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Ground Combat Fleet Modernization .

Work Sponsor: Shatiel Edwards, Program Executive Office
Ground Combat Systems (PEO GCS)

4 Organizational Team: PEO GCS, Sandia National Labs, Booz Allen
Hamilton, Teledyne Brown

= PEO GCS has a large, diverse fleet of vehicles (Abrams Tanks, Bradleys,
Strykers, etc.) that it maintains and must upgrade over the next few decades

= Sandia has developed multiple analytic tools tailored to different aspects of
this management challenge, including:

= Whole System Trades Analysis Tool (WSTAT) examines decisions at the individual system
level, presenting tradeoffs in design

= Capability Portfolio Analysis Tool (CPAT) examines decisions at the fleet level, attempting
to find the best mixture of fixed systems through time

= How do we integrate WSTAT’s capability for system design tradeoffs and
CPAT’s ability to modernize the entire fleet over time?




WSTAT Introduction @
|

Whole System Trades Analysis Tool
=  WSTAT looks at the design of a single system by examining many potential
configurations in an effort to meet multiple competing requirements and
objectives (e.g., performance, procurement cost, O&S cost, growth, and risk)

=  WSTAT uses a multi-objective genetic algorithm to find the Pareto frontier of

design “sweet spots” that balance these multiple competing criteria
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E CPAT Introduction ) .
Capability Portf;Iio Analysis Tool

= CPAT optimizes the mixture of systems within the entire fleet
through time (the systems themselves are not modified)

= CPAT uses a single objective multi-stage mixed-integer linear
programming (MILP) to perform this optimization

= QObjective: maximize the sum of the performance of all systems in the
fleet over the study horizon
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Two-Stage Analysis ) .

= The need for both an optimized fleet and optimized systems
within that fleet has traditionally been approached in two stages

= One stage optimizes the individual systems configurations
= Only selected systems are passed to the next stage

= The second stage optimizes the mix of fixed systems within the fleet

Optimized fleet

Optimized system designs

= Currently, analysis stages do not communicate

=  WSTAT does not know how configurations will be incorporated into the fleet

= CPAT does not know about all possible system configurations




Combined Analysis Process iL

= Individual systems are still optimized, but instead of selecting one system to
pass to the next stage, all individual Pareto optimal solutions are passed

= Thousands of new system configurations for each system type are created in
CPAT and the optimization chooses the best configuration for the fleet

Notional
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= Attempt to include each Pareto point as a
unique system in CPAT

=  This approach is not feasible. Each new

system configuration in CPAT requires L
additional variables and constraints and the i
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Combined Analysis Process ) e
= Individual systems are still optimized, but instead of selecting one system to
pass to the next stage, all Pareto optimal solutions are passed

= To do this, the convex hull of the five dimensional Pareto region is formed

=  For each individual system, CPAT is allowed to choose any set of parameters,
performance, procurement cost, O&S cost, growth, and risk, within that
system’s convex hull of the Pareto region
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Fareto Optimal Solutions
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= Fixed parameters for each system, such as
cost and performance, are now variable, but
restricted to that system’s Pareto frontier

= CPAT chooses individual system
configurations in order to “holistically”
7 optimize the entire fleet
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Example Fleet Optimization Problem @gx.

= Consider the following Pareto
frontier for system s in the two
dimensions of performance and
sustainment cost

= Also, consider the following
simplified fleet modernization
problem with the goal of
optimizing performance limited
by only budget constraints

Performance
©

Sustainment Cost

Max s Ds * s
s.t. ZS Cs * iS,t < bt Vit
Is¢ Integer V s,t

" p, is the performance of system s

" (,is the sustainment cost of system s

= ig.isthe number of systems s in the fleet at time period t
= b, is the budget for time period t



Example Fleet Optimization Problem @gx.

= Consider the following Pareto
frontier for system s in the two

dimensions of performance and § ° °
sustainment cost 2 o ©

= Also, consider the following /‘é’ (¢s) Ds)
simplified fleet modernization &

problem with the goal of
optimizing performance limite
by only budget constraints

Sustainment Cost
Max Zs,t pSM
st. Yscs &7 =D; Vt

Is¢ Integer V s,t S ' .

is selected and given to the fleet

optimization problem

" p, is the performance of system s

" (,is the sustainment cost of system s
= ig.isthe number of systems s in the fleet at time period t
= b, is the budget for time period t



Non-Linear Optimization Problem (@i,

= The constraints of the convex hull
of the Pareto region for each
system are represented using
matrices as
A;p; + Bseg, < dg Vs
"= The parameters ps and ¢, for each
system s are now variable

Performance
©

= The non-linear fleet optimization
problem is .
Max s Ds * st Sustainment Cost
s.t. ZS Cg * is,t <bs Vt
A;ps + Bscg <dg Vs
Is¢ Integer V s,t

= This fleet optimization problem has bilinear terms pg * is and ¢g * ig;
and is difficult to solve
=  (One solution is to linearize these non-linear terms

10
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Non-Linear Optimization Problem
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Linearizing Non-Linear Terms ) e,

= Various ways exist to linearize the bilinear terms pg * ig ; and ¢ * ig¢

= One such way using unary expansions (Gupte, et al. 2013) of the integer
variables ig ; and replacing ¢ * i; ; with wg ; for each s and t requires
the following constraints

cContg,p < M * cBinarys ¢ Vs, tb
cContgsp < Cg Vs, tb

cContgep = Ccg — M * (1 — cBinaryS,t,b) Vs, tb

LpCBinarys ) <1 Vs,t
ist = Lpb * cBinaryg Vs,t
Wse = 2p b * cContgy Vs,t

= This method requires s * t * U additional binary and continuous
variables which can be computational difficult

= Techniques to relax these binary variables to be continuous with the

addition of s x t * log, (U) binary variables and constraints (Adams and

Henry 2012) did not help
12




Linearizing Non-Linear Terms

mh

= The technigue we used is a binary expansion (Gupte, et al. 2013) of the

integer variables ig ;

= Replace ¢ * ig with wg ; for all s and t and add the following set of

constraints

cContgrp < M * cBinarys ¢ Vs, tb
cContgsp < Cg Vs, tb
cContgrp = cg — M * (1 — cBinaryS,t,b) Vs, tb
is: = Yp 20 * cBinarys . Vs,t
wgr = 2 20 % cContg ), Vs,t

= s*t*log,(U) auxiliary binary variables and continuous variables are

required for an exact representation of the product term which was less

computationally difficult

= Asimilar set of constraints and variables are used to replace the non-

linear terms pg * i,

13
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Solving CPAT Optimization ) e,

=  CPAT uses CPLEX 12.6 under the hood to solve the MILP

= The model was written in OPL

= Sample test problem included
= ~ 70 systems
= ~30time periods
=~ 70,000 constraints
= ~ 20,000 variables

= We found the Pareto frontier for 3 systems and selected 25 non-

dominated points ERETEEEETE

= ~ 5,000 constraints
were add for

Pareto Optimal Solutions
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these 3 systems
= ~ 2,000 variables -
were add for

these 3 systems

= Solution times
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Numerical Instability Issues

mh

=  CPAT now contains more information about the Pareto frontiers and is

represented by a MILP solved using CPLEX 12.6

Sandia
National
Laboratories

= After implementing this code we noticed that solving the same problem

resulted in different results

= Parallel optimization was utilized so we expected variation in the branch-and-bound

tree, but did not expect optimal solutions to differ more than the CPLEX tolerance
= With parallel optimization disabled, changes to parameter settings also resulted in

different optimal solutions

= Enabling the option “kappastats” in CPLEX revealed the

nature of the problem

= Kappastats evaluates the condition number of the optimal bases

during the solution of an MILP model
= Stable Bases (condition number less than 1e7)

= Suspicious Bases (condition number between 1e7 and 1e10)
= Unstable Bases (condition number between 1e10 and 1e14)
= |ll-Posed Bases (condition number greater than 1e14)

15




Numerical Instability Issues ) e,

= Qur test problem had a high Stable 0.0%
percentage of bases matrices Suspicious 16.8%
with unstfabI-e cqndltlon Unstable 82 59,
numbers indicating severe

llI-Posed 0.7%

numerical instability issues

= These issues resulted from the vast number of Big M constraints added
cContgep, < M * cBinaryg Vs, tb
cContgep = cg — M * (1 — cBinaryS,t,b) Vs, tb

= Costs in the Army acquisition problem ran into the tens of millions so M

was in that range which was orders of magnitude higher than other
coefficients in the problem

Stable 90.3% = Rescaling the costs
resulted in a majority of

Suspicious 9.3% , _
. bases matrices having
Unstable 0.4% stable condition

llI-Posed 0.0% numbers

16
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Memory Issues ) e

= Further testing revealed issues with the constraint matrix representing
the convex hull of the Pareto frontier
Ap; +B,c, <dg Vs
"= The constraint matrices A and B were almost fully dense
= There were also a substantial number of coefficients that were close to zero (i.e.,
within 1e-4)
= The number of constraints from the convex hull of the Pareto frontier
added to the problem is limited by memory.

= Having more than 10,000 convex hull constraints resulted in an out-of-
memory error in CPLEX

= The limitation on constraints also limits the number of Pareto points
that could be included in the optimization

= This limits the richness of solutions provided by the Pareto frontier




ia
ional
Laboratories

Non-Pareto Point Issue
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Non-Pareto Point Issue
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= |norder to prevent the
optimization from choosing a non-
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= Each region is made of a set of
constraints A;x < b;

=  We multiply a binary variable 4; by

each region and linearize Sustainmenyt Cost
iW; < bjA; Vi e optimization is forced to pick a
oint in one of the disjoint polytopes
Y=
i = The disjoint polytopes may need to
wp =X e refined until the optimization
Lo selects a corner point
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Conclusions )

= |tis possible to combine separate optimization approaches in order to
provide a “holistic” fleet optimization problem

=  Combining CPAT and WSTAT answers new questions that simultaneously
combine elements of system and fleet design

= Numerical issues must be address for consistent results due to numerous
big M constraints added to the formulation

= Memory issues can also be prohibitive on the size of the Pareto region
incorporated into the fleet optimization problem

= Need to determine the best way to handle system configurations that are
not Pareto optimal solutions

)=
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