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A Crack In A Brittle Material Is A Red Flag
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Ceramic Brittle Failure Is Distinctly Different From Metal Ductile Failure

“catastrophic” brittle failure

@ high strength, low ductility, low toughness
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“graceful” ductile failure
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Brittle materials are susceptible to sudden catastrophic failure




Sandia’s Interests & Capabilities To Predict (i

Brittle Failure Align With The National Challenge
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The Challenge

Brittle Failure
Prediction Is A
Ceramic Material
Grand Challenge

Brittle Materials
Performance &
Reliability Are Critical
To Mission Success
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Current State: Qualitative Stress-Based ) i
Predictions (We Design To Avoid High Stress)
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Qualitative prediction
~—___ | Of brittle failure based

- _ _ on engineering
o A qualitative failure metric iudgment/experience

J
- “Insight” based on practical experience \

/

o Engineering judgment has deficiencies
- Neglects flaw populations, heterogeneities, & interfaces
- Does not incorporate fracture mechanics
- Ignores process history and handling effects




Future State: Quantitative Mechanics-Based
Prediction of Brittle Failure & Reliability
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Engineering & Materials Research Foundations (i)
Will Develop New Capability To Predict Brittle Failure

* Vision
o Transition from Qualitative stress-based engineering judgment to Quantitative
mechanics-based failure prediction.
* Create a science-basis for materials performance & lifetime reliability.

e Goal

o Develop the capability to predict & control the performance & lifetime reliability
of brittle materials in high-consequence applications.
« Understand & control design, materials, and process variability & margins.

« Approach

o Develop foundational materials characterization & modeling S&T comprising
stress/loading, fracture mechanics, & structure/properties to quantify
performance & reliability. (the S&T “highway’)

 Leverage & enhance SNL core capabilities in characterization & modeling.

o Develop S&T enabled engineering solutions. (the “off ramps’)
» Materials qualification & specifications.
» Crack acceptance criteria.




Coupled Experiment & Modeling Are Advancing (rn) i
Three Key Areas To Predict Brittle Failure & Reliability

Future State (2020): Quantitative P
mechanics-based failure & Quantitative brittle failure
T .. & lifetime reliability prediction
reliability prediction. / , N

process-structure-
property relations.

Determine & model }

Stress determination

considering materials,

processing & loading
history.

Crack initikti Current State (201 3): Qualita.tive
stability, & growth stress-based failure analysis
(i.e., engineering judgment).

: 6"/7 .
Fracture mechanics /0@




Stress/Loading Tasks & Timeline Of Major
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S&T Advances To Address Key Engineering Questions

Short-Term, Fast
Answer, Specific
Application,
Existing S&T

>Engineering <

Science

N

Slower Developing,
Advanced S&T,
Broad Application

0-3 Yrs

What affects the

residual stress in

my part? What is
critical?

* Incorporate design
& physically-based
materials behavior
& variability into
stress modeling.

* Determine the
sensitivity of model
input parameters &
assumptions.

Quantify design,
materials
behavior, and
sensitivity in FE
stress modeling.

1-5Yrs

What is the
residual stress in
my part? Is it
acceptable?

* Develop new
methodology to
determine stress.

» Determine the
effects of assembly,
handling, testing, &
use on residual
stress.

» Couple analyses to
better predict
additive stress.

Quantify stress
prediction margins
& uncertainty.

3-7 Yrs

How can | improve
performance &
reliability?

» Determine the
effects of
processing &
assembly on
Structure, properties
& residual stress.

» Determine if & how
micro structure &
stress change with
time.

Quantify
process-structure-
property-stress
relationships.



BritMAPP Goals Will Be Realized Via Integrated ()
Advances In Fracture, Stress, & Structure/Properties
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1. Understand and predict crack
growth in brittle materials.

« Develop and validate improved
constitutive property models ~7
to better predict residual stress.

) 0 50 1_60 1%0 200 250
+ Develop and verify FE-based %)

modeling for crack propagation. Cooled SS/borosilicate beams generate crack growth

 Identify, implement, & validate a —
fracture criterion.
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2. Understand and predict strength :oﬁ e, |
variability in brittle materials.
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« Strength/variability depends on: =
< Flaw size/distribution (depends 0 LS ]
on processing, forming, handling) vo 08 1~0h(1~5) 20 % et o

< Toughness and toughening Notch Strength (6P
mechanisms (depends on scale;

Plane Kc (MPa-m'?2) source

meso/mlcro/nano-structurc_a) > W 821007 e

< Stress (depends on material (110) 0.9040.11 Chen
properties/behavior, component 0.910.09 Yasutake
geometry and extrinsic loading) — s (100) 0.9540.05 Chen
0.95+0.10 Yasutake

SUMMIT V" polycrystalline silicon
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Technical Work

Focus Area: Stress/Loading

Enabling S&T:
Stress Determination (Modeling & Characterization)
Property/Behavior Characterization

Engineering Applications:
Glass-Ceramic and Glass-to-Metal (GC/GtM) Seals
Brazed Alumina Connectors



S&T Advances Are Required To Quantify ) detos
Uncertainty & Margins For Brittle Failure in GtM Seals

Routinely used
Newly Implemented

FE Stress Modeling for Glass-to-Metal (GtM) Seals

shell plasticity material — Missing/Incomplete
i i roperty data
viscoelastic glass s,(T), E(T) property
interface mechanics elastic elass pin plasticity st:uctuzal .relﬁ.xitlon
bonding, friction, g s,(T), E4(T) glass strain history

perhaps E(T)

properties, voids,

inhomogeneit .
interfaces eun(T) solidification
surface wetting
i . . assumed stress-free
glass meniscus idealized N
geometry temperature, T, crack
initiation
thermal history
neglect processing history estimate crack initiation
experimental (spatially uniform temps) rule of thumb ~ 5 ksi crack.
validation propagation
next level assembly
coupled thermal-mechanical weld distortion, linear elastic fracture
analysis, T(x, t) heating mechanics




Metal Constitutive Behavior Is Being Characterizedr

And Modeled To Support FE Stress Modeling
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Glass Constitutive Behavior |Is Being Characterized () i
And Modeled To Support FE Stress Modeling
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SPEC Viscoelastic Model Predictions Of Strain () i
Are Consistent With Experimental Measurements

Comparison of Model

Step Temperature Experiment Prediction and Experiment
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Stress & Fracture In Model Bi-Material GtM Seals(g) s
Are Being Characterized To Test/Refine Modeling

Bi-Material Beams

» Bond glass to stainless steel (SS)
« Measure beam curvature on cooling
« Compare measured deflection to predictions

Residual Stress Predictions
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Model Stress/Strain Experiments Provide Insight (i) i
Into Design Sensitivity And Changes With Machining

!

Concentric GTM seal with

strain gauges on shell
Hoop Strain vs. Slit Depth
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Coupled Experiments & Modeling
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Enable Better Stress Determination

Stress (MPa)

Experimental assumptions

80
—=— 0, Model (FEA)
s0 |—=— Ogo Model (FEA)
= o, Exp (indentation)
20 { ™ Oy Exp (indentation) ’
//
/7
20 - //
0 :____‘___l_==:x::ij:j:-’"lfff .
20 , ' | |
0 1 2 3 A

* do not measure stress directly
» complicated gradients & tensorial
nature of stress

Modeling assumptions
* idealized geometry
* l|deal/bulk material behavior
+ processing (e.g. uniform
temperature)



Raman Spectroscopy Is Being Developed

Sandia
"1 National
Laboratories

To Determine Residual Stress Across Length Scales
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Technical Work

Focus Area: Stress/Loading

Enabling S&T:

Stress Modeling & Measurement, Property Determination,
Fracture Testing/Analysis, and Fracture Mechanics

Engineering Application:
GtM Seal Design, Process Sensitivity,
& Performance Assessment



GtM Seal Design Variability & Sensitivity
Was Assessed Using FE Stress Modeling
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v Stress In GCtM Seals Was Mapped ) s
Using Indentation Crack Length Measurements

' 68 66 64 62 60 58 56

500 um

60.9 63.5 b 59.8
61.9 60.1 £ 60.1




Sandia
m National
Laboratories

Technical Work

Focus Area: Fracture Mechanics

Enabling S&T:
Crack Propagation, Failure & Reliability Testing & Modeling,
Property Characterization

Engineering Applications:
GtM Seals and Brazed Alumina Connectors




Model Bi-Material Beam Experiments Are Being ) i
Designed/Conducted To Understand Crack Propagation

Specimen with different CTE materials to
generate interface stress/crack growth.

Photoelasticity analysis shows residual stress
metal
- = —
glass

\\ Steady State K,= 0 Position
1
Crack Path

%rvack Origin

« The crack grows rapidly once initiated

~Y

Edge crack initiated

o,

« Initial tests show expected behavior.

« But crack only roughly planar with
out-of-plane tilt




24

Modeling Capabilities Were Tested/Refined By
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Calculating The Force Required To Propagate A Crack

% difference
p/2 p/2 Method Alb F(a/b) | from reference
S i solution
¥_ | J-integral 0.01250 1.490 -0.3
X b | Jintegral 0.00625 | 1.493 0.1
L CZ analysis 0.01250 1.453 -2.8
CZ analysis 0.00625 1.486 -0.5
o Semi-analytical solution for plane stress G=K?/E
2b°
F(alb)= VEG/3.14 a
3P(L-S5)
o Excellent agreement with reference solution
_ _ (Cohesive Zone, CZ, model requires finer mesh).
standard mesh refined mesh with

with A/b = 0.0125 Alb = 0.00625

FEA mesh used in calculations has:

a=1.5 mm, b=3 mm, L=40 mm, S=20 mm

» J-integral is a one step, linear-elastic (LE) solution.
+ CZ length with A/b= .001250 only 2 elements long.

« CZ analysis is nonlinear, multi-step crack growth.
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Technical Work

Focus Area: Structure/Properties

Enabling S&T:
Property & Microstructure Characterization

Engineering Applications:
Crystalline Ceramics
(e.g., in GCtM Seals, Alumina Insulators, etc.)



Understanding/Controlling Process-Structure- (i) i
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Property Relations Will Be Critical To Failure Prediction
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Experimentally-Validated Modeling Is Moving Us ) tima
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oward Quantitative Brittle Failure/Reliability Prediction
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