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Switching gears ) .

= Much of this course focuses on using data to reason about
our uncertainty

" |n this segment, we use probability to help us reason with (or
despite) that uncertainty
= Especially: Limited data, distributed expertise, complex problems

= _..With a tool called a Bayesian Network (BN)
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Does this matter for you? ) .

" You can ignore me if you have gobs of relevant data, about
your exact systems, in all of the possible use cases, and that
experience uniquely constrains the future...

" You might want to listen if you’ve ever said...
= “ But we don’t have enough data to make a decision”
= “We can’t quantify that, so it can’t be part of the analysis”
= “Let’s just ask the experts”
= “We can’t quantify a probability that low”

" And in case you're thinking “But I’'m not a Bayesian”

= |t doesn’t matter, this is about causality, not statistics




Terminology, abbreviations, notatioff

= Joint distribution: P(A n B) = P(A, B)
= Marginal (unconditional) distribution: P(A)
= Conditional distribution: P(A|B)

= BN = Bayesian (Belief) Network

= HCL = Hybrid Causal Logic

= HRA = Human Reliability Analysis

= PRA = Probabilistic Risk Assessment
= PSF = Performance Shaping Factor
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Outline

* Whatis a BN?
e Building a BN
* Inference with BNs
 HRA Example

A few BNs for PRA
and safety

* Wrap-up
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Bayesian Network: A tool & a model® .

= A model which...
= Explicitly encodes relevant variables & dependencies
= _.Interms of a simplified probability distribution
= Permits multiple types of data/information to be used in a single
reasoning framework.
= Atool for reasoning under uncertainty

= Conducting inference (reasoning from cause to effect) and diagnosis
(reasoning from effect to cause)

= About uncertain states, with limited information, under changing
conditions

6
e
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BN basic structure )

= ABNisadirected acyclic graph (DAG) with nodes
representing random variables

= Anarrow from one node to another represents
probabilistic influence

= Each node has an associated probability distribution
(usually discrete)

(a—®)

Pr(A)  Pr(B|A)
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BNs by another name...

= A type of Probabilistic Graphical Model (PGM)

= A marriage of probability theory and graph theory
=  Markov models (un-directed), BNs (directed, acyclic)

= Also called: Bayesian belief network, belief network, causal
graph, causal network, probabilistic network, influence
diagram, expert system




Some BN application areas

=  Medicine
= CHILDE: Congenital heart disease diagnosis
= MUNIN: Preliminary Diagnosis of neuromuscular diseases
= SWAN: System for insulin adjustment for diabetics
=  PATHFINDER: Diagnosis of breast cancer

= Business and Management
=  Market forecasting in oil industry
=  Finance-Fraud/Uncollectible debt collection
=  Modeling impact of organizational change

= Engineering & Science
= Diagnosis of faults in waste water treatment process

= Failure mode and effect analysis with BBN’s
=  BOBLO: Expert system based for cattle blood group determination




How could they be used in PRA? .

"= To build a defensible probability distribution for hard-to-
qguantify problems (e.g., HRA, aging, software)
= To break problems down into quantifiable (or elicitable) chunks
= To add additional levels of detail and traceability
= To address dependency

"= To enable use of some data for problems where the
alternative is no data (e.g., HRA)

= To enable appropriate use of experts (appropriate experts,
appropriate probability elicitation)

= To provide causal understanding, not just statistics.

10



How to implement in PRA— Option 1: @,
Replace Fault / Event Trees with BNs

<

S

Pr(c) = Pr(A) Pr(B) Pric=1A=1

Pr(C)=Pr(C| A,B)Pr(A,B)+Pr(C|

J

A.BJPr(A,
|A.BJPr(A,B)

B)
+Pr(C|ABJPr(A,B)+Pr(c B

=Pr(A,B)




How to implement in PRA -the better option:
HCL/Trilith: Adds BNs to the PRA Framework

PE-1 PE-2 <>
J PE-3 {>
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Top layer: ESD
Middle layer: FT

" Bottom layer:
& B BBN

Groth, Katrina; Wang, Chengdong & Mosleh, Ali. Hybrid causal methodology and software platform for probabilistic

risk assessment and safety monitoring of socio-technical systems. Reliability Engineering and System Safety, 2010,
95, 1276-1285 12




Sandia

So why are these Bayesian? ) 5.

Judea Pearl says:

“Bayes means:

(1) using knowledge we possess prior to obtaining data,

(2) encoding such knowledge in the language of probabilities
(3) combining those probabilities with data and

(4) accepting the combined results as a basis for decision
making and performance evaluation.”

Judea Pearl, “Bayesianism and causality, or, why | am only a half-Bayesian”
Foundations of Bayesianism, 2001, 24, 19-34



BNs: Two aspects ) o

= Building the model (Learning/Elicitation)
= |dentify the nodes
= Structuring the graph
= Assigning Conditional Probability Distributions (CPDs)

= Using the model (Inference)

= Evidence propagation/belief updating — the process of computing
the probability distribution, given the evidence

= QOccurs via inference algorithms, e.g., exact inference, sampling

14
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Outline

* Building a BN
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BN pieces ) e,

= BN encodes
= Relevant variables and their states
= (In)dependency among variables
= The simplified joint probability distribution of the system

P(a,b,c,d,e) = P(e|la,b,c,d,) « P(d|a,b,c,) * P(c|a,b) x P(b|a) x P(a)
= P(e|c,d) ~ P(d|b) = P(c|b) x P(b|a) * P(a)

16




BN language ) .

= Consider the following simple net

= Nodes Time and Training are parent nodes for node Error;
Error is their child node.

= Time and training are also (they have no parents)
= Time and training are conditionally independent




Underlying formulas =

Remember... 0 <P <1 and YP(universe) = 1

Law of Total
Probability

P(ai) = Z P(ai mbj)

Marginalizesjout variables

Chain Rule (of
Probability)

P(X, "X, N..nX,NX)=
P(Xn | Xogr Ko Xl)*P(Xn—l | Ky, Xl)*P(XZ | Xl)*P(Xl)

Factorizes a joint probability into conditional probabilities

Chain Rule (of
BNs) (The above,
with conditional

If A and B are independent...
P(A|B) = P(A) and thus P(AN B) = P(A) - P(B)

P(Xy, X, Xn) = | | PCiIParg (X))
1 1

Independence)

’ Pr(E[{X) Pr(X
Bayes P(X|E) - r(E| X) Pr(X)
Theorem Pr(E)

Allows forward and backward propagation of evidence

18




Mathematical Formalism
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= Assume binary states for all nodes (for now)

AL [ T — 03]
Bad 0.1
Training || v | Applicable [ 0.8]
Inapplicable - ... 02,
Error Time = (zo0d = Bad
Training Applicable | Inapplicable | Applicable | Inapplicable
BlYes LR R L 03
Mo L 075 ... 07 0.3




To find the probability of Error="yes” ) e,

Computational Steps:
1. List all the combinations of the states of its parents,
2. Calculate the probabilities of these combinations

3. For each combination of states calculate the conditional
probability™ of the states of error given the states of its
parents

4. Compute the marginal probability of error

* The conditional probabilities are interpreted as the
degree of influence of various states of the parents on
the states of error



To find the probability of Error="yes” ) e,

Probability Conditional Unconditional
Time | Training of Probability of Probability of
Combination Error = YES Z=12
Good Applic. | =9*.8 0.1 p1 = .9*.8*.1=0.72
Good | Inapplic. | =9*2 0.25 o= .9%.2*.25=0.45
Bad | Applic. | =1*8 0.3 ps= .1*.8*.3=0.024
Bad | Inapplic. | =1*.2 0.5 ps=.1*.2*.5=0.010
i Time - Training P = 2pi- 151
Good 90.00% [N ] | |Appicable 20.00% ([
Bad 10.00%l] 7| |inapplicable 20.00% (| A
4 »
) Error
wes 15.10% (||
No 84.90%|0 7




Outline

Inference with BNs
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Inference in a BN ) o,

= The fully quantified model represents the entirety of
the prior information available to the analyst

"= The analyst makes an observation about the state of
one or more variables.

= We calculate the posterior probability of the rest of the

network.
o .

Prior Evidence E Posterior
P(X) P(X|E)

23




Types of reasoning/inference

Causal: @ @

(Forward propagation;
Induction)

>
Evidential: (ime ) (g
(Backward propagation; ‘\

Diagnosis) @

Intercausal: @ @




Forward reasoning ) &=,

= QObserving Time=Bad changes belief about error (P(Yes) goes
from .151 to .34)

- Time ) Training

Good 90.00% (] | [2pplicable ED.DD%F

Bad 10.00% [7| |napplicable 20.00% (| 1A

4 »
i Error

es 15.10% ||l
No 84.90%

W

Observation: Time = Bad

2 Time o Training

Good 0.00% Applicable 80.00%
Bad 1000000 & [napplicable 20.00%
L Error

ves 34.00% (]

No 65.00% | | &




Backward reasoning

= QObserving Error=yes changes belief about both time and

training

-

Time

Good 90.00% (]

[v]

-

Training

Applicable 80.00%
Inapplicable 20.00%

w

Bad 10.00%
4

»

-

Error

Mo 84.90%

es 15.10% ||l

W

Observation: Error = yes

i
Good 77.458% (]

Time

0
Applicable 63.58% ([

Training

Bad 22.52% (I Inapplicable 36.42% (L] A

[+]

4 ¥

-]

Error

Yes 100.00..

Mo 0.00%
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Intercausal reasoning (both) ) &=,

= QObserving Error=yes and Time = Good changes belief about
training

- Time ) Training

Good 90.00% (] | [2pplicable ED.DD%F

Bad 10.00% [7| |napplicable 20.00% (| 1A

4 »
) Error

Wes15.10%

[
No m.ﬂu%\!—b

Observations: Error = yes;
Time = Good

i Time (] Training

Good 100.00... [l [appicable 61.54%[H]
Bad  0.00% [E [|inapplicable 38.45%| | (A
i Error
Yes 100.00... [N
No  0.00% =




Outline

e HRA Example
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1. Assess context in terms of PSFs
(Performance Shaping Factors)

2. Calculate HEP (Human Error
Probability)

Example HRA method: SPAR-H

Available time
Stress/stressors

Complexity

Experience/training =

Procedures

Ergonomics/HMI
Fitness for duty
Work processes

8
HEP = NHEP-| | PSF
i=1

Where NHEP = 0.01 for diagnosis tasks

and 0.001 for action tasks

Sandia
'11 National
Laboratories
PSFs PSF Levels Multiplier for
Action

Available | Inadequatetime | P(failure) =1.0 []
Time _Time available is = the time required | 0 [,
Nommaltme | |
_Time available = 5x the time required | o1 %
_Time available is = 50x the time required | oor | Ll
Insufficient Information 1 D=.=

Stress/ Extreme 5 |:|
Stessors | High |2 [
Nomwpd | r ] L],
Insufficient Information 1 Q_(:_
Complexity | Highlycomplex [ S %/
Modenately complex | EE—

Nominal 1 O
______________ S § N
Experience/ |(Low | 3 5/
Training Nomigal | | S 4 ,
Hgh ] 05 [l
Insufficient Information 1 0
Procedures | Notavailable [ o 0,
Incomplete | 20 | i
_Available butpoor | S Ll
Nomigal | P

Insufficient Information 1 g/

Ergonomics/ | Missing/Misleading | so | )
HMI Poor ] w ] )
Nomwpal | P 0l

Good 0.3 P
Tnsufficient Information 1 L,

Fitnessfor (Upft | P(failure)=1.0 [ ]
Duty Degraded Fitness | 5 L
Nomigal | r ] L,
Insufficient Information 1 i I

Work Poor 5 O
Processes ffi@bfﬁiiéiafiffffffffﬁﬁﬁfffﬁffffffffffffffffffﬁfffﬁﬁﬁfffffffffﬁffffffffffffffﬁffifffffffffffffffffffﬁfffffff];kﬁ
Good 05 V

Insufficient Information 1 29 [




Challenges for SPAR-H )

= Poor handling of uncertainty

= |s “unknown” really equivalent to “nominal”?

= Poor credibility (HRA in general, not just SPAR-H)
= |n PRA, data is used to build credibility/confidence;
= Very few HRA methods use data, and those that do use very little data
= Use of expert-elicited probabilities
= System expert != probability expert.
= Traceability

= Tenuous link between inputs and outputs
= Subjective — your “high stress” might be my “low stress” situation

30



SPAR-H BN: Structure ) e,

= SPAR-H method:

= 8 PSFs affect error probability
= PSFs act independently on error (margin independence)
= |nterdependency among PSFs is acknowledged, but not modeled

31



Quantification )

Factorizing the joint distribution allows us to specify different parts of the
model using different sources of information (including data)

‘-

P(Error)

= z [P(Error|Time, Stress, Complexity, ExpertTrain, Procedures, ErgoHMI, Fitness, WorkProcs)

PSFs
* P(Time) * P(Stress) * P(Complexity) x P(ExpertTrain) x P(Procedures) * P(ErgoHMI)

* P(Fitness) * P(WorkProcs)]

32




Quantification: P(PSFs) )
PSF

P(Time) NUREG/CR-6949 1
5 states 0.5 .
0 . _—
Expansive Extratime Nominal Barely Inadequate
time time adeq. time time

P(Stress) NUREG/CR-6949 1
3 states 0.5 :.

0 - : I :

Nominal High Extreme

P(ExpertTrain) Curve fit 1
3 states (Available from 0 |

High Medium Low

Similar NUREG/CR-6949 values for: P(Complexity), P(Procedures), P(ErgoHMI),
P(Fitness), P(WorkProcs)

Next steps: Adding simulator data to this model (ask me after class) 33




HRA: BN version of SPAR-H
(o) o o) G ) () (o) G

. : Prior: SPAR-H
o Data: simulator

d

P(Error) = z P(Error|Time, Str, Compl, Expert, Procs, HMI, Fit, WPs) *

PSFs
- P(Time) * P(Stress) * P(Complexity) = P(Expert) « P(Procs) * P(HMI) = P(Fit) P(WPS')

Priors: Experts; Industry data

Groth, Katrina M. & Swiler, Laura P. Bridging the gap between HRA research and HRA
practice: A Bayesian Network version of SPAR-H. Reliability Engineering and System Safety,
2013, 115, 33-42. 34




BN benefits: addresses uncertainty @=.

= Certainty cases:

@ GG @ @ar G @Y

(=~ ) mmmmp HEP Identical to SPAR-H model

= “Insufficient Information” cases:
Uses prior distribution rather than assuming nominal 06

0.4

» , )
0.1

1.

High Nominal Low

(=~ ) M HEP based on SPAR-H model AND

prior distribution of unknowns

35




Prior:

Posterior:
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Time [] !
V=24, 0z=10000.9 Complexity Procedures Fitriess
I 2.3 0,01 p=2, 02=1.9 | u=83,02=1415 | p=1.7, 02=10001.5
[ | 13.6 0.1 e sood [ ] 45,0 1 e 1
e ee.z 1 ] .12 [ 300 5 ] 15.9 5
[ ] 15.9 10 [ ] 159 5 [ | 20,0 20 1.0E-4 100000
1.0E-4 100000 1 5.0 50
Stressors[>4] ExpertTrain ErgoHMI wWarkProcs
p=1.2, oz=0.5 05, 02202 p=3.3, 02=61.1 p=1, oz=0.4
E . 1 ‘— [ | 155 05 |
90 15.9 0.5
] 13.6 2 50.0 0.5 [ sz 1 g
- &1
| 235 4;3 % [] 13.6 10 23 5
\ I 2.3 50
Errar?
s no
[ | 7.4 ves
Time [] .
=10, 02=0 Complexity Procedures Fitriess
1
0.0 0.01 p=z, oz=1.9 p=5.4, 02=141.5 p=1.7, 02=10001.8
0.0 0.1 e sont [ ] 45,0 1 e 1
0.0 1 [ ] 34102 | 300 5 [ ] 159 5
I 10 [ | 159 5 | 0.0 20 1.0E-4 100000
0.0 100000 1 5.0 50
Stressors ] ExpertTrain ErgoHMI warkProcs
p=1.2, 0z=0.5 —08, w202 p=3.3, o2=61.1 p=1, 02=0.4
] 138 2 “ 500 05 -_ 15.9 0.5 [ ] 15.9 0.5
' £8.2 1 . |
[ 235 4751 ] 13.6 10 | 235
[ 2.3 &0

Error?

Ess no
[ | 23.2 yes




Prior:

Posterior:
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Time [] _
L=z 4, 0z=10000.9 Cormplexity Procedures Fitriess
1 2,3 0,01 =z, a2=1.9 p=E6.5, o2=141.5 u=1.7, g2=10001.5
[ | 13.6 0.1 [ soo 1 [ ] 45.0 1 [T
P ez 1 ] 341 2 [ 30.0 5 ] 15.9 &
[ ] 15.9 10 [ ] 159 5 [ | 0.0 20 1.0E-4 100000
1.0E-4 100000 1 5.0 50
Stressors ]
E—— ExpertTrain ErgoHMI wiorkProcs
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[ ] 136 2 oo [ el G L
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Error?
EEE no
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p=6.8, 0E=134235.3 Comnplexity Procedures Fithess
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- — Expert Train ErgoHMI wWorkProcs
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Intercausal reasoning (Explaining awa

Prior:

Posterior (1):

Posterior (2):

9 10
1.0E-4 100000

Error?

Procedures
p=8.5, o2=141.5

Fitness

L=1.7, o2=10001.5
.11
15.9 5

1.0E-4 100000

workProcs

Time
Y=6.5, 02=134235.3
2,76-2 0,01
| 1.5 0.1
. 480901

. 406 10
1.36-3 100000

ExpertTrain
p=0.9, g2=0.3

Etror?

p=11.2, 02=256.9

=37, 02=134364.1

I se.z 1
| 338 5

Fithess

1.3E-3 100000

wWorkProcs

Timne [<]
[ u=2.4, cz=10000.9 Complexity
I Z.3 0.01 p=2, 12=1.9
[ | 13.6 0.1 s S0
e ez 1 || 3412
[] 15.9 10 [] 158 5

1.0E-4 100000

Stressors [

Fitness

W=100000, o2=0

0.0 5
I 100000

0ol

WiorkProcs
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Next steps: Extending the model @,

= Expanded model using additional Performance Influencing

Factors (PIFs)

‘-

39




Even deeper: Internal algorithm @,
d uestions (purple) to the PSFs

Top portion from: N. Ekanem, A model-based Human Reliability Analysis Methodology (PHOENIX method).
Ph. D. Thesis. University of Maryland, 2013. 40
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Implications for HRA

1. Using HRA data adds credibility
1. It's possible to use HRA data to update existing HRA methods.
2. ltisinconsistent with PRA practice to NOT update HRA methods.

3. Youdon't need perfect HRA data to do the updating, if you separate out the
probabilities of the PSFs from the probabilities of error, given PSFs.

2. Expanding causal details adds traceability

1. Adding plant-specific details makes it easier to assign PSF states (reduces
subjectivity of PSF assignments)

2. Also adds value to users — more detailed identification of ways to prevent
human errors

41



in the national interest

O u tI I n e Exceptional service @ ﬁgggﬁal

Laboratories
(]
o
[ Time
° Parent P r Good 50.00% (Y | |applicable 80.00% [
Bad 1U.DU%|:| [+ InapplicableZD.DD%ﬂ =
Pr(b) | Pr r . W—
[ Error
® ’ ’ Ye315.1ﬂ%’i
No B4.90% =

A few BNs for PRA
and safety




Nuclear HRA: Data-informed =
auantification model e [T

Adequate | 0.63

Org.

Culture LTA 0.48
Org. Culbure | e (090
 -— LTA 0.40

Adequate | 0.60

LTA 0.46

Tors Adequate | 0.54

LTA 0.53
Adequate | 0.47

Org. Culture

LTA | Adeq.
LTA 0.36 | 0.62

Adequate | 0.64 | 0.38

Attitude

Knowledge

Perceptio

Machine

Resources

Knowledge
LTA | Adeq.
LTA 0.47 | 0.87

Attitnde |

Org. Culture LTA Adeq.
Human Resources | LTA | Adeq. | LTA | Adeq.
i : LTA 062 | 050 | 0.57 | 0.52
ratlure Fvent Complexity |- ouate [ 038 o.go 0.43 | 0.48

P(HFE) = Y. psps P(HFE|EC1,EC2,EC3, EC4) * P(EC1|PSFs) *

P(EC2|PSFs) » P(EC3|PSFs) * P(EC4|PSFs) *P(PSFs) Baseline: P(Err)

Groth, Katrina M. & Mosleh, Ali. Deriving causal Bayesian networks from human reliability 1.88E-03
analysis data: A methodology and example model. Proceedings of the Institution of Mechanical )
Engineers, Part O: Journal of Risk and Reliability, 2012, 226, 361-379. 43
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Aircraft Maintenance Model h) e,

Eghbali GH. Causal model for air carrier maintenance. Report prepared for Federal
Aviation Administration. Atlantic City, NJ: Hi-Tec Systems; 2006.

44




PRA: Hydrogen dispensing )

Laboratories

Leak location
dispenservs piping

Storage bundle Hole diameter Leak speed
(20, 45, or B5 MPa) [mm] (Sonic)
Volin kg Max leak Impact length

[kal tim Sy‘ [ka/s] jetfire

Persons near
dispenser
Loss of life

Sensor identify Human
pressure drop detection

Cloud radius
atignition [m)]

r

Shut down Activation of
time [s] manual ESD

Time of leak Ignition time
after ignition [s]
y
Leaktime L Time of leak
[s] before ignition
Towards poss.
escalation

Haugom, G. P. & Friis-Hansen, P. Risk modelling of a hydrogen refuelling station using
Bayesian network. International Journal of Hydrogen Energy, 2011, 36, 2389-2397. 45
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PRA: Offshore oil maintenance errord .

Vinnem, J. E.; Bye, R.; Gran, B. A.; Kongsvik, T.; Nyheim, O. M.; Okstad, E. H.; Seljelid, J. & Vatn, J. Risk
modelling of maintenance work on major process equipment on offshore petroleum installations. Journal of
Loss Prevention in the Process Industries, 2012, 25, 274-292 46




BN-Based “Smart SAMGs”

Generate spectrum of accident scenarios

Goal: Identify potential accident scenarios
Tool: DDET/ADAPT simulation scheduler

Simulate reactor physics for each scenario

Goal: Predict range of plant .
parameters for known system faults ‘

Tool: MELCOR

Goal: Build a map between known

parameters and known faults
Tool: Bayesian Networks

Sandia
National
Laboratories

Goal: Enable users to diagnose specific ;5 "

faults, identify key indicators, ask “what-if” 1 Coets

P_RPV t=160)
Tool: Probabilistic queries, differential

T_Corebxit §=46)
. . . . P_RPV ¢=79)
diagnosis, value of information

Diagnostic Value

076 M|

2 Best add’l
0765 M| parameter

checks

| SRV:Closed  0.369 [ |
FVCosed 0313 NN |
(OVCosed 0313 NN |




“Smart SAMGS: Building a probabilistigs.
map between plant conditions and

plant parameters

-]

() )
Open 99.90% | [open o9.g0% (]
Closed 0.10% Closed 0.10%

Open S9.00%
Closed 1.00%

-

'ﬁq 4l Plaggrﬁ@'!? ti;rlfe stepsf

—

Equipment status
(disease)

Indicators to
check (tests)
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Smart SAMG diagnosis
Prior (Unknown accident)
e [ e Suggests checking
NCoed 0001 | | TCoeta e e — RPV level (10),

1.0% chance of SRV failure
0.1% chance of DV failure
0.1% chance of FV failure

T Corebxit f=46) 0651 T |
cesD T [0 |
T_Corexit §=146) 0.615 _:I:I
c4c: T |
Csc2 M |

P_RPV it=160)

P_RPV it=79)
F_RPV it=25)

RPV pressure (10),

Core Exit temp (t0)

T CoreBt £=72) 0443 T

T CarsFwit #0700 0470 I

Observation:

RPV Level (time 0) =

low

Posterior (Condition-specific)

Ranked __ | Probability |

Ranked Chserv... | Diagnostic Value

SRV:Closed  1.000 I
FvClosed < 0.001
DV-.Closed < 0.001

~100% chance of SRV failure
<0.1% chance of DV failure
<0.1% chance of FV failure

Lev_RPV §=110) 0072 I

|'| Suggests checking

Lev_RPV =157 0072 I

- RPV level (110,

Lev_RPV =93  0.071 [l

Lev_RPV§=62)  0.070 I

1157, t93)

Lev_RPV =35  0.070 [

Lev_RPV =37y  0.070 I

Lev_RPV =153) 0.070 [

Lev RPV#=83) 0.070 [l

Lev_RPV §=165) 0.065 I

Lev RPV =650 0065 HN

A single key observation dramatically changes belief about
ECCS status and value of additional tests
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Diagnostic value of tests ) i,

For FV failure For SRV failure

Ranked Observ... | Diagnostic Value Ranked Observ... | Diagnostic Value |
T_CoreBExt t=46) 0319 N Lev_RPV ceic T 0 [ |
Lev_RPV 0.316 I P_RPV BECLY 0
T_CoreExit f=146) 0.232 ] T_CoreExit =ty
P_RFV t=160) 0.224 I T Corebit t=46) 0651 ] |
P_RPV¢=128) 0217 I PRPVE=160) OGS0 T 2 |
T_Corebxit #=108) 0.202 IS T Coreboit #=146) 0615 T |
Lev_RPV ¢=157) 0.200 I P_RPV ¢=79) PELLY
EQHFF‘:’PE?EJ;E} gqgg -]-] P_RPV {=25) 0464 T

'} X - =
T CoreEt 0.191 R L]
P_RPV 0.191 I Lev_RPV #=160)
Lev_RPV ¢=159) 0.128 LI Lev_RPV §=61)
Lev_RPV ¢=151) 0.187 IR T CoreExit =44)
T CoreBxit ¢=44) 0184 I F'_F"LF“U"ft=53]
P_RPV #=73) 0.124 Lev_RPV §=156)
Lev_RPV =48]  0.122 ] Sy
T CoreExit ¢=123) 0.176 R T CoreBxit £=108)
P RPVE=101) 0175 I Lov_RPV §=161)
T Corebxit £=72) 0.174 T CoreExit £=98)
T CoreExit #=63) 0.171 I P_RPV £=128)
v ARV 01 T_CoreExt §-70)

Different tests provide greater diagnostic power for different diseases
(and some provide little value for either disease)
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* Wrap-up
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If you want to get more complicated® .

= Continuous BNs

= Dynamic BNs

" |nference algorithms

= Value of information

= Bayesian updating the probabilities in the BN
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Software packages ) .,

" Tools with graphical user interfaces
= GeNle (http://genie.sis.pitt.edu/)
= Hugin (http://www.hugin.com)
= Netica (http://www.norsys.com/)

= MSBNXx (http://research.microsoft.com/en-
us/um/redmond/groups/adapt/msbnx/)

= QOther flexible tools
= Bayes Net Toolbox for Matlab (https://code.google.com/p/bnt/)
= Designed for Risk Analysts:

= Trilith (University of Maryland, contact Ali Mosleh or Katrina Groth)
= Integration of BNs with ET/FT

= AgenaRisk (Commercial package)
= (BNs only)
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Key benefits ) i,

= Completeness: Includes all relevant variables, not just easily observable
variables or variables where data is plentiful. Allows variables to be
interdependent.

= Documentation: Explicitly represents all variables and relationships deemed
relevant to the problem space.

= Simplification: Decomposes problem into manageable pieces; simplifies
acquisition of probability distribution.
= |t’s easier to gather data about p(d|b) than about p(d|a,b,c...)

= Credibility: The BN allows analyst to assemble information from multiple
sources into a single model.

= Populating the model with the most credible information (or expert)

= Modifiability: Analysts can update conditionally independent sections of the
model without changing the entire model. Model is expandable in scope and
depth.

= |nsight: Enables analysts to make predictions without perfect information;
enables understanding of cause-and-effect behavior, performing “what-if”

analyses. 5




Summary

= BNs are tool for:
» Encoding a knowledge base (via a series of conditional probabilities)

= Performing probabilistic reasoning (induction, deduction) with the
knowledge base

= Benefits:
= Completeness & Insight: Includes all variables, not just those with data
= Simplicity: Decomposes a large problem into manageable pieces
= Credibility: Models built with info. & data from multiple sources

« P(BM)

(™ A er )
‘\\ / Metric‘/,l e
. = P(EC|PSF1,PSF3) = P(PSF3|PSF1,PSF2)
e‘ + P(PSF2|PSF1,BM) = P(PSF1)

P(ECNPSF1NPSF2N PSF3NBM)
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Parting thought ) S

Probability is not really about numbers;

it is about the structure of reasoning.
Glenn Shafer

Rutgers University
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Laboratories

P(Xy, Xy, . X)) =
[ [ pexitpars ooy

Pr(E|X)Pr(X)
Pr(E)

Ranked Observ... | Diagnostic Value
- iy (4] Fv O SRV
h open 99.90% L] |Open s9.50% R [Open 99.00% [N "

Closed 0.10%| [# |Closed 0.10%] 7 |Closed 1.00%| [

: r /
Belief Data S ]

P(X|E)-

Thank you!

Katrina Groth
6231 — Risk and Reliability Analysis

kgroth@sandia.gov
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