Cohesive Model Applied to Fracture Propagation in Indiana Limestone
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Introduction

Goal 1: Test if linear softening cohesive fracture model
(LCFM) can be used to predict fracture propagation in different
geometries for geomaterials.

Goal 2: Understand fracture propagation in Indiana Limestone
through lens of combined numerical modeling and experiment.

Modeling and process understanding of
opening-mode fracture propagation in
geomaterials is critical to viability of CO,
capture and storage, unconventional
hydrocarbon extraction, and waste
repository design. Fractures provide

Reservoir

possible preferential leakage and extraction

pathways.
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Cohesive fracture models
idealize the actual fracture
processes into a plane
between continuum media
(Bazant and Planas, 1907).
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Calibrate w, and E of LCFM in
short-rod geometry.

Each ‘segment’ of fracture

may have different formulations

Confirm model in notched 3- of yield and softening. We use

point bend (N3PB) geometry.
simulate generic Mode | and

Propose hypotheses for hydraulic fractures (Yao, 2012)
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Methods

Experimental Set-up

Short-rod samples prepared from Indiana Limestone in accord with
Ouchterleny (1989,1990), with force and displacement measured in a MTI

SEMTester 1000. Tested at 0.001 mm/s
a=0.90 mm
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So =44.37 mm N3PB tests in accord with ASTM

@) C1421-10 (2011), were tested in a
A MTS 220-kip frame using frame
| Stet dispalcement, and Honeywell
1112.5 N load cell. Tested at 0.001
mm/s.

Brazilian and UCS tests were

Force (N)

Results
Short-rod Calibrations

160

Experiment
—— Model

01 02 03 04 (©
Displacement (mm)

Calibrated successfully.
E.. =7 GPa << 40 Gpa
w, = 0.0115 mm.

Pre-peak yield similar in test
and simulation.

Matched both initial and late
softening behavior.
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Observed piece-wise failure

similar to qualitative
simulated failure pattern.

Simulation does not match
very late behavior (d),
(cannot account for
compressive damage).

SAND2014-20477C

aind

NEW MEXICO TECH

EARTH AND ENVIRONMENTAL SCIENCE

Conclusions

Conceptual Model
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responds elastically initially, then

the LCFM that has been used to
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performed in the MTS 220 kip frame
in conformance with ASTM D3967-
08 (2008) and ASTM D7012 -3
(2013). UCS-test strains were
measured with 0.125 universal-T
strain gages.
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Numerical Model

Short-Rod Mesh N3PB Mesh Cohesive zone 0.2 of notch
width. Meshing performed in
Cubit. Used 8-node
hexahedron elements.
Yellow elements were linear
softening cohesive
elements. Gray were linear

elastic elements.
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Simulation overshoots
observed late softening

Simulated peak force 80% of :
behavior.

minimum observed force.

Observed fracture is diffuse
through >99% of softening,
with coherent unstable
fracture forming just before
complete failure.

LCFM-finite element simulations performed in Abaqus Standard 13.1 (ref).
Displacement boundary conditions enforced on top surface (shor-rod) and outer
edges (N3PB). Resultant forces found on same nodesets. Symmetry plane
(y=0) used.

Initial Params. (Brazil, UCS Tests)

Omax = 9.9 MPa (fixed in simulations). +/- 15%.
E = 39.5 GPa (subs. calibrated). +/- 10%

Simulated yield proportional
to peak force begins much
earlier than observed.

Simulated elastic response
more compliant (lower slope)

than observed. Simulation has discrete

fracture progression
sequentially.
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LCFM can be reasonably used in different geometry and
loading configurations.

Volumetric proportion of stress in tensile, shear and
compressive states control continuum elastic response.
LCFM assumes uniform fracture process through all of
propagation.

N3PB has 2-stage failure, with stiff and strong shear elements
stiffening sample and shielding weak tensile portions.
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