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A	
  question?

2

Which	
  is	
  harder	
  (pick	
  a	
  reasonable	
  definition	
  of	
  “hard”)?

Finding	
  an	
  optimal	
  solution	
  
99%	
  of	
  the	
  time

Finding	
  a	
  solution	
  within	
  
99%	
  of	
  optimal	
  all	
  the	
  time

Which	
  is	
  more	
  practically	
  relevant?



A	
  question?

3

Which	
  is	
  harder	
  (pick	
  a	
  reasonable	
  definition	
  of	
  “hard”)?

Finding	
  an	
  optimal	
  solution	
  
99%	
  of	
  the	
  time

Finding	
  a	
  solution	
  within	
  
99%	
  of	
  optimal	
  all	
  the	
  time

Approximation	
  algorithm,	
  
or	
  approximation	
  scheme

“Average”-­‐case	
  analysis, 
rather	
  than	
  worst-­‐case



How	
  should	
  we	
  measure	
  success?
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FIG. 4. Speedup for ratio of quantiles for the DW2
compared to SA. A) For instances with range r = 1. B)
For instances with range r = 7. Shown are curves from the
median (50th quantile) to the 99th quantile. 16 gauges were
used. In these plots we multiplied Eq. (6) by 512 so that
the speedup value at N = 512 directly compares one DW2
processor against one classical CPU.

the DW2 does not exhibit a speedup over SA for this
particular benchmark.

3. Wall-clock time

While not as interesting from a complexity theory
point of view, it is instructive to also compare wall-clock
times for the above benchmarks, as we do in Figure 5. We
observe that the DW2 performs similarly to SA run on a
single classical CPU, for su�ciently large problem sizes
and at high range values. Note that the large constant
programming overhead of the DW2 masks the exponen-
tial increase of time to solution that is obvious in the
plots of pure annealing time.

FIG. 5. Comparing wall-clock times A comparison of the
wall-clock time to find the solution with probability p = 0.99
for SA running on a single CPU (dashed lines) compared to
the DW2 (solid lines) using 16 gauges. A) for range r = 1,
B) for range r = 7. Shown are curves from the median (50th
quantile) to the 99th quantile. The large constant program-
ming overhead of the DW2 masks the exponential increase of
time to solution that is obvious in the plots of pure annealing
time. Results for a single gauge are shown in the Supplemen-
tary Material.

D. Instance-by-instance comparison

1. Total time to solution

We now focus on the question of whether the DW2
exhibits a limited quantum speedup for some fraction of
the instances of our benchmark set. To this end we per-
form individual comparisons for each instance and show
in Figure 6A-B the ratios of time to solution between
the DW2 and SA, considering only the pure annealing
time. We find a wide scatter, which is not surprising
since we previously found that DW1 performs like a sim-
ulated quantum annealer, but correlates less well with a
simulated classical annealer [25]. We find that while the
DW2 is sometimes up to 10⇥ faster in pure annealing
time, there are many cases where it is � 100⇥ slower.

Considering the wall-clock times, the advantage of the
DW2 seen in Figure 6A-B for some instances tends to

Within 99% of optimal all of the timeOptimal 99% of the time

LeU:	
  Ronnow	
  et	
  al.,	
  Defining	
  and	
  detec.ng	
  quantum	
  speedup,	
  arXiv:1401.2910v1	
  (2014)

Was	
  always	
  within	
  96%	
  of	
  optimal!



We	
  ask

▪ What	
  is	
  an	
  appropriate	
  measure	
  of	
  success?	
  
▪ What	
  classical	
  algorithm(s)	
  should	
  be	
  used	
  for	
  comparison?	
  
▪ How	
  should	
  one	
  select	
  appropriate	
  benchmark	
  instances?
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Problem	
  definitions

▪ Ising: 
 

!
▪ Quadratic	
  binary	
  unconstrained	
  optimization	
  (QUBO): 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Comparison*of*Rainier*and*Vesuvius*chips*

Rainier*
108/128*
spins*

Vesuvius*
506/512*
spins*

Images	
  from	
  D-­‐Wave	
  Systems:	
  hbp://www.dwavesys.com	
  .	
  

http://www.dwavesys.com


Complexity	
  of	
  Ising	
  on	
  Chimera

▪ (Decision	
  version)	
  NP-­‐complete	
  even	
  with	
  no	
  linear	
  term	
  and	
  
{-­‐1,	
  0,	
  1}	
  weights	
  [Barahona,	
  1982]	
  

▪ We	
  show	
  NP-­‐complete	
  with	
  no	
  linear	
  term	
  and	
  {-­‐1,1}	
  weights	
  
▪ Instances	
  used	
  in	
  D-­‐Wave	
  benchmarking	
  studies 

[with	
  Benjamin	
  Moseley	
  at	
  Washington	
  University]	
  	
  
▪ Tree-­‐width	
  (path-­‐width)	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  yielding	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  algorithm	
  
▪ “Subexponential”	
  exact	
  algorithm	
  even	
  though	
  NP-­‐hard	
  

▪ Approximation	
  complexity?	
  
▪ Polynomial-­‐time	
  approximation	
  scheme	
  (PTAS)  

[Saket,	
  2013,	
  arXiv:1306.6943]	
  
▪ PTAS’s	
  are	
  rarely	
  efficient;	
  theory	
  vs	
  practice?	
  
▪ Efficient	
  approx	
  algorithm	
  for	
  say,	
  getting	
  within	
  75%?
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Approaches	
  to	
  problem	
  embedding

▪ Embedding	
  is	
  hard:	
  O(nn)	
  vs	
  O(2n)	
  
▪ Even	
  harder	
  when	
  optimizing	
  #	
  qubits	
  
▪ Choi:	
  worst	
  case	
  O(n2)	
  qubits	
  for	
  n	
  vars	
  
▪ Requires	
  (linearly)	
  large	
  coupler	
  weights
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G can be solved in an adiabatic quantum computer that implements the spin-1/2
Ising Hamiltonian, by reduction through minor-embedding of G in the quantum
hardware graph U . By reduction through minor-embedding, we mean that one
can reduce the original Ising Hamiltonian on the input graph G to the embed-
ded Ising Hamiltonian Hemb on its minor-embedding Gemb, i.e., the solution
to the embedded Ising Hamiltonian gives rise to the solution to the original
Ising Hamiltonian. We proved the correctness of the minor-embedding reduc-
tion. There are two components to the reduction: embedding and parameter
setting. The embedding problem is to find a minor-embedding Gemb of a graph
G in U . The parameter setting problem is to set the corresponding parameters,
qubit bias and coupler strengths, of the embedded Ising Hamiltonian. In [6],
we solved the parameter setting problem. The embedding problem, though, is
dependent on the hardware graph design problem discussed in the following
sections.

4 TRIAD: Optimal Hardware Graph for Embedding Complete
Graph Kn

In this section, we describe a K
n

-minor hardware graph, where K
n

is a complete
graph of n vertices. A triangular layout of a K

n

-minor graph [18], called TRIAD,
is shown in Figure 3.
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Fig. 3: Left, K8. Right, a triangular layout of a K8-minor. Each vertex of K8 is mapped to a chain
of 7 “virtual” vertices (with the same color).

4.1 Construction of TRIAD

The idea behind the construction of TRIAD is to map each vertex of K
n

to a
chain of n � 1 “virtual” vertices. The inductive construction is illustrated in
Figure 4.



Limits	
  of	
  reducing	
  to	
  Chimera

▪ Can	
  we	
  do	
  better	
  than	
  a	
  quadratic	
  blowup	
  in	
  qubits?	
  
▪ Probably	
  not,	
  due	
  to	
  Exponential	
  Time	
  Hypothesis	
  
▪ Problems	
  like	
  Max-­‐Cut	
  on	
  general	
  graphs	
  are	
  conjectured	
  

to	
  require	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  time	
  
▪ But	
  we	
  have	
  a	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  time	
  algorithm	
  for	
  Chimera	
  Ising	
  
▪ So	
  in	
  some	
  sense	
  quadratic	
  factor	
  is	
  artifact	
  of	
  Chimera	
  

▪ Weights	
  make	
  this	
  worse:	
  Choi	
  embedding	
  assumes	
  (linearly)	
  
large	
  weights	
  

▪ Reduction	
  better	
  than	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  Max-­‐Cut	
  on	
  bounded-­‐degree	
  
graphs	
  would	
  improve	
  best-­‐known	
  classical	
  algorithm	
  
▪ Applies	
  to	
  any	
  reduction,	
  not	
  just	
  minor	
  embeddings

10
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Max-­‐Cut	
  as	
  model	
  problem

▪ NP-­‐complete	
  on	
  bipartite	
  graphs	
  with	
  weights	
  {-­‐1,1}	
  
▪ Replace	
  each	
  edge	
  by	
  a	
  path	
  of	
  +1	
  and	
  -­‐1	
  edge	
  

▪ Max-­‐Cut	
  essentially	
  equivalent	
  to	
  Ising	
  problem	
  
▪ Can	
  use	
  an	
  apex	
  vertex	
  to	
  model	
  linear	
  term	
  

▪ We	
  give	
  reduction	
  from	
  weighted	
  QUBO	
  to	
  unweighted	
  QUBO	
  
▪ Unroll	
  and	
  optimize	
  existing	
  chain	
  of	
  reductions	
  
▪ Weights	
  are	
  a	
  significant	
  barrier	
  in	
  D-­‐Wave	
  benchmarking	
  

▪ Our	
  reduction	
  only	
  incurs	
  linear	
  blowup	
  on	
  bounded-­‐degree	
  
graphs	
  
▪ However,	
  does	
  not	
  preserve	
  Chimera	
  structure

11



Weighted	
  QUBO	
  as	
  3-­‐SAT

12
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3-­‐SAT	
  as	
  Unweighted	
  Ising	
  

▪ Standard	
  reduction	
  from	
  3-­‐SAT	
  to	
  Independent	
  Set	
  
▪ Usual	
  Ising	
  formulation	
  of	
  Independent	
  Set: 
 

▪ New	
  formulation	
  on	
  graph	
  where	
  each	
  edge	
  replaced	
  
by	
  3-­‐path	
  circumvents	
  linear	
  weights	
  above:	
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Independent	
  set	
  as	
  Ising
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Instance	
  selection:	
  challenges

▪ Desire	
  scalable	
  family	
  of	
  related	
  instances	
  
▪ Real	
  world	
  often	
  lacks	
  well-­‐defined 

optimality	
  
▪ Random	
  instances	
  too	
  easy	
  or	
  hard	
  
▪ Known	
  hard	
  instances	
  may	
  be	
  artificial	
  
▪ Fairness	
  to	
  all	
  benchmark	
  algorithms	
  
▪ Resources:	
  time,	
  memory,	
  etc.

15



•Random	
  Ising	
  instances	
  on	
  D-­‐Wave	
  hardware	
  
• {-­‐1,1}	
  coupler	
  values	
  
•Are	
  such	
  instances	
  hard?	
  
•Hen	
  and	
  Young	
  observed	
  problem	
  in	
  P	
  may	
  appear 
hard	
  (3-­‐XORSAT	
  in	
  figure)  
[Phys.	
  Rev.	
  E	
  84,	
  061152	
  (2011)]	
  

•Random	
  vs	
  hard	
  instances	
  is	
  a	
  tricky	
  issue	
  

Picking	
  the	
  right	
  algorithm
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•Random	
  instances	
  on	
  D-­‐Wave	
  hardware	
  
• {-­‐1,1}	
  coupler	
  values	
  
•D-­‐Wave	
  Two	
  finds	
  optmal	
  in	
  0.5	
  sec, 
while	
  classical	
  algorithms	
  scale	
  poorly 
[McGeoch	
  and	
  Wang,	
  Conf.	
  Computng	
  Fronters	
  
2013:	
  23]	
  
•Claimed	
  3600x	
  speedup	
  

•We	
  observe	
  classical	
  Integer	
  Program	
  solvers	
  
match	
  performance	
  with	
  appropriate	
  model  
[also	
  Dash,	
  arXiv:1306.1202v2	
  (2013)]	
  
•Speedup	
  vanishes	
  with	
  proper	
  configuraton/usage	
  

•QUBO	
  vs	
  Ising	
  
•Random	
  instance	
  with	
  linear	
  term	
  appear	
  easy	
  for	
  
former	
  but	
  hard	
  for	
  laber!

Configuraton	
  mabers
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For a given instance let S
x

be the cost of the best solution
found by solver x. CPLEX and AK were set to run to pre-
set timeout limits (usually 30 minutes) but stop early if they
can certify optimality. We distinguish between find time,
the first time S

x

is found by the solver, and certify or finish
time, the total time needed to find and certify a solution.
TABU always runs to a pre-set time limit, so finish times
are constant and independent of n; the above-mentioned
history data is used to obtain find times.

Our Blackbox tests ran as batch requests to a server that
carries out individual trials concurrently on an eight-core
platform. Because of demands on this resource it was not
feasible to replicate our single-core software test environ-
ment (which would have increased Blackbox times from days
to weeks). Although concurrency shrinks total batch times,
it inflates the reported elapsed (wall clock) times per in-
stance by introducing scheduler overhead and cache con-
tention; more importantly, the concurrent processes must
contend for access to the hardware chip. Therefore, we can-
not with any confidence make direct and precise time com-
parisons between Blackbox and the software solvers. In what
follows we take a conservative approach and describe only
rough bounds on Blackbox computation times.

New questions arise when it comes to definingcomputa-
tion times for the V5 chip. Here we report exclusive access
time, the total time used by the hardware to process a single
instance while other instances wait. Exclusive access time is
divided into overhead time t1 for initializing the hardware,
and sampling time t2, which is the time to anneal and re-
turn one sample solution. Thus the total time per input
is T = t1 + kt2, where k is the number of samples. Both
t1 and t2 can be changed by adjusting the annealing path;
however in normal practice they are set to default values
when the chip becomes operational. For a fixed path, t1
and t2 increase very slightly with the number of qubits that
must be stored and read. Throughout this section we re-
port maximum times necessary to process the full hardware
graph. These correspond to preset finish times that are in-
dependent of n; in Section 4 we describe a procedure for
estimating hardware find times.

3.2 Chimera-structured QUBO Instances
Our first experiment compares performance on instances

for Quadratic Unconstrained Binary Optimization: given a
matrix Q of weights Q

ij

, find an assignment of binary values
(0,1) to variables X = {x1 . . . xn

} to minimize

Q(X) =
X

i,j

Q
ij

x
i

x
j

. (2)

This problem has wide application in machine learning
and computer vision: Boros et al. [8] and Tavares [32]
present a long list of applications that have been formu-
lated as QUBO problems. Tavares also shows reductions
from several classic NP-Hard problems to QUBO. QUBO
instances can be transformed to and from IM instances by
simple arithmetic.

This test uses QUBO instances with connectivity graphs
G ⇢ H, which (after transformation to IM) can be solved
directly in hardware. The experiment takes 100 random in-
stances each at problem sizes n = 32, 119, 184, 261, 349, 439
(corresponding to subgrids of the hardware graph). Weights
are drawn uniformly from the set {�1,+1}.
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Figure 1: Success rates: proportion of best solutions
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ware) and exclusive access time (QA hardware).
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bars show the range of observations. The numbers
at bottom are means B for each problem size.

For a given instance let S
x

be the cost of the best solution
found by solver x. CPLEX and AK were set to run to pre-
set timeout limits (usually 30 minutes) but stop early if they
can certify optimality. We distinguish between find time,
the first time S
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is found by the solver, and certify or finish
time, the total time needed to find and certify a solution.
TABU always runs to a pre-set time limit, so finish times
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ment (which would have increased Blackbox times from days
to weeks). Although concurrency shrinks total batch times,
it inflates the reported elapsed (wall clock) times per in-
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contend for access to the hardware chip. Therefore, we can-
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parisons between Blackbox and the software solvers. In what
follows we take a conservative approach and describe only
rough bounds on Blackbox computation times.
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time, the total time used by the hardware to process a single
instance while other instances wait. Exclusive access time is
divided into overhead time t1 for initializing the hardware,
and sampling time t2, which is the time to anneal and re-
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is T = t1 + kt2, where k is the number of samples. Both
t1 and t2 can be changed by adjusting the annealing path;
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must be stored and read. Throughout this section we re-
port maximum times necessary to process the full hardware
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, find an assignment of binary values
(0,1) to variables X = {x1 . . . xn
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This problem has wide application in machine learning
and computer vision: Boros et al. [8] and Tavares [32]
present a long list of applications that have been formu-
lated as QUBO problems. Tavares also shows reductions
from several classic NP-Hard problems to QUBO. QUBO
instances can be transformed to and from IM instances by
simple arithmetic.

This test uses QUBO instances with connectivity graphs
G ⇢ H, which (after transformation to IM) can be solved
directly in hardware. The experiment takes 100 random in-
stances each at problem sizes n = 32, 119, 184, 261, 349, 439
(corresponding to subgrids of the hardware graph). Weights
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Figure 2: Di↵erences between solution cost S
x

in
491ms runtime, and best solution B for each input.
Dotted lines connect means for each solver; vertical
bars show the range of observations. The numbers
at bottom are means B for each problem size.

http://www.informatik.uni-trier.de/~ley/db/conf/cf/cf2013.html#McGeochW13
http://arxiv.org/abs/1306.1202v2


Solving	
  problems	
  with	
  D-­‐Wave:	
  challenges

▪ Application	
  graph	
  must	
  be	
  embedded	
  within	
  Chimera	
  graph	
  
▪ Requires	
  extra	
  qubits;	
  worst	
  case	
  approx	
  n2	
  qubits	
  for	
  n	
  nodes	
  
▪ Very	
  hard	
  to	
  determine	
  a	
  good	
  embedding	
  for	
  a	
  given	
  graph	
  
▪ Typical	
  approaches	
  to	
  embedding	
  require	
  large	
  weights	
  to	
  force	
  all	
  

qubits	
  corresponding	
  to	
  a	
  node	
  have	
  same	
  spin	
  
▪ Efficiency:	
  #(Application	
  graph	
  nodes)/#(Qubits	
  in	
  Chimera	
  graph)
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Fig. 2: Gemb(right) is a minor-embedding of G(left) in the square lattice U . Each vertex (called
a logical qubit) of G is mapped to a (connected) subtree of (same color/label) vertices (called
physical qubits) of U . G is called a (graph) minor of U .

Gemb of a graph G in the hardware graph U is a subgraph of U such that Gemb

is an “expansion” of G by replacing each vertex of G with a (connected) subtree
of U , or equivalently, G can be obtained from Gemb by contracting edges (same
color in Figure 2). In graph theory, G is called a (graph) minor of U . (see for
example [8]).

We now formally define minor-embedding.

Definition 1. Let U be a fixed hardware graph. Given G, the minor-embedding
of G is defined by

� : G �! U

such that

– each vertex in V(G) is mapped to a connected subtree T
i

of U ;
– there exists a map ⌧ : V(G) ⇥ V(G) �! E(U) such that for each ij 2
E(G), there are corresponding i

⌧(i,j) 2 V(T
i

) and j
⌧(j,i) 2 V(T

j

) with
i
⌧(i,j)j⌧(j,i) 2 E(U).

Given G, if � exists, we say that G is embeddable in U . When � is clear from
the context, we denote the minor-embedding �(G) of G by Gemb

1.

See Figure 2 for an example.
In particular, there are two special cases of minor-embedding:

– Subgraph-embedding: Each T
i

consists of a single vertex in U . That is, G is
isomorphic to Gemb (a subgraph of U ).

– Topological-minor-embedding: Each T
i

is a chain (or path) of vertices in U .

Remark: The embedding in [13,14] is the topological-minor embedding.
In [6], we have shown that the NP-hard quadratic unconstrained binary op-

timization problem [4,5] (which is equivalent to the Ising problem) on a graph
1 With slight abuse of terminology, Gemb is also referred as G-minor.

Applicaton	
  
Graph

Qubit	
  interacton	
  
Graph



Complex	
  networks	
  on	
  the	
  Chimera	
  graph

▪ New	
  approach	
  to	
  circumvent	
  embedding	
  [with	
  Jeremy	
  Wendt]	
  
▪ Generate	
  complex	
  network	
  simultaneously	
  while	
  embedding	
  it	
  
▪ Efficiency	
  for	
  512-­‐node	
  Chimera	
  around	
  40%	
  vs	
  6.25%	
  worst	
  

case 19



Community	
  detection

▪ Find	
  natural	
  communities	
  
or	
  clusters	
  in	
  complex	
  
network	
  

▪ Many	
  measures	
  of	
  a	
  good	
  
cluster	
  (e.g.,	
  modularity,	
  
conductance)
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Figure 3. A network with both hierarchical and
modular structure. This image, courtesy of
Aaron Clauset, is an adaptation of a figure
from [23].

cases, a network can contain several identical repli-
cas of small communities known as motifs [75].
Consider a transcription network that controls
gene expression in bacteria or yeast. The nodes
represent genes or operons, and the edges rep-
resent direct transcriptional regulation. A simple
motif called a “feed-forward loop” has been shown
both theoretically and experimentally to perform
signal-processing tasks such as pulse generation.
Naturally, the situation becomes much more com-
plicated in the case of people (doesn’t it always?).
However, monitoring electronically recorded be-
havioral data, such as mobile phone calls, allows
one to study underlying social structures [49,95].
Although these pairwise interactions (phone calls)
are short in duration, they are able to uncover
social groups that are persistent over time [97].
One interesting empirical finding, hypothesized by
Granovetter [51], is that links within communities
tend to be strong and links between them tend
to be weak [95]. This structural configuration has
important consequences for information flow in
social systems [95] and thus affects how the un-
derlying network channels the circulation of social
and cultural resources. (See below for additional
discussion.)

With methods and algorithms drawn from sta-
tistical physics, computer science, discrete math-
ematics, nonlinear dynamics, sociology, and other
subjects, the investigation of network community
structure (and more general forms of data cluster-
ing) has captured the attention of a diverse group
of scientists [39, 54, 88, 110]. This breadth of in-
terest has arisen partly because the development
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Figure 4. (Top) The network of committees
(squares) and subcommittees (circles) in the
108th U.S. House of Representatives
(2003–04), color-coded by the parent standing
and select committees and visualized using
the Kamada-Kawai method [62]. The darkness
of each weighted edge between
committees/subcommittees indicates how
strongly they are connected. Observe that
subcommittees of the same parent committee
are closely connected to each other. (Bottom)
Coarse-grained plot of the communities in this
network. Here one can see some close
connections between different committees,
such as Veterans Affairs/ Transportation and
Rules/Homeland Security.

of community-detection methods is an inherently
interdisciplinary endeavor and partly because in-
terpreting the structure of a community and its
function often requires application-specific knowl-
edge. In fact, one aspect that makes the problem
of detecting communities so challenging is that
the preferred formulation of communities is of-
ten domain-specific. Moreover, after choosing a
formulation, one still has to construct the desired

October 2009 Notices of the AMS 1085

2003-2004 House Committees 
“Communities in Networks”, AMS 



•Modularity	
  
•Measures	
  strength	
  of	
  a	
  partton	
  of	
  a	
  graph	
  into	
  clusters/communites	
  

•Fracton	
  of	
  edges	
  within	
  clusters	
  minus	
  expected	
  number	
  within	
  clusters	
  for	
  a	
  
random	
  graph	
  with	
  a	
  given	
  degree	
  distributon	
  

•Example:	
  parttoning	
  into	
  2	
  clusters	
  
•Each	
  node	
  i	
  assigned	
  xi=-­‐1	
  or	
  xi=+1,	
  based	
  on	
  cluster	
  in	
  which	
  it	
  lives	
  
•(1	
  +	
  xixi)/2	
  indicates	
  edges	
  within	
  clusters

Community	
  detecton	
  via	
  Ising
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-1

-1

+1

+1

(1	
  +	
  xixi)/2	
  =	
  (1	
  +	
  1*1)/2	
  =	
  1	
  (1	
  +	
  xixi)/2	
  =	
  (1	
  +	
  -­‐1*-­‐1)/2	
  =	
  1	
  

(1	
  +	
  xixi)/2	
  =	
  (1	
  +	
  -­‐1*1)/2	
  =	
  0	
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•Modularity	
  
•Fracton	
  of	
  edges	
  within	
  clusters	
  minus	
  expected	
  number	
  within	
  clusters	
  for	
  a	
  
random	
  graph	
  with	
  a	
  given	
  degree	
  distributon	
  

•Example:	
  parttoning	
  into	
  2	
  clusters	
  

•Each	
  node	
  i	
  assigned	
  xi=-­‐1	
  or	
  xi=+1,	
  based	
  on	
  cluster	
  in	
  which	
  it	
  lives	
  
•(1	
  +	
  xixi)/2	
  indicates	
  edges	
  within	
  clusters	
  

•QUBO	
  formulaton	
  for	
  finding	
  2-­‐clustering	
  that	
  maximizes	
  modularity	
  

•m	
  -­‐	
  number	
  of	
  edges	
  

•aij	
  -­‐	
  1	
  if	
  edge	
  ij	
  is	
  in	
  the	
  graph;	
  0	
  otherwise	
  
•di	
  -­‐	
  degree	
  of	
  node	
  i,	
  i.e.,	
  number	
  of	
  edges	
  incident	
  to	
  i	
  

•Note:	
  this	
  QUBO	
  implementaton	
  requires	
  a	
  dense	
  graph

Community	
  detecton	
  via	
  Ising
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Constant term (i,j) entry of QUBO matrix



▪ Mapping	
  arbitrary	
  graph	
  to	
  Chimera	
  is	
  hard	
  
▪ Instead,	
  alter	
  Chimera	
  graph	
  to	
  have	
  “real-­‐world”	
  properties	
  

▪ Merge	
  nodes	
  to	
  increase	
  node	
  degree	
  
▪ Remove	
  edges	
  between	
  nodes	
  to	
  decrease	
  degree

Generating	
  complex	
  networks	
  on	
  a 
Chimera	
  graph	
  



Real-­‐world	
  complex	
  networks

BGP Twitter



▪ BGP	
  Execution	
  Time

Classical	
  Community	
  Detection



▪ Twitter	
  Execution	
  Time

Classical	
  Community	
  Detection



Conclusion:	
  We	
  asked

▪ What	
  is	
  an	
  appropriate	
  measure	
  of	
  success?	
  
▪ Awareness	
  of	
  artificially	
  hard	
  problems	
  for	
  “natural”	
  

problems	
  where	
  close	
  is	
  good	
  enough	
  
▪ Should	
  try	
  properly	
  leverage	
  hardness	
  in	
  defining	
  success	
  

▪ What	
  classical	
  algorithm(s)	
  should	
  be	
  used	
  for	
  comparison?	
  
▪ Must	
  select	
  proper	
  algorithm	
  and	
  configuration	
  
▪ Achieving	
  fairness	
  is	
  tough	
  when	
  comparing	
  an	
  infant	
  

technology	
  like	
  quantum	
  vs	
  one	
  honed	
  over	
  decades	
  
▪ How	
  should	
  one	
  select	
  appropriate	
  benchmark	
  instances?	
  
▪ Balance	
  between	
  real-­‐world,	
  random,	
  and	
  hard	
  is	
  

challenging
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