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Motivations rh) pes

= Sequential single axis testing has been firmly established as
the preferred test method for environmental vibration
characterization and analysis

= MILSTD 810G: U.S. Department of Defense Environmental Test
Standard

= NAVMAT P-9492: U.S. Navy Manufacturing Screening Test Standards

= JESD22-B103B: JEDEC Environmental Test Standards for
Microelectronics

STANDARD




Motivations rh) pes

= Unfortunately, vibrations in real world environments are 3-
dimensional and these vibrations can result in different
failure modes and component lifecycles [1-5]

= Recent developments in electrodynamic shaker capabilities
have enabled reliable and controllable simultaneous multi-
axis testing [6,7]

= Multi-axis control makes possible true single axis testing by
allowing control of off axis and rotational vibrations that may
be present in uniaxial shakers [8]

= Model validation and system identification via single axis test
results cannot account for off axis affects [9]
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Objective ) .

= Through a collaboration of experimental and modeling work
conducted on a given test article investigate:

= The relationship between single axis and multi-axis vibration testing

= How are fatigue life estimates influenced by stimulation from more than
one axis?

= Can results from a single axis test be used to predict multi-axis results for
a given part structure?

= What’s the effect of multi-axis inputs on a test article’s modal response?

= The effect of coherence and/or phase relationships on the energy
levels experienced by a part during biaxial or triaxial vibration testing

= The benefit of single axis testing conducted on equipment capable of
mitigating off-axis (and rotational) vibration




Test Equipment ) o,

= Shaker System: Team Corporation Tensor™ 900 N

= Simultaneous or sequential excitation of X, Y, and/or Z axes
= Complete control of rotations around all axes

Specifications

Table First Frequency 5,000 Hz
Test Frequency Range 10- 5,000 Hz
Max Payload 9 lbs

Max Displacement 0.5in

Max Acceleration (w/max payload) 1049

= Controller Software: Spectral Dynamics JAGUAR Shaker
Control and Analysis System
= Multi-Input and Multi-Output Control
* |nput and Output Transformation for 6DOF Control

= Data Acquisition: National Instruments™ LabVIEW and NI
PXle-4496 Data Acquisition Modules {7 NATIONAL

’ INSTRUMENTS'
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Test Article )

= A column supported square aluminum 6061 plate
= Base, columns, and top plate made of a continuous piece of material
= Both homogenous and isotropic
= Eliminates added dynamics due to support boundaries

= Evenly spaced mounting holes
= Eight (8) circumferential and one (1) central

= Uniform bolt tension applied to each Top Plate:

IX7x%

= Selected since its# icc have been welleoc.
Support Columns:
= Plate with fr 7 HxuxH

Base:

= Plate v < 8x 8 x % ]
= Plata
= Pla
* NOTE: All dimensions in inches 7




Test Article )

= Finite Element Model
= Used to predict dominant mode shapes and frequency components

= Confirms that support columns are not dynamically active in
frequency range of interest

= Primary Mode Shapes Identified

506 Hz 856 Hz 856 Hz 936 Hz 1407 Hz




Sensor Selection & Configuration — @&

= Control Accelerometers = Response Accelerometers
= PCB 356A15 = PCB 356A33
= Triaxial ICP Accelerometer = Triaxial ICP Accelerometer
= Nominal Sensitivity: 100 mV/g = Nominal Sensitivity: 10 mV/g

= Weight: 0.37 oz " Weight: 0.19 oz




Sensor Selection & Configuration — @&

= Control Sensor Placement

= Symmetric about both
lateral axes on base

= Allows calculation of all base
translational and rotational
degrees of freedom



Sensor Selection & Configuration — @&

= Control Transformation
= Given the acceleration from triaxial control accelerometers
" Ay, , Ay, , and a,

= Calculate the base input translational and rotational acceleration [14]

-

q
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= 0 o Y oo o Lo oo L oo o
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o L 9 o Y 9 ol g o 4|
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Sensor Selection & Configuration

= Reference Sensor Placement:
= Center of plate
= Each corner
= Mid-span of each side

= Along each diagonal placed
evenly between the center
and corner accelerometers

The high number of accelerometers caused a
mass loading affect on the top plate

Their positions were selected to mitigate
mode shape distortion

FEA data confirms that modes are preserved
although all frequencies were shifted lower
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Test Sequence ) s,

» Control Signal = Band-limited white noise

= Axes (50Hz — 2kHz)

= Causes simultaneous
excitation of all frequencies

= Cross-Axis within range

Coherence & Phase = All frequency dependence in
stimulated responses can be

attributed to plate dynamics

=" |[nput Level
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Test Sequence

= Single and Multi-Axis

= Uniaxial: One translational
axis at atime (X, Y, 2)

= Biaxial: Two translational axes
at a time (XY,XZ,YZ)

= Triaxial: All three axes
simultaneously (XYZ)

= Control Signal
» Axes
=" |[nput Level

= Cross-Axis
Coherence & Phase

= All axes always controlled,
but not all to full test levels

Uniaxial Biaxial Triaxial
z Z 4 Z zZ z 7
w W w w w w w
X e X ] Y X €] Y X e Y X o o c] Y




Test Sequence ) s,

= Control Signal " |nput Acceleration Levels:
= Axes low (19yms) & high (297ms)
= Same acceleration level for
> Input Level all applicable axes
= Cross-Axis = All other DOFs controlled to
Coherence & Phase low level
X & Y Translation Controlled (@ 19) X & Y Translation Controlled (@ 29)

Z Translation & All Rotations Minimized Z Translation & All Rotations Minimized




Test Sequence ) s,

= Control Signal = Zero phase between all axes
= Axes = Coherence is measure of
relationship between two
" Input Level signals
» Cross-Axis = Levels: low (~0), medium
Coherence & Phase (0.50), and high (~1)

= Coherence with and between
all other DOFs set at zero




National

Response Energy )i,

"e=¢exte, te
= Where, e, = %Z’]fﬂ v, [j1? {vn =x,y,z}

= The energy of the i ! response accelerometer (eRn[l-]) was
normalized by the energy of the control input (e.)
. eP,{n[i] = er,[i]/€c

= This accounts for the known input energy level differences between
single and multi-axis test cases

= Then, the total normalized energy of the response
accelerometers is given by

= £, =3, ef'{n[i] {N = 13 (total number of response accels)}
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Total normalized energy levels are comparable between

IIAEEY | This estimate was bounded by the maximum and
minimum energy levels for multi-axis tests

cloJolgoXdl | It can't serve as eithera reliable upper or lower | TeJelifer:1e][=
single a bound for anticipated multi-axis energy levels

14 . 1636
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Peak Acceleration ) &

X XY (Cxy=0.0) XY (Cxy=0.5) XY (Cxy=1.0) Y XY (Cxy = 0.0) XY (Cxy=0.5) XY (Cxy = 1.0)
25% 1 1 1 25% 1 1 1 |
5 5w
B %
5 15% 5 15%
T R~
8§ 10% g3 10%
a g 5% 2 g 5%
is 33
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e T 2% a < 0 .
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&5 -10% o
& -15% &
=
o
x

For lateral accelerations, the
addition of a second 5)  Xz(Cxz=1.0)

incoherent axis causes a | |

decrease in peak acceleration

in Peak Y-Axis Acceleration

fper Accelerometer)

(per Accelerometer|

A further increase in
coherence raises the peak
levels

% Change in Peak X-Axis Ac




% Change in Peak Z-Axis Acceleration
(per Accelerometer)

% Change in Peak Z-Axis Acceleration
(per Accelerometer)

Peak Acceleration
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Any additional axis input
causes a decrease in peak

acceleration levels

% Change in Peak Z-Axis Acceleratio
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Modal Response

= Responses for each test dominated
by first mode shape

For edge accelerometers, the
observed lateral response is due
to plate bending. For a bent plate,

a portion of the global z-axis
acceleration appears locally as a

X or y-axis acceleration

PSD [g2/Hz]

PSD [g2/Hz]
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Modal Response

= Dominant frequencies remain constant, but modal
contribution changes depending on excitation level of

additional axes
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Conclusions )

= For a plate structure, uniaxial testing in line with the
dominant axis results in worst case testing

= For conservative fatigue or life-cycle testing, peak response
axis must be known a-priori

= Even for simple structures, modal contribution is altered by
multi-axis testing

= Corresponding stress state will never be captured by single axis tests

=  On uniaxial shakers, presence of off axis stimuli due to
internal coupling may distort results
= True single axis testing can only be performed on multi-axis shaker

= Control of off axis contributions can enable improved model validation

= Combined single axis response data cannot accurately be
used to predict or bound multi-axis scenarios )3
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