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Ground Combat Fleet Modernization

 PEO GCS has a large, diverse fleet of vehicles (Abrams Tanks, Bradleys, 
Strykers, etc.) that it maintains and must upgrade over the next few decades 

 Sandia has developed multiple analytic tools tailored to different aspects of 
this management challenge, including:
 Whole System Trades Analysis Tool (WSTAT) examines decisions at the individual system 

level, presenting tradeoffs in design

 Capability Portfolio Analysis Tool (CPAT) examines decisions at the fleet level, attempting 
to find the best mixture of fixed systems through time

 How do we integrate WSTAT’s capability for system design tradeoffs and 
CPAT’s ability to modernize the entire fleet over time?

2

Work Sponsor: Shatiel Edwards, Program Executive Office 
Ground Combat Systems (PEO GCS)

Organizational Team: PEO GCS, Sandia National Labs, Booz Allen 
Hamilton, Teledyne Brown

Work Sponsor: Shatiel Edwards, Program Executive Office 
Ground Combat Systems (PEO GCS)

Organizational Team: PEO GCS, Sandia National Labs, Booz Allen 
Hamilton, Teledyne Brown



WSTAT Introduction
Whole System Trades Analysis Tool

 WSTAT looks at the design of a single system by examining many potential 
configurations in an effort to meet multiple competing requirements and 
objectives (e.g., performance, procurement cost, O&S cost, growth, and risk)

 WSTAT uses a multi-objective genetic algorithm to find the Pareto frontier of 
design “sweet spots” that balance these multiple competing criteria
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CPAT Introduction

 CPAT optimizes the mixture of systems within the entire fleet 
through time (the systems themselves are not modified)

 CPAT uses a single objective multi-stage mixed-integer linear 
programming (MILP) to perform this optimization
 Objective: maximize the sum of the performance of all systems in the 

fleet over the study horizon

Capability Portfolio Analysis Tool
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Two-Stage Analysis

 The need for both an optimized fleet and optimized systems
within that fleet has traditionally been approached in two stages
 One stage optimizes the individual systems configurations

 Only selected systems are passed to the next stage

 The second stage optimizes the mix of fixed systems within the fleet

 Currently, analysis stages do not communicate
 WSTAT does not know how configurations will be incorporated into the fleet

 CPAT does not know about all possible system configurations

Optimized system designs Optimized fleet

WSTATWSTAT
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 Individual systems are still optimized, but instead of selecting one system to 
pass to the next stage, all individual Pareto optimal solutions are passed

 Thousands of new system configurations for each system type are created in 
CPAT and the optimization chooses the best configuration for the fleet

Combined Analysis Process
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 Attempt to include each Pareto point as a 
unique system in CPAT

 This approach is not feasible. Each new 
system configuration in CPAT requires 
additional variables and constraints and the 
problem size becomes too big to solve

Notional
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 Individual systems are still optimized, but instead of selecting one system to 
pass to the next stage, all Pareto optimal solutions are passed

 To do this, the convex hull of the five dimensional Pareto region is formed

 For each individual system, CPAT is allowed to choose any set of parameters, 
performance, procurement cost, O&S cost, growth, and risk, within that 
system’s convex hull of the Pareto region

Combined Analysis Process
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 Fixed parameters for each system, such as 
cost and performance, are now variable, but 
restricted to that system’s Pareto frontier

 CPAT chooses individual system 
configurations in order to “holistically” 
optimize the entire fleet
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 �� is the performance of system s

 �� is the sustainment cost of system s

 ��,� is the number of systems s in the fleet at time period t

 �� is the budget for time period t
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Example Fleet Optimization Problem

Max ∑ �� ∗ ��,��,�

s.t. ∑ �� ∗ ��,� ≤ ��			∀	��

��,�	�������		∀		�, �

 Consider the following Pareto 
frontier for system s in the two 
dimensions of performance and 
sustainment cost

 Also, consider the following 
simplified fleet modernization 
problem with the goal of 
optimizing performance limited 
by only budget constraints

Sustainment Cost
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 �� is the performance of system s

 �� is the sustainment cost of system s
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 �� is the budget for time period t
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Example Fleet Optimization Problem

Max ∑ �� ∗ ��,��,�

s.t. ∑ �� ∗ ��,� ≤ ��			∀	��

��,�	�������		∀		�, �

 Consider the following Pareto 
frontier for system s in the two 
dimensions of performance and 
sustainment cost

 Also, consider the following 
simplified fleet modernization 
problem with the goal of 
optimizing performance limited 
by only budget constraints

Sustainment Cost

(��, ��)

Typically, only one system configuration 
is selected and given to the fleet 
optimization problem
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 This fleet optimization problem has bilinear terms �� ∗ ��,� and �� ∗ ��,�
and is difficult to solve

 One solution is to linearize these non-linear terms
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Non-Linear Optimization Problem

Max ∑ �� ∗ ��,��,�

s.t. ∑ �� ∗ ��,� ≤ ��			∀	��

���� + ���� ≤ ��		∀	�
��,�	�������		∀		�, �

 The constraints of the convex hull 
of the Pareto region for each 
system are represented using 
matrices as 

���� + ���� ≤ ��		∀	�

 The parameters �� and �� for each 
system s are now variable

 The non-linear fleet optimization 
problem is

Sustainment Cost
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 This fleet optimization problem has bilinear terms �� ∗ ��,� and �� ∗ ��,�
and is difficult to solve

 One solution is to linearize these non-linear terms

11

Non-Linear Optimization Problem

Max ∑ �� ∗ ��,��,�

s.t. ∑ �� ∗ ��,� ≤ ��			∀	��

���� + ���� ≤ ��		∀	�
��,�	�������		∀		�, �

 The constraints of the convex hull 
of the Pareto region for each 
system are represented using 
matrices as 

���� + ���� ≤ ��		∀	�

 The parameters �� and �� for each 
system s are now variable

 The non-linear fleet optimization 
problem is

Sustainment Cost

The whole Pareto frontier is included 

point in the convex hull

The whole Pareto frontier is included 
and the optimization can choose any 
point in the convex hull
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Linearizing Non-Linear Terms
 Various ways exist to linearize the bilinear terms �� ∗ ��,� and �� ∗ ��,�

 One such way using unary expansions (Gupte, et al. 2013) of the integer 
variables ��,� and replacing �� ∗ ��,� with ��,� for each s and t requires 
the following constraints

c�����,�,� ≤ � ∗ ��������,�,�																								∀	�, �, �

c�����,�,� ≤ ��																																																				∀	�, �, �

c�����,�,� ≥ �� 	− � ∗ 1 − ��������,�,� 		∀	�, �, �

∑ ��������,�,�� ≤ 1																																											∀	�, �

��,� = ∑ � ∗ ��������,�,�																																	∀	�, ��

��,� = ∑ � ∗ ������,�,�		� 																																	∀	�, �

 This method requires � ∗ � ∗ � additional binary and continuous 
variables which can be computational difficult

 Techniques to relax these binary variables to be continuous with the 
addition of � ∗ � ∗ log�(�) binary variables and constraints (Adams and 
Henry 2012) did not help
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Linearizing Non-Linear Terms
 The technique we used is a binary expansion (Gupte, et al. 2013) of the 

integer variables ��,�

 Replace �� ∗ ��,� with ��,� for all s and t and add the following set of 

constraints

c�����,�,� ≤ � ∗ ��������,�,�																									∀	�, �, �

c�����,�,� ≤ ��																																																					∀	�, �, �

c�����,�,� ≥ �� 	− � ∗ 1 − ��������,�,� 		∀	�, �, �

��,� = ∑ 2� ∗ ��������,�,�																															∀	�, ��

��,� = ∑ 2� ∗ ������,�,�		� 																															∀	�, �

 � ∗ � ∗ log�(�) auxiliary binary variables and continuous variables are 
required for an exact representation of the product term which was less 
computationally difficult

 A similar set of constraints and variables are used to replace the non-
linear terms �� ∗ ��,�
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Solving CPAT Optimization
 CPAT uses CPLEX 12.6 under the hood to solve the MILP

 The model was written in OPL

 Sample test problem included
 ~ 70 systems

 ~ 30 time periods

 ~ 70,000 constraints 

 ~ 20,000 variables

 We found the Pareto frontier for 3 systems and selected 25 non-
dominated points
 ~ 5,000 constraints 

were add for 

these 3 systems

 ~ 2,000 variables 

were add for 

these 3 systems

 Solution times 

under an hour
Notional
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Numerical Instability Issues
 CPAT now contains more information about the Pareto frontiers and is 

represented by a MILP solved using CPLEX 12.6

 After implementing this code we noticed that solving the same problem 
resulted in different results
 Parallel optimization was utilized so we expected variation in the branch-and-bound 

tree, but did not expect optimal solutions to differ more than the CPLEX tolerance

 With parallel optimization disabled, changes to parameter settings also resulted in 
different optimal solutions

 Enabling the option “kappastats” in CPLEX revealed the 
nature of the problem
 Kappastats evaluates the condition number of the optimal bases 

during the solution of an MILP model

 Stable Bases (condition number less than 1e7)

 Suspicious Bases (condition number between 1e7 and 1e10)

 Unstable Bases (condition number between 1e10 and 1e14)

 Ill-Posed Bases (condition number greater than 1e14)
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Numerical Instability Issues
 Our test problem had a high 

percentage of bases matrices 
with unstable condition 
numbers indicating severe 
numerical instability issues

Stable 0.0%

Suspicious 16.8%

Unstable 82.5%

Ill-Posed 0.7%

 These issues resulted from the vast number of Big M constraints added
������,�,� ≤ � ∗ ��������,�,�																									∀	�, �, �

������,�,� ≥ �� 	− � ∗ 1 − ��������,�,� 		∀	�, �, �

 Costs in the Army acquisition problem ran into the tens of millions so M
was in that range which was orders of magnitude higher than other 
coefficients in the problem

 Rescaling the costs 
resulted in a majority of 
bases matrices having 
stable condition 
numbers

Stable 90.3%

Suspicious 9.3%

Unstable 0.4%

Ill-Posed 0.0%
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Memory Issues
 Further testing revealed issues with the constraint matrix representing 

the convex hull of the Pareto frontier
���� + ���� ≤ ��		∀	�

 The constraint matrices �� and �� were almost fully dense
 There were also a substantial number of coefficients that were close to zero (i.e., 

within 1e-4)

 The number of constraints from the convex hull of the Pareto frontier 
added to the problem is limited by memory.

 Having more than 10,000 convex hull constraints resulted in an out-of-
memory error in CPLEX 

 The limitation on constraints also limits the number of Pareto points 
that could be included in the optimization

 This limits the richness of solutions provided by the Pareto frontier



 If the point select is not on the Pareto frontier, it is possible to go back to 
the WSTAT for the system and search for a configuration that matches 
the performance and cost     
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Non-Pareto Point Issue
 The fleet optimization problem is 

allowed to choose any point in the 
convex hull of the Pareto frontier

 The optimization may select a 
point that is no where near a 
Pareto point

 The Pareto frontier for each 
system is a representation of the 
true Pareto frontier

 If the point looks Pareto optimal it 
is possible to go back to the 
WSTAT optimization and try to fill 
in some more Pareto points

Sustainment Cost

The optimization may pick a solution 
that is not a Pareto point
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 The disjoint polytopes may need to 
be refined until the optimization 
selects a corner point
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Non-Pareto Point Issue
 In order to prevent the 

optimization from choosing a non-
Pareto point we could take the 
union of disjoint polytopes and 
model using disjunctive 
programming (Balas 1979)

 Each region is made of a set of 
constraints ��� ≤ ��

 We multiply a binary variable �� by 
each region and linearize Sustainment Cost

The optimization is forced to pick a 
point in one of the disjoint polytopes

���� ≤ ����	∀�

���
�

= 1

���

�

= �

�� 	������

Pe
rf

o
rm

an
ce



Conclusions
 It is possible to combine separate optimization approaches in order to 

provide a “holistic” fleet optimization problem

 Combining CPAT and WSTAT answers new questions that simultaneously 
combine elements of system and fleet design

 Numerical issues must be address for consistent results due to numerous 
big M constraints added to the formulation

 Memory issues can also be prohibitive on the size of the Pareto region 
incorporated into the fleet optimization problem

 Need to determine the best way to handle system configurations that are 
not Pareto optimal solutions
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