

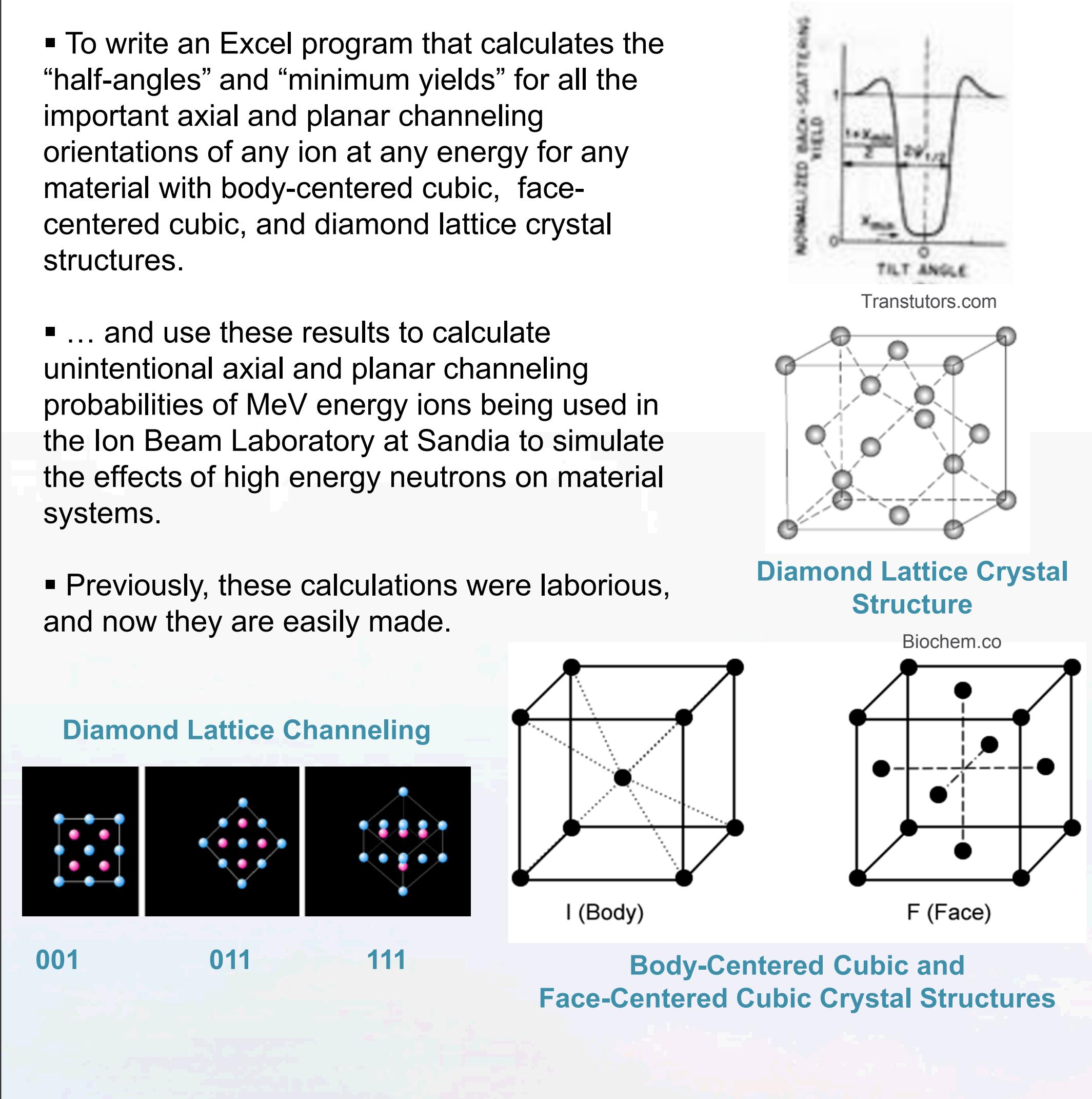
Calculations of Unintentional Axial and Planar Ion Channeling in Polycrystalline Solids

Anh Nguyen and Barney Doyle

Department of Radiation Solid Interactions
Sandia National Laboratory, Albuquerque, NM

S.A. Allen and E.L. Thomas, *The Structure of Materials*

Channeling


- Ion channeling has been used for over 50 years to better the atomic-level understanding of the structure of single crystals.
- Channeling typically involves measuring the backscatter intensity of a parallel beam of MeV-energy ions directed onto a crystal whose orientation is changed with a precision goniometer.
- Details of crystal structure, such as the 3D position of interstitial atoms, can then be resolved with sub-Å resolution.
- ...but unintentional ion channeling can lead to unexpected results when using high energy ions to simulate the production of neutron damage in polycrystalline materials, such as those used in current fission and future fusion nuclear reactors.
- Some nano-grains can experience less displacement damage than neighboring grains depending on their orientation to the ion beam, and this is thought to affect mechanical properties.

Purpose of This Report

- To write an Excel program that calculates the "half-angles" and "minimum yields" for all the important axial and planar channeling orientations of any ion at any energy for any material with body-centered cubic, face-centered cubic, and diamond lattice crystal structures.

- ... and use these results to calculate unintentional axial and planar channeling probabilities of MeV energy ions being used in the Ion Beam Laboratory at Sandia to simulate the effects of high energy neutrons on material systems.

- Previously, these calculations were laborious, and now they are easily made.

The Equations

- The equations used to calculate channeling half-angles were obtained from Chapter 10 and Appendix 15 (M. L. Swanson), of the *Handbook of Modern Ion Beam Materials Analysis* (edited by J. Tesmer, M. Nastasi, J. Barbour, C. Maggiore, and J. Mayer).

- To evaluate the equations it was necessary to parameterize several curves in Appendix 15 that were originally generated using Monte-Carlo simulations of channeling by John Barrett in 1971. Previously one had to manually read the values of these curves from graphs!

This research was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

The Calculations

Axial Channeling

Jens Lindhard derived the theory for axial and planar channeling angles 50 years ago. The characteristic axial channeling angle is given in the equation:

$$\psi_1 = \sqrt{\frac{2Z_1 Z_2 e^2}{Ed}} \text{ (radians)}$$

Where Z_1 is the atomic number of the projectile, E is the energy (MeV) of the projectile, Z_2 is the atomic number of the target atoms, e^2 is the fundamental electron charge squared which equals 1.44×10^{-19} MeV-Å and d is the separation of the atoms in A along the axial direction $\langle uuu \rangle$ given in the usual Miller indices.

The expressions for axial channeling half-angles are given as:

$$\psi_{1/2} = 0.8F_{RS}(x')\psi_1 \text{ for } \psi_1(\text{rad}) < \frac{a}{d}$$

and

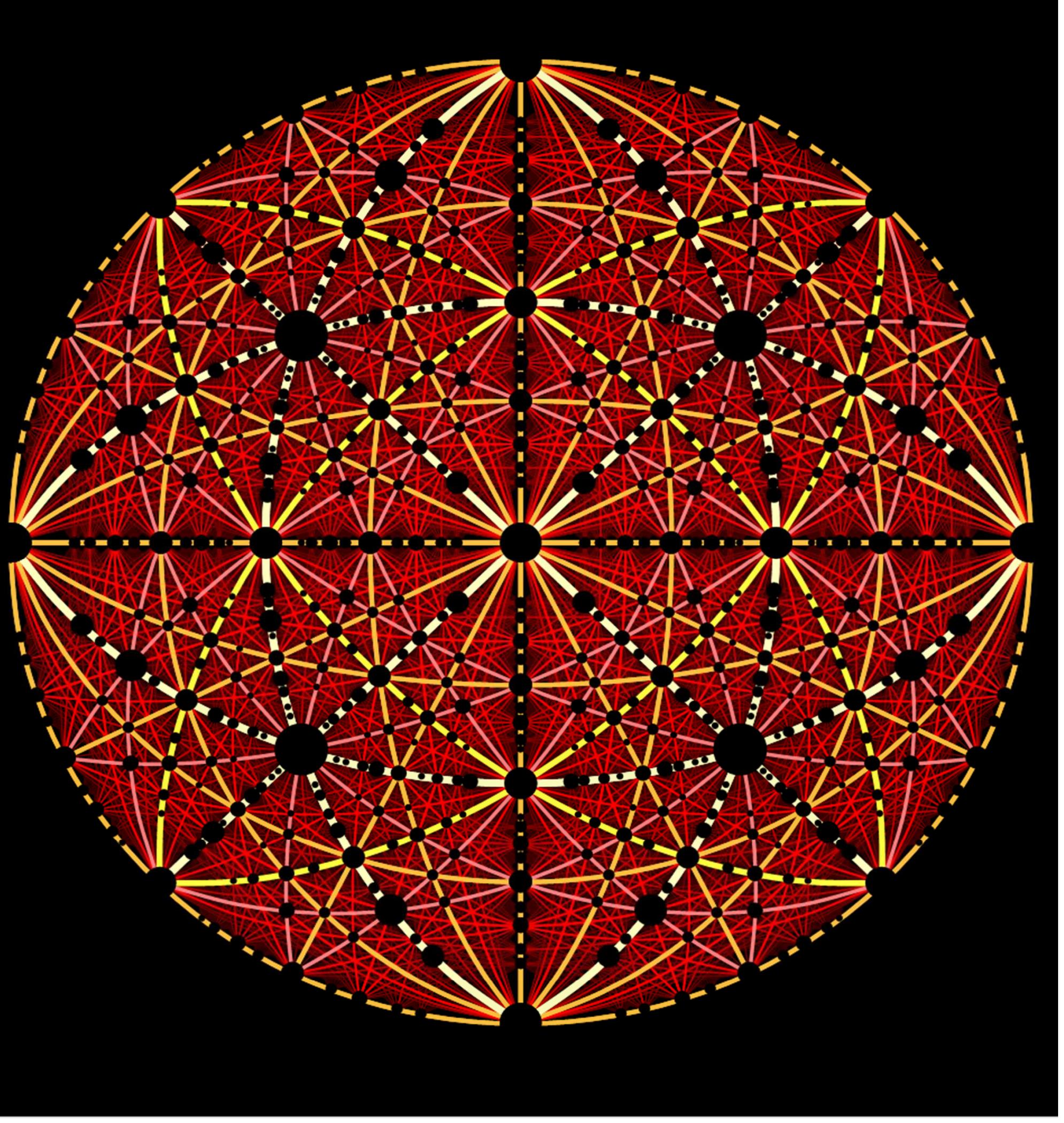
$$\psi_{1/2} = 7.57 \sqrt{\frac{a\psi_1}{d}} \text{ for } \psi_1(\text{rad}) > \frac{a}{d}$$

Where the function F_{RS} was parameterized, and a is the Thomas-Fermi screening length, and is given as

$$a = 0.04685 / (Z_1^{2/3} + Z_2^{2/3})^{1/2}$$

Planar Channeling

The planar half-angles are given in the equation:


$$\psi_{1/2}^p = 0.72F_{PS}(x', y')\psi_a$$

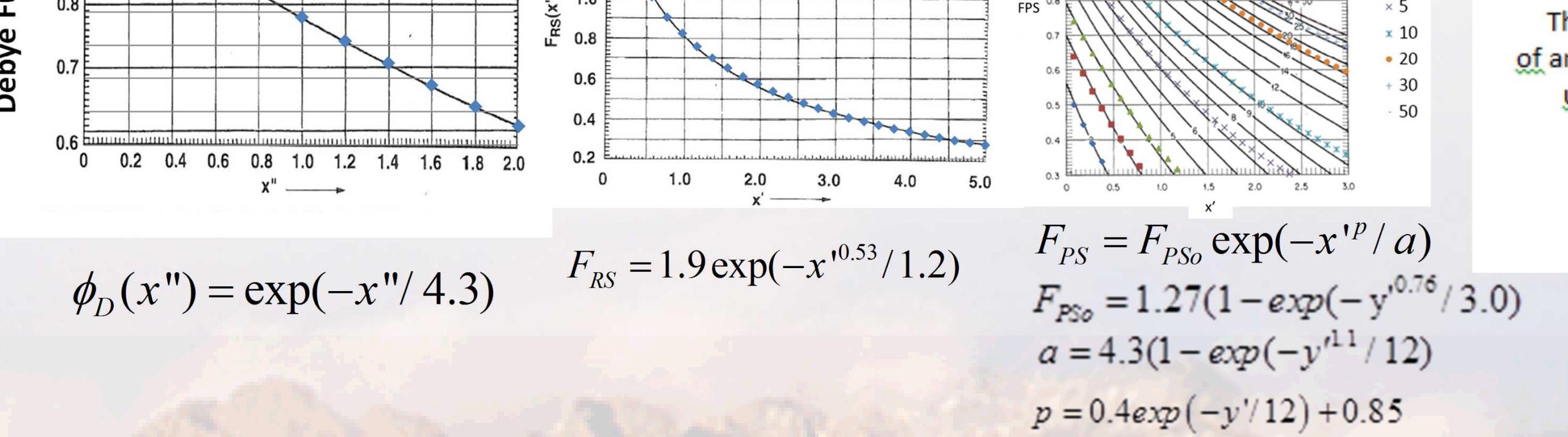
where

$$\psi_a = 0.545 \sqrt{\frac{Z_1 Z_2 N d_p a}{E}} \text{ (degrees)}$$

and N is the concentration of target atoms and d_p is the atomic separation of the planes (Å). The function F_{PS} was parameterized to solve for the angles.

Stereographic Projection

2 MeV Si on <001> W


Research Applications

element	z	mass	density	structure	Debye
H	1	1.008	0.0995		
He	2	4.003	0.0797		
Li	3	6.941	0.53		
Be	4	9.092	1.95		
B	5	10.810	2.04		
C	6	12.011	2.25 diamond	2.01	
N	7	14.007	1.251		
O	8	15.993	1.429		
F	9	18.998	1.696		
Ne	10	20.979	0.901		
Na	11	22.990	0.97		
Mg	12	24.971	1.14		
Al	13	26.962	2.7 fcc		
Si	14	28.086	2.3 diamond	3.5	
S	15	30.974	1.62		
Cl	16	32.970	1.07		
Ar	18	39.948	1.784		
K	19	40.958	0.88		
Ca	20	41.968	1.55		
Sc	21	44.956	3		
Ti	22	47.960			
V	23	51.912	6.6 bcc	360	0.3024
Cr	24	53.919	7.9 bcc	465	0.2894
Mn	25	54.938	7.43		
Fe	26	55.947	7.86 bcc	420	0.2867
Co	27	58.933	8.9		
Ni	28	60.923	9.3 fcc	425	0.3624
Cu	29	63.946	9.6 fcc	315	0.3615
Zn	30	65.939	7.14		
Ge	31	67.920	5.91		
As	32	69.912	3.2 diamond	290	0.5657
Se	33	74.922	5.72		
Br	34	78.960	4.8		
Kr	35	79.944	3.32		
Rb	36	81.934	2.74		
Pb	37	85.948	1.53		
Sr	38	87.920	2.6		
Y	39	89.906	4.5		
Zr	40	91.904	6.4 fcc		
Nb	41	92.908	9.5 bcc	275	0.33
Mo	42	95.940	10.2 bcc	380	0.3147
Tc	43	98.900	11.5		
Pa	44	101.900	12.2		
Rh	45	102.906	12.4 fcc	340	0.3603
Pd	46	106.940	12.5 bcc	275	0.389
Ag	47	107.983	10.5 fcc	215	0.4086
Cd	48	109.976	3.7		
In	49	114.920	7.31		
Sn	50	118.950	7.3		
Se	51	120.940	6.89		
Te	52	123.930	12.1		
I	53	125.905	4.92		
Xe	54	131.900	5.89		
Cr	55	132.905	187		
Ba	56	134.900	3.75		
La	57	138.906	6.7		
Cr	58	140.900	6.78		
Pt	59	144.900	7.77		
Nd	60	145.900	7		
Pm	61	145.000	6.475		
Sm	62	150.400	7.54		
Eu	63	154.900	5.28		
Gd	64	157.900	7.78		
Tb	65	158.925	8.27		
Dy	66	162.500	8.54		
Hf	67	164.900	8.8		
Er	68	167.900	9.05		
Tm	69	167.900	9.3		
Yb	70	173.040	9.38		
Lu	71	176.900	10.2		
Hf	72	179.400	13.1		
Ta	73	180.948	16.8 bcc	245	0.3306
V	74	183.950	19.3 bcc	310	0.3765
Re	75	186.900	17		
Os	76	190.200	22.4		
Ir	77	192.220	19.7		
Pt	78	195.000	21.4 fcc	225	0.3923
Ag	79	196.900	17.3 fcc	170	0.4078
Hg	80	200.550	11.95		
Tl	81	204.370	11.95		
Pt	82	207.200	11.4 fcc	88	0.4951
Bi	83	210.900	9		
Po	84	219.000	9.4		
At	85	230.000	8.91		
Fr	86	222.000	9.81		
Ra	87	227.000	10		
Ac	88	227.028	5		
Th	90	232.028	11.7		
Pu	91	234.900	8.4		
U	92	238.029	10.8		

The position on the stereograph of an axial direction is then calculated using the following equations:

$$x' = x\theta$$

$$y' = y\theta$$

To parameterize the Debye function, the F_{RS} function, and the F_{PS} function, the graphs that previously had to be read manually were scanned and used to find functions that matched the ones on the graph. The functions were found by matching up plot lines to the original graphs.

A SAND Report has been written that gives all the equations and parameterization of graphical representations of Monte-Carlo calculations of ion channeling to determine the half-angles for axial and planar channeling and with these angles determine the accidental or unintended channeling of implanted ions, or those recoiled by neutrons an primary knock on atoms in polycrystalline metals in nuclear fission or future fusion reactors.

This report and the Excel program can be made available upon request. Contact bldoyle@sandia.gov.

</