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A Crack In A Brittle Material Is A Red Flag 

high	
  strength,	
  low	
  duc=lity,	
  low	
  toughness	
  

high	
  strength,	
  high	
  duc=lity,	
  
high	
  toughness	
  

“catastrophic”	
  briQle	
  failure	
  

Strain 

S
tre

ss
 

“graceful”	
  duc-le	
  failure	
  

Ceramic Brittle Failure Is Distinctly Different From Metal Ductile Failure 
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Sandia’s Interests & Capabilities To Predict 
Brittle Failure Align With The National Challenge 
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Current State: Qualitative Stress-Based 
Predictions (We Design To Avoid High Stress) 

o  A qualitative failure metric  
•  “Insight” based on practical experience 

o  Engineering judgment has deficiencies  
•  Neglects flaw populations, heterogeneities, & interfaces 
•  Does not incorporate fracture mechanics 
•  Ignores process history and handling effects 4	
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Future State: Quantitative Mechanics-Based 
Prediction of Brittle Failure & Reliability 

Stress Structure/
Properties 

Fracture 
Mechanics 

Quantitative 
mechanics-based 

brittle failure prediction 
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K ~  σ a1/2  ~  KIC 
 



Engineering & Materials Research Foundations 
Will Develop New Capability To Predict Brittle Failure 

•  Vision 
o  Transition from Qualitative stress-based engineering judgment to Quantitative 

mechanics-based failure prediction. 
• Create a science-basis for materials performance & lifetime reliability. 

•  Goal 
o  Develop the capability to predict & control the performance & lifetime reliability 

of brittle materials in high-consequence applications. 
• Understand & control design, materials, and process variability & margins. 

•  Approach 
o  Develop foundational materials characterization & modeling S&T comprising  

stress/loading, fracture mechanics, & structure/properties to quantify 
performance & reliability. (the S&T “highway”) 

•  Leverage & enhance SNL core capabilities in characterization & modeling.  

o  Develop S&T enabled engineering solutions. (the “off ramps”) 
• Materials qualification & specifications. 
• Crack acceptance criteria. 
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Coupled Experiment & Modeling Are Advancing  
Three Key Areas To Predict Brittle Failure & Reliability 

Current State (2013): Qualitative 
stress-based failure analysis      
(i.e., engineering judgment). 

Future State (2020): Quantitative  
mechanics-based failure & 

reliability prediction. 

Stress determination 
considering materials, 
processing & loading 

history. 

Quantitative brittle failure  
& lifetime reliability prediction 

Determine & model 
process-structure-
property relations. 

Fracture mechanics  
Crack initiation, 

stability, & growth 

Structure/Properties 
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Stress/Loading Tasks & Timeline Of Major 
S&T Advances To Address Key Engineering Questions 

Short-Term, Fast 
Answer, Specific 

Application, 
Existing S&T  

Slower Developing, 
Advanced S&T, 

Broad Application 

3-7 Yrs 
 

How can I improve 
performance & 

reliability?  
 

• Determine the 
effects of 
processing & 
assembly on 
structure, properties 
& residual stress. 

• Determine if & how 
micro structure & 
stress change with 
time. 

Quantify  
process-structure-

property-stress 
relationships. 

0-3 Yrs 
 

What affects the 
residual stress in 
my part? What is 

critical?  
 

• Incorporate design 
& physically-based 
materials behavior 
& variability into 
stress modeling. 

• Determine the 
sensitivity of model 
input parameters & 
assumptions. 

 
 

Quantify design, 
materials 

behavior, and  
sensitivity in FE 
stress modeling. 

1-5 Yrs  
 

What is the 
residual stress in 

my part? Is it 
acceptable?  

 

• Develop new 
methodology to 
determine stress. 

• Determine the 
effects of assembly, 
handling, testing, & 
use on residual 
stress. 

• Couple analyses to 
better predict 
additive stress. 

Quantify stress 
prediction margins 

& uncertainty. 
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1.  Understand and predict crack 
growth in brittle materials. 

•  Develop and validate improved 
constitutive property models            
to better predict residual stress. 

•  Develop and verify FE-based 
modeling for crack propagation. 

•  Identify, implement, & validate a 
fracture criterion.  

BritMAPP Goals Will Be Realized Via Integrated 
Advances In Fracture, Stress, & Structure/Properties 

Plane KIC (MPa-m1/2) source 
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2.  Understand and predict strength 
variability in brittle materials. 

•  Strength/variability depends on: 
²  Flaw size/distribution (depends       

on processing, forming, handling) 
²  Toughness and toughening 

mechanisms (depends on scale;  
meso/micro/nano-structure)  

² Stress (depends on material 
properties/behavior, component 
geometry and extrinsic loading) 



Technical Work 
 

Focus Area: Stress/Loading 
 

Enabling S&T:   
Stress Determination (Modeling & Characterization) 

Property/Behavior Characterization 
 

Engineering Applications:  
Glass-Ceramic and Glass-to-Metal (GC/GtM) Seals 

Brazed Alumina Connectors 
 10	
  



bonded	
  
interfaces	
  

shell	
  plas-city	
  
sy(T),	
  EH(T)	
  

pin	
  plas-city	
  
sy(T),	
  EH(T)	
  

CTE	
  prescribed	
  
eth(T)	
  

assumed	
  stress-­‐free	
  
temperature,	
  Tset	
  

neglect	
  processing	
  history	
  
(spa-ally	
  uniform	
  temps)	
  

es-mate	
  crack	
  ini-a-on	
  
rule	
  of	
  thumb	
  ~	
  5	
  ksi	
  	
  

interface	
  mechanics	
  
bonding,	
  fric-on,	
  
proper-es,	
  voids,	
  
inhomogeneity	
  

surface	
  we^ng	
  
glass	
  meniscus	
  

viscoelas-c	
  glass	
  

structural	
  relaxa-on	
  
glass	
  strain	
  history	
  

viscoelas-c	
  
solidifica-on	
  

thermal	
  history	
  

coupled	
  thermal-­‐mechanical	
  
analysis,	
  T(x,	
  t)	
  

linear	
  elas-c	
  fracture	
  
mechanics	
  

material	
  
property	
  data	
  

crack	
  
ini-a-on	
  

crack	
  
propaga-on	
  

elas-c	
  glass	
  
perhaps	
  E(T)	
  

idealized	
  
geometry	
  

next	
  level	
  assembly	
  
weld	
  distor-on,	
  	
  	
  

hea-ng	
  

experimental	
  
valida-on	
  

Rou-nely	
  used	
  
Newly	
  Implemented	
  

S&T Advances Are Required To Quantify 
Uncertainty & Margins For Brittle Failure in GtM Seals 

11	
  

FE	
  Stress	
  Modeling	
  for	
  Glass-­‐to-­‐Metal	
  (GtM)	
  Seals	
   	
  
	
  
Missing/Incomplete	
  



Metal Constitutive Behavior Is Being Characterized 
 And Modeled To Support FE Stress Modeling 

Elevated Temperature Small Strain Measurements 
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Stainless Steel Tensile Tests @ 3x10-5 Strain Rate 
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Glass Constitutive Behavior Is Being Characterized 
And Modeled To Support FE Stress Modeling 
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•  Predict	
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  behavior	
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SPEC Viscoelastic Model Predictions Of Strain   
Are Consistent With Experimental Measurements 
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Stress & Fracture In Model Bi-Material GtM Seals 
Are Being Characterized To Test/Refine Modeling 

Bi-Material Beams 
•  Bond glass to stainless steel (SS) 
•  Measure beam curvature on cooling 
•  Compare measured deflection to predictions 

glass 

SS 

fracture initiates from end 

glass fractured off (top) 

thin glass layer stuck to steel 

2:1 

1:1 
**Simulations explain cracking observed 
with a 2:1 ratio glass:metal thickness - 

recommends a 1:1 ratio.   

Residual Stress Predictions 
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Concentric GTM seal with 
strain gauges on shell 

0.6364” Diam 

Model Stress/Strain Experiments Provide Insight 
Into Design Sensitivity And Changes With Machining 
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Coupled Experiments & Modeling 
Enable Better Stress Determination 

Experimental assumptions 
•  do not measure stress directly 
•  complicated gradients & tensorial 

nature of stress 

Modeling assumptions 
•  idealized geometry 
•  Ideal/bulk material behavior 
•  processing (e.g. uniform 

temperature)  

σrr Model (FEA) 
σθθ Model (FEA) 

σrr Exp  (indentation)  

σθθ Exp (indentation) 
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692.90 nm 
692.89 nm 

trace of stress tensor ~400 MPa 
1 micron resolution 

Raman Spectroscopy Is Being Developed 
To Determine Residual Stress Across Length Scales 
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Raman Cr+3 Fluorescence Spectra 
Shifts In Brazed Alumina 

Braze 
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Technical Work 
 

Focus Area: Stress/Loading 
 

Enabling S&T:   
Stress Modeling & Measurement, Property Determination, 

Fracture Testing/Analysis, and Fracture Mechanics 
 
 

Engineering Application:  
GtM Seal Design, Process Sensitivity,  

& Performance Assessment 
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GtM Seal Design Variability & Sensitivity 
Was Assessed Using FE Stress Modeling 
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500 µm 

Stress In GCtM Seals Was Mapped 
Using Indentation Crack Length Measurements 



Technical Work 
 

Focus Area: Fracture Mechanics 
 

Enabling S&T:   
Crack Propagation, Failure & Reliability Testing & Modeling,  

Property Characterization 
 

Engineering Applications:  
GtM Seals  and Brazed Alumina Connectors 

 
22	
  



Specimen with different CTE materials to 
generate interface stress/crack growth. 

Model Bi-Material Beam Experiments Are Being 
Designed/Conducted To Understand Crack Propagation 
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Steady	
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  0	
  Posi-on	
  

Crack	
  Path	
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Borosilicate/SS #2 
a0= 3 mm, Tf= -37C 

 
•  The crack grows rapidly once initiated 
 
•  Initial tests show expected behavior. 

•  But crack only roughly planar with 
out-of-plane tilt 

Photoelasticity analysis  shows residual stress 

Bottom crack initiated 

Edge crack initiated 

Borosilicate/SS #8 
a0= 17* mm, Tf= -4° to -11C 



a b 
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L 

p/2 p/2 

standard mesh 
with Δ/b = 0.0125 

refined mesh with 
Δ/b = 0.00625 

FEA mesh used in calculations has: 

a=1.5 mm, b=3 mm, L=40 mm, S=20 mm 

Modeling	
  Capabili-es	
  Were	
  Tested/Refined	
  By	
  
Calcula-ng	
  The	
  Force	
  Required	
  To	
  Propagate	
  A	
  Crack	
  

o Semi-analytical solution for plane stress G=K2/E 

 
  

 

o Excellent agreement with reference solution 
(Cohesive Zone, CZ, model requires finer mesh). 
•  J-integral is a one step, linear-elastic (LE) solution. 
•  CZ length with Δ/b= .001250 only 2 elements long. 
•  CZ analysis is nonlinear, multi-step crack growth. 

Method Δ/b F(a/b) 
% difference 

from reference 
solution 

J-integral 0.01250 1.490 -0.3 
J-integral 0.00625 1.493 -0.1 
CZ analysis 0.01250 1.453 -2.8 
CZ analysis 0.00625 1.486 -0.5 
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F(a / b) = 2b2

3P(L − S)
EG/3.14 a    



Technical Work 
 

Focus Area: Structure/Properties 
 

Enabling S&T:   
Property & Microstructure Characterization 

 
Engineering Applications:  

Crystalline Ceramics  
(e.g., in GCtM Seals, Alumina Insulators, etc.)  
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Processing 

Microstructure 

Properties 

Alumina  Insulators 

Understanding/Controlling Process-Structure- 
Property Relations Will Be Critical To Failure Prediction 

S. Nakamura, S. Tanaka, Z. Kato, & K. Uematsu, “Strength-Processing Defects Relationship Based on 
Micrographic Analysis & Fracture Mechanics in Al2O3 Ceramics,” J. Am. Ceram. Soc., 92 [3] 688–693 (2009). 26	
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Experimentally-Validated Modeling Is Moving Us  
Toward Quantitative Brittle Failure/Reliability Prediction 

Stress Structure/
Properties 

Fracture 
Mechanics 
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K ~  σ a1/2  ~  KIC 
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