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Switching gears

 Much of this course focuses on using data to reason about 
our uncertainty

 In this segment, we use probability to help us reason with (or 
despite) that uncertainty
 Especially: Limited data, distributed expertise, complex  problems

 …With a tool called a Bayesian Network (BN)
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Does this matter for you?

 You can ignore me if you have gobs of relevant data, about 
your exact systems, in all of the possible use cases, and that 
experience uniquely constrains the future…

 You might want to listen if you’ve ever said...
 “..But we don’t have enough data to make a decision”
 “We can’t quantify that, so it can’t be part of the analysis”
 “Let’s just ask the experts”
 “We can’t quantify a probability that low”

 And in case you’re thinking “But I’m not a Bayesian”
 It doesn’t matter, this is about causality, not statistics

3



Terminology, abbreviations, notation

 Joint distribuƟon: P(A ∩ B) = P(A, B)
 Marginal (unconditional) distribution: P(A) 
 Conditional distribution: P(A|B)

 BN = Bayesian (Belief) Network
 HCL = Hybrid Causal Logic 
 HRA = Human Reliability Analysis
 PRA = Probabilistic Risk Assessment
 PSF = Performance Shaping Factor
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Outline
• What is a BN?
• Building a BN
• Inference with BNs
• HRA Example
• A few BNs for PRA 
and safety

• Wrap‐up



Bayesian Network: A tool & a model

 A model which…
 Explicitly encodes relevant variables & dependencies
 …In terms of a simplified probability distribution
 Permits multiple types of data/information to be used in a single 

reasoning framework.

 A tool for reasoning under uncertainty 
 Conducting inference (reasoning from cause to effect) and diagnosis 

(reasoning from effect to cause)
 About uncertain states, with limited information, under changing 

conditions

6



BN basic structure

 A BN is a directed acyclic graph (DAG) with nodes 
representing random variables

 An arrow from one node to another represents 
probabilistic influence 

 Each node has an associated probability distribution 
(usually discrete)

A B

Pr(A) Pr(B|A)
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BNs by another name…

 A type of Probabilistic Graphical Model (PGM)
 A marriage of probability theory and graph theory
 Markov models (un‐directed), BNs (directed, acyclic)

 Also called: Bayesian belief network, belief network, causal 
graph, causal network, probabilistic network, influence 
diagram, expert system
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Some BN application areas

 Medicine
 CHILDE: Congenital heart disease diagnosis
 MUNIN: Preliminary Diagnosis of neuromuscular diseases
 SWAN: System for insulin adjustment for diabetics
 PATHFINDER: Diagnosis of breast cancer

 Business and Management
 Market forecasting in oil industry
 Finance‐Fraud/Uncollectible debt collection
 Modeling impact of organizational change 

 Engineering & Science
 Diagnosis of faults in waste water treatment process
 Failure mode and effect analysis with BBN’s
 BOBLO: Expert system based for cattle blood group determination 
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How could they be used in PRA?

 To build a defensible probability distribution for hard‐to‐
quantify problems (e.g., HRA, aging, software)
 To break problems down into quantifiable (or elicitable) chunks
 To add additional levels of detail and traceability
 To address dependency

 To enable use of some data for problems where the 
alternative is no data (e.g., HRA)

 To enable appropriate use of experts (appropriate experts, 
appropriate probability elicitation)

 To provide causal understanding, not just statistics.
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How to implement in PRA– Option 1:
Replace Fault / Event Trees with BNs
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How to implement in PRA ‐the better option:
HCL/Trilith: Adds BNs to the PRA Framework

Groth, Katrina; Wang, Chengdong & Mosleh, Ali. Hybrid causal methodology and software platform for probabilistic 
risk assessment and safety monitoring of socio-technical systems. Reliability Engineering and System Safety, 2010, 
95, 1276-1285 12
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So why are these Bayesian?

Judea Pearl says:
“Bayes means:
(1) using knowledge we possess prior to obtaining data,
(2) encoding such knowledge in the language of probabilities
(3) combining those probabilities with data and
(4) accepting the combined results as a basis for decision 
making and performance evaluation.”

Judea Pearl, “Bayesianism and causality, or, why I am only a half-Bayesian”
Foundations of Bayesianism, 2001, 24, 19-34 



BNs: Two aspects
 Building the model (Learning/Elicitation)

 Identify the nodes
 Structuring the graph
 Assigning Conditional Probability Distributions (CPDs)

 Using the model (Inference)
 Evidence propagation/belief updating – the process of computing 

the probability distribution, given the evidence
 Occurs via inference algorithms, e.g., exact inference, sampling

14
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BN pieces
 BN encodes

 Relevant variables and their states 
 (In)dependency among variables
 The simplified joint probability distribution of the system 

ࡼ ,ࢇ ,࢈ ,ࢉ ,ࢊ ࢋ ൌ ࡼ ࢋ ,ࢇ ,࢈ ,ࢉ ,ࢊ ∗ ࡼ ࢊ ,ࢇ ,࢈ ,ࢉ ∗ ࡼ ࢉ ,ࢇ ࢈ ∗ ࡼ ࢈ ࢇ ∗ ࡼ ࢇ

ൌ ࡼ	 ࢋ ,ࢉ ࢊ ∗ ࡼ ࢊ ࢈ ∗ ࡼ ࢉ ࢈ ∗ ࡼ ࢈ ࢇ ∗ ࡼ ࢇ
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BN language

 Consider the following simple net

 Nodes Time and Training are parent nodes for node Error; 
Error is their child node.

 Time and training are also (they have no parents)
 Time and training are conditionally independent

Error

Time Training



Law of Total 
Probability

Marginalizes out variables

Chain Rule (of 
Probability)

Factorizes a joint probability into conditional probabilities

Chain Rule (of 
BNs) (The above, 
with conditional 
independence)

Bayes’ 
Theorem

Allows forward and backward propagation of evidence

Underlying formulas
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P(A|B) = P(A) and thus P(A ∩ B) = P(A) · P(B)



Mathematical Formalism

 Assume binary states for all nodes (for now) 
 Time

 Training

 Error



To find the probability of Error=“yes”

Computational Steps: 
1. List all the combinations of the states of its parents,
2. Calculate the probabilities of these combinations 
3. For each combination of states calculate the conditional 

probability* of the states of error given the states of its 
parents

4. Compute the marginal probability of error 

* The conditional probabilities are interpreted as the 
degree of influence of various states of the parents on 
the states of error



To find the probability of Error=“yes”

 

Time Training 
Probability 

of 
Combination 

Conditional 
Probability of 
Error = YES 

Unconditional 
Probability of 

Z = z 
 

Good 
 

Applic. 
 
=.9*.8 0.1 p1 = .9*.8*.1=0.72 

 
Good Inapplic. 

 
=.9*.2 0.25 p2= .9*.2*.25=0.45 

 
Bad 

 
Applic. 

 
=.1*.8 0.3 p3= .1*.8*.3=0.024 

 
Bad Inapplic. 

 
=.1*.2 0.5 p4= .1*.2*.5=0.010 

 P = pi = .151 
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Inference in a BN 

 The fully quantified model represents the entirety of 
the prior information available to the analyst

 The analyst makes an observation about the state of 
one or more variables.

 We calculate the posterior probability of the rest of the 
network.

Prior
P(X) 

& =

Posterior
P(X|E) 

Evidence E 
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Types of reasoning/inference

Causal:
(Forward propagation;
Induction)

Evidential:
(Backward propagation;
Diagnosis)

Error

Time Training

Intercausal:

Error

Time Training

Error

Time Training

24



Forward reasoning
 Observing Time=Bad changes belief about error (P(Yes) goes 

from .151 to .34)

25

Prior:
(Before)

Posterior: 
(After) 

Observation: Time = Bad



Backward reasoning
 Observing Error=yes changes belief about both time and 

training

26

Prior:
(Before)

Posterior: 
(After) 

Observation: Error = yes



Intercausal reasoning (both)
 Observing Error=yes and Time = Good changes belief about 

training

27

Prior:
(Before)

Posterior: 
(After) 

Observations: Error = yes; 
Time = Good
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Example HRA method: SPAR‐H
1. Assess context in terms of PSFs 

(Performance Shaping Factors)

2. Calculate HEP (Human Error 
Probability)

 Available time
 Stress/stressors
 Complexity
 Experience/training

 Procedures
 Ergonomics/HMI
 Fitness for duty
 Work processes





8

1i

iPSFNHEPHEP
















Where NHEP = 0.01 for diagnosis tasks 
and 0.001 for action tasks
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Challenges for SPAR‐H

 Poor handling of uncertainty
 Is “unknown” really equivalent to “nominal”?

 Poor credibility (HRA in general, not just SPAR‐H) 
 In PRA, data is used to build credibility/confidence; 
 Very few HRA methods use data, and those that do use very little data
 Use of expert‐elicited probabilities

 System expert != probability expert.

 Traceability
 Tenuous link between inputs and outputs

 Subjective – your “high stress” might be my  “low stress” situation

30



SPAR‐H BN: Structure

 SPAR‐H method: 
 8 PSFs affect error probability 
 PSFs act independently on error (margin independence)
 Interdependency among PSFs is acknowledged, but not modeled

31



Quantification

ܲ ݎ݋ݎݎܧ

ൌ ෍ሾܲ ݎ݋ݎݎܧ ܶ݅݉݁, ,ݏݏ݁ݎݐܵ ,ݕݐ݅ݔ݈݁݌݉݋ܥ ,݊݅ܽݎܶݐݎ݁݌ݔܧ ,ݏ݁ݎݑ݀݁ܿ݋ݎܲ ,ܫܯܪ݋݃ݎܧ ݏܿ݋ݎܲ݇ݎ݋ܹ,ݏݏ݁݊ݐ݅ܨ
௉ௌி௦

∗ ܲ ܶ݅݉݁ ∗ ܲ ݏݏ݁ݎݐܵ ∗ ܲ ݕݐ݅ݔ݈݁݌݉݋ܥ ∗ ܲ ݊݅ܽݎܶݐݎ݁݌ݔܧ ∗ ܲ ݏ݁ݎݑ݀݁ܿ݋ݎܲ ∗ ܲ ܫܯܪ݋݃ݎܧ
∗ ܲ ݏݏ݁݊ݐ݅ܨ ∗ ܲሺܹݏܿ݋ݎܲ݇ݎ݋ሻሿ

Factorizing the joint distribution allows us to specify different parts of the 
model using different sources of information (including data)
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Quantification: P(PSFs)
PSF Source Probability distribution
P(Time)
5 states

NUREG/CR-6949

P(Stress)
3 states

NUREG/CR-6949

P(ExpertTrain)
3 states

Curve fit
(Available from 
plant data)

0

0.5

1

Expansive
time

Extra time Nominal
time

Barely
adeq. time

Inadequate
time

0

0.5

1

Nominal High Extreme

Similar	NUREG/CR‐6949	values	for:		PሺComplexityሻ, PሺProceduresሻ,	PሺErgoHMIሻ,	
PሺFitnessሻ,	PሺWorkProcsሻ

Next	steps:	Adding	simulator	data	to	this	model	ሺask	me	after	classሻ

0

0.5

1

High Medium Low
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HRA: BN version of SPAR‐H

ܲ ݎ݋ݎݎܧ ൌ ෍ ܲ ݎ݋ݎݎܧ ܶ݅݉݁, ,ݎݐܵ ,݈݌݉݋ܥ ,ݐݎ݁݌ݔܧ ,ݏܿ݋ݎܲ ,ܫܯܪ ݏܹܲ,ݐ݅ܨ ∗
௉ௌி௦

…ܲ ܶ݅݉݁ ∗ ܲ ݏݏ݁ݎݐܵ ∗ ܲ ݕݐ݅ݔ݈݁݌݉݋ܥ ∗ ܲ ݐݎ݁݌ݔܧ ∗ ܲ ݏܿ݋ݎܲ ∗ ܲ ܫܯܪ ∗ ܲ ݐ݅ܨ ∗ ܲሺܹܲݏሻ

Prior: SPAR-H
Data: simulator

Priors: Experts; Industry data

Groth, Katrina M. & Swiler, Laura P. Bridging the gap between HRA research and HRA 
practice: A Bayesian Network version of SPAR-H. Reliability Engineering and System Safety, 
2013, 115, 33-42. 34



BN benefits: addresses uncertainty

 Certainty cases:

 “Insufficient Information” cases:

HEP Identical to SPAR-H model

     

 ?    

HEP based on SPAR-H model AND 
prior distribution of unknowns

0
0.1
0.2
0.3
0.4
0.5
0.6

High Nominal Low

Uses prior distribution rather than assuming nominal 
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Causal reasoning (Just like SPAR‐H)

36

Prior:

Posterior:



Evidential reasoning (New, powerful!)

37

Prior:

Posterior:



Intercausal reasoning (Explaining away)

38

Prior:

Posterior (1):

Posterior (2):



Next steps: Extending the model

 Expanded model using additional Performance Influencing 
Factors (PIFs)

39



Even deeper: Internal algorithm
 Linking more detailed questions (purple) to the PSFs 

40
Top portion from: N. Ekanem, A model-based Human Reliability Analysis Methodology (PHOENIX method). 
Ph. D. Thesis. University of Maryland, 2013.



Implications for HRA

1. Using HRA data adds credibility
1. It's possible to use HRA data to update existing HRA methods.
2. It is inconsistent with PRA practice to NOT update HRA methods. 
3. You don't need perfect  HRA data to do the updating, if you separate out the 

probabilities of the PSFs from the probabilities of error, given PSFs. 

2. Expanding causal details adds traceability
1. Adding plant‐specific details makes it easier to assign PSF states (reduces 

subjectivity of PSF assignments)
2. Also adds value to users – more detailed identification of ways to prevent 

human errors

41
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Nuclear HRA: Data‐informed 
quantification model

ܲ ܧܨܪ ൌ ∑ ܲ ܧܨܪ ,1ܥܧ ,2ܥܧ ,3ܥܧ 4ܥܧ ∗௉ௌி௦ ܲ ݏܨܵܲ|1ܥܧ ∗
ܲ ݏܨܵܲ|2ܥܧ ∗ ܲ ݏܨܵܲ|3ܥܧ ∗ ܲ ݏܨܵܲ|4ܥܧ *PሺPSFsሻ Baseline: P(Err)

1.88E‐03Groth, Katrina  M. & Mosleh, Ali.  Deriving causal Bayesian networks from human reliability 
analysis data: A methodology and example model. Proceedings of the Institution of Mechanical 
Engineers, Part O: Journal of Risk and Reliability, 2012, 226, 361-379. 43



Eghbali GH. Causal model for air carrier maintenance. Report prepared for Federal 
Aviation Administration. Atlantic City, NJ: Hi-Tec Systems; 2006. 

Aircraft Maintenance Model

44
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PRA: Hydrogen dispensing

Haugom, G. P. & Friis-Hansen, P. Risk modelling of a hydrogen refuelling station using 
Bayesian network. International Journal of Hydrogen Energy, 2011, 36, 2389-2397.



PRA: Offshore oil maintenance errors

46

Vinnem, J. E.; Bye, R.; Gran, B. A.; Kongsvik, T.; Nyheim, O. M.; Okstad, E. H.; Seljelid, J. & Vatn, J. Risk 
modelling of maintenance work on major process equipment on offshore petroleum installations. Journal of 
Loss Prevention in the Process Industries, 2012, 25, 274-292 



Enable queries for specific parameters, faults, under uncertainty

BN‐Based “Smart SAMGs”

47

Encode results in a generic knowledge base

Simulate reactor physics for each scenario
Goal: Predict range of plant 
parameters for known system faults
Tool: MELCOR

Generate spectrum of accident scenarios 

Goal: Identify potential accident scenarios 
Tool: DDET/ADAPT simulation scheduler

Goal: Build a map between known 
parameters and known faults 
Tool: Bayesian Networks

Goal: Enable users to diagnose specific 
faults, identify key indicators, ask “what-if”
Tool: Probabilistic queries, differential 
diagnosis, value of information

Best add’l
parameter 

checks

Prob. of faults



“Smart SAMGS: Building a probabilistic 
map between plant conditions and 
plant parameters

48

Indicators to 
check (tests)

Equipment status 
(disease)

Groth, K. M.; Denman, M. R.; Cardoni, J. N. & Wheeler, T. A. Proof of Principle Framework for Developing Dynamic Risk-Informed 
Severe Accident Management Guidelines. SAND2013-8324. Sandia National Laboratories, 2013



Smart SAMG diagnosis

49

Prior (Unknown accident)

Posterior (Condition-specific)

A single key observation dramatically changes belief about 
ECCS status and value of additional tests

1.0% chance of SRV failure
0.1% chance of DV failure
0.1% chance of FV failure

~100% chance of SRV failure
<0.1% chance of DV failure
<0.1% chance of FV failure

Suggests checking 
RPV level (t0), 
RPV pressure (t0), 
Core Exit temp (t0)

Suggests checking 
RPV level (110, 
t157, t93)

Observation: RPV Level (time 0) = low

Implemented in GeNIe: http://genie.sis.pitt.edu/



Diagnostic value of tests

50

For FV failure For SRV failure

Different tests provide greater diagnostic power for different diseases 
(and some provide little value for either disease)

Suggested checks: Core exit temp 
(t46), RPV level(t0)

Suggested checks: RPV Press(t0), RPV 
level(t0)



Outline
• What is a BN?
• Building a BN
• Inference with BNs
• HRA Example
• A few BNs for PRA 
and safety

• Wrap‐up



If you want to get more complicated

 Continuous BNs
 Dynamic BNs
 Inference algorithms
 Value of information
 Bayesian updating the probabilities in the BN 

52



Software packages
 Tools with graphical user interfaces

 GeNIe (http://genie.sis.pitt.edu/)
 Hugin (http://www.hugin.com)
 Netica (http://www.norsys.com/)
 MSBNx (http://research.microsoft.com/en‐

us/um/redmond/groups/adapt/msbnx/)

 Other flexible tools
 Bayes Net Toolbox for Matlab (https://code.google.com/p/bnt/)

 Designed for Risk Analysts:
 Trilith (University of Maryland, contact Ali Mosleh or Katrina Groth)

 Integration of BNs with ET/FT

 AgenaRisk (Commercial package)
 (BNs only)

53



Key benefits
 Completeness: Includes all relevant variables, not just easily observable 

variables or variables where data is plentiful. Allows variables to be 
interdependent. 

 Documentation: Explicitly represents all variables and relationships deemed 
relevant to the problem space.

 Simplification: Decomposes problem into manageable pieces; simplifies 
acquisition of probability distribution.
 It’s easier to gather data about p(d|b) than about p(d|a,b,c…)

 Credibility: The BN allows analyst to assemble information from multiple 
sources into a single model.
 Populating the model with the most credible information (or expert)

 Modifiability: Analysts can update conditionally independent sections of the 
model without changing the entire model.  Model is expandable in scope and 
depth.

 Insight: Enables analysts to make predictions without perfect information; 
enables understanding of cause‐and‐effect behavior, performing “what‐if” 
analyses.  54



 BNs are  tool for:
 Encoding a knowledge base (via a series of conditional probabilities) 
 Performing probabilistic reasoning (induction, deduction) with the 

knowledge base 
 Benefits:

 Completeness & Insight: Includes all variables, not just those with data
 Simplicity: Decomposes a large problem into manageable pieces
 Credibility: Models built with info. & data from multiple sources
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ൌ ܲ ܥܧ ,1ܨܵܲ 3ܨܵܲ ∗ ܲ 3ܨܵܲ ,1ܨܵܲ 2ܨܵܲ
∗ ܲ 2ܨܵܲ ,1ܨܵܲ ܯܤ ∗ ܲ 1ܨܵܲ
∗ ܲ ܯܤ

ܲ ܥܧ ∩ 1ܨܵܲ ∩ 2ܨܵܲ ∩ 3ܨܵܲ ∩ ܯܤ

Summary



Probability is not really about numbers; 
it is about the structure of reasoning.  

Glenn Shafer
Rutgers University

Parting thought
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Thank you!
Katrina Groth

6231 – Risk and Reliability Analysis
kgroth@sandia.gov
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