results below 1000 Hz are nearly identical, but the substructured CMIF results above 
1000 Hz are not quite as good as the original modal extraction for the experiment.  The constraining process pollutes the 
higher frequency modes either because the 38 TS mode shapes did not perfectly reproduce the motion that was actually 
experienced in the modal test on the shell, and the FE model of the shell is not perfect.



Figure 5 - CMIF Experiment (Blue) vs Modal Model (Green) vs Craig-Mayes Substructure Added to 200 modes of FE 
Shell (Magenta)

Figure 6 shows sample experimental FRFs (blue), FRFs synthesized from extracted modal parameters (green), and FRFs 
synthesized from the Craig-Mayes substructure coupled to the 200 mode FE model of the shell (magenta).  The pattern is 
similar to the CMIFs in that the accuracy of the substructured FRFs deteriorates some with higher frequency.  However, if 
one considers only the amplitude for defining specification envelopes, and one is willing to accept a factor of two in the 
uncertainty of the amplitude at certain frequencies, even the high frequency results in the magenta curves of the substructured 
model might be considered "useful".  The responses are all from different forcing input locations.  The first row shows two 
responses on the outside shell.  The second row shows two responses on substantial internal components.  The third row 
shows two responses from small internal components.
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Figure 6 - Sample FRFs from Experiment (Blue), synthesized modal parameters (Green), and from the Craig-Mayes 
Substructure Plus 200 Mode FE Model of Shell (Magenta) - Row 1 external responses on shell, Row 2 substantial 

internal responses, Rows 3 small internal component responses
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6)  Discussion on Conditioning of the Matrices

As mentioned in Section 5.1, the condition of the TS mode shape matrix, , is kept low by using as few modes as possible
to span the desired bandwidth and placing accelerometers at appropriate dof to keep the mode shapes independent.  The 
number of measured dof is large enough so the least squares estimate of s is accurate (typically 1.5 to 2 times the number of 
TS modes retained).  The author has not studied the effect of increasing the condition number significantly above 4.  

It was discovered that the condition number of a matrix from eqn. (4), bb
, was found to be important in maintaining the 

conditioning of the entire substructuring problem.  In the beam problem, when b   had four shapes, a condition number of

10.5 was calculated for bb
  .  However, when b was increased to five shapes, the condition of  bb

was 1.02x1014, 

even though the condition of  b was 2.3.  With the large condition number of bb
, the coupling in the physical dof 

gave negative eigenvalues for the stiffness matrix, and the coupling with the FE beam failed.  In the industrial problem, the 

condition number of  bb
was 130, which may be near the limit of allowing a successful substructuring problem even 

with condition number of b   at 3.5 as it was here.  Adding one more mode to b caused the condition number of b to 

double to 7.2 and the condition number of bb
to go up to 134, but then the coupling with the FE model of the shell

produced a negative eigenvalue when the eigen analysis of the full system was performed in MATLAB.  A negative 
eigenvalue is not desirable in a FE code, and can cause a fatal error.  Negative eigenvalues can be removed from either a 
substructure's mass or stiffness matrix using methods described in previous work[7].  If the negative eigenvalues are not too 
large, they can be removed with only minor degradation of the resulting solution.

7) Conclusions

The standard free modes transmission simulator (TS) substructuring capability has been augmented by providing a 
transformation to convert the free modes substructure to a modified Craig-Bampton form called the Craig-Mayes 
substructure.  This form can fit directly into a FE code with the Craig-Bampton substructure capability to couple the Craig-
Mayes substructure directly with an FE model of the complement of the full system to provide full system response 
calculations.  The experimental substructure includes the damping that occurred in the experimental substructure as well as 
its connection to the next substructure.  The theory was presented along with results from an analytical example and an actual 
industrial substructure with 116 experimental modes.  The effects of the constraining process were noted.  New insight for 
the conditioning of certain important matrices was presented.  
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