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A question? ) .

Which is harder (pick a reasonable definition of “hard”)?

Finding an optimal solution Finding a solution within

99% of the time 99% of optimal all the time

Which is more practically relevant?




A question? )

Which is harder (pick a reasonable definition of “hard”)?

Finding an optimal solution Finding a solution within

99% of the time 99% of optimal all the time

“Average”-case analysis, Approximation algorithm,

rather than worst-case or approximation scheme
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How should we measure success? M.

A)Rangel 55,000 random {-1,1}-weight instances
* on 509-qubit D-Wave Two
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Was always within 96% of optimal!
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We ask )

= What is an appropriate measure of success?

= What classical algorithm(s) should be used for comparison?

= How should one select appropriate benchmark instances?




Problem definitions ) .

= [sing:

A, T donn

= Quadratic binary unconstrained optimization (QUBO):

min Aijxix; + E CiT;
x;€4{0,1} :

]
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Comparison of Rainier and Vesuvius chips
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D—Wave Two

D-Wave One

Images from D-Wave Systems: http://www.dwavesys.com .
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Complexity of Ising on Chimera )

(Decision version) NP-complete even with no linear term and
{-1, O, 1} weights [Barahona, 1982]

We show NP-complete with no linear term and {-1,1} weights

= |nstances used in D-Wave benchmarking studies
[with Benjamin Moseley at Washington University]

Tree-width (path-width) is @(,/n), yielding 0(2\/5) algorithm
= “Subexponential” exact algorithm even though NP-hard

Approximation complexity?

= Polynomial-time approximation scheme (PTAS)
[Saket, 2013, arXiv:1306.6943]

= PTAS’s are rarely efficient; theory vs practice?

= Efficient approx algorithm for say, getting within 75%? .




Approaches to problem embedding  [@&=.

= Embedding is hard: O(n") vs O(2")
= Even harder when optimizing # qubits

= Choi: worst case O(n?) qubits for n vars

= Requires (linearly) large coupler weights




Limits of reducing to Chimera )

Can we do better than a quadratic blowup in qubits?
= Probably not, due to Exponential Time Hypothesis

= Problems like Max-Cut on general graphs are conjectured
to require O(2") time

= But we have a 0(2‘/5) time algorithm for Chimera Ising

= So in some sense quadratic factor is artifact of Chimera

= Weights make this worse: Choi embedding assumes (linearly)
large weights

= Reduction better than O(n2) for Max-Cut on bounded-degree
graphs would improve best-known classical algorithm

= Applies to any reduction, not just minor embeddings
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Max-Cut as model problem ) .

= NP-complete on bipartite graphs with weights {-1,1}
= Replace each edge by a path of +1 and -1 edge
= Max-Cut essentially equivalent to Ising problem
= Can use an apex vertex to model linear term
We give reduction from weighted QUBO to unweighted QUBO
= Unroll and optimize existing chain of reductions

= Weights are a significant barrier in D-Wave benchmarking

Our reduction only incurs linear blowup on bounded-degree
graphs

= However, does not preserve Chimera structure
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Weighted QUBO as 3-SAT ) e,




3-SAT as Unweighted Ising )

= Standard reduction from 3-SAT to Independent Set

= Usual Ising formulation of Independent Set:
! ity — > dix;
LA 2 ity = ) i
1JER eV
= New formulation on graph where each edge replaced
by 3-path circumvents linear weights above:

min




Independent set as Ising

o

WLOG: -1 side is an independent set

Objective value:
=51+ (VI =1S]) = 3[E| = [V| = 2[S| - 3|E]



Instance selection: challenges

= Desire scalable family of related instances

= Real world often lacks well-defined
optimality

= Random instances too easy or hard

= Known hard instances may be artificial

= Fairness to all benchmark algorithms

= Resources: time, memory, etc.




Picking the right algorithm ) .
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. . 9 . v
e Random Ising instances on D-Wave hardware . L AN
: A
e {-1,1} coupler values WWZ; oA A
£10 R P &
. = ¢ ¥ «x
e Are such instances hard? R e
2104 A
e Hen and Young observed problem in P may appear A ‘SXORSAT 158 oxp(0420N)
. . 2-in-4, 96 exp(0.086 N) ---------
hard (3-XORSAT In ﬁgure) :Zj ? 1m3 4966Xp(0|050N) ; ........
[Phys. Rev. E 84, 061152 (2011)] 0 1oo 150 200 250 300
N
e Random vs hard instances is a tricky issue ana
N | | | | | | | |
0.1 5: -
@\ ) -
£ @\b R
< N
S 001 | "o AN -
g .
1-n-3, 0.16 exp(-0.042 N) ----rrrr’ ;
2-in-4, 0.32 exp(-0.063 N) --------
0.001 __3-XIORSIAT, q.22 eixp(-Cli.OBOIN) I ------ I .

10 20 30 40 50 60 70 80 90 100
N


http://link.aps.org/doi/10.1103/PhysRevE.84.061152

Configuration matters (=

:.'~'+' '!}
X

e Random instances on D-Wave hardware =] ca

. X akmax
@ A cplex

e {-1,1} coupler values

Success Rate 491ms

e D-Wave Two finds optimal in 0.5 sec,
while classical algorithms scale poorly
[McGeoch and Wang, Conf. Computing Frontiers o Azoo o
2013: 23] Instance Size n

o Cl ad i med 3600X S peed u p Figure 1: Success rates: proportion of best solutions

found in 491ms CPU time (tabu, amax, cplex soft-
ware) and exclusive access time (QA hardware).

e We observe classical Integer Program solvers
match performance with appropriate model o _
[also Dash, arXiv:1306.1202v2 (2013)] sk B

A cplex

800
I
Ly

600
1

Sx - B 491ms
400
1

o Speedup vanishes with proper configuration/usage

e QUBO vs Ising §j AAAAAAAAAAA !

200

|

'Z
e

0
1
!
H
:
)

& £ ©
I-57.8 -222.6 -343.6 —-487.0 -654.0 -815.2

e Random instance with linear term appear easy for : : . .
100 200 300 400
former but hard for latter!

n

Figure 2: Differences between solution cost S, in
491ms runtime, and best solution B for each input.
Dotted lines connect means for each solver; vertical
bars show the range of observations. The numbers
at bottom are means B for each problem size.


http://www.informatik.uni-trier.de/~ley/db/conf/cf/cf2013.html#McGeochW13
http://arxiv.org/abs/1306.1202v2

Solving problems with D-Wave: challenges [z,

=  Application graph must be embedded within Chimera graph
= Requires extra qubits; worst case approx n? qubits for n nodes
= Very hard to determine a good embedding for a given graph

= Typical approaches to embedding require large weights to force all
gubits corresponding to a node have same spin

= Efficiency: #(Application graph nodes)/#(Qubits in Chimera graph)
| o o0 ©

Cl) . ‘ Qubit interaction

Graph

Application
Graph




Complex networks on the Chimera graph

" 4
% oot %a
| \ o g‘.
5
- B
o‘ ‘.. LN ~.
L 4 ‘. ﬁ'.b ‘. ‘g
¢ g : Q?‘ Som
y &
y %

= New approach to circumvent embedding [with Jeremy Wendt]
= Generate complex network simultaneously while embedding it

= Efficiency for 512-node Chimera around 40% vs 6.25% worst
case 19




Community detection ) S
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Community detection via Ising ) i,

e Modularity
e Measures strength of a partition of a graph into clusters/communities

e Fraction of edges within clusters minus expected number within clusters for a
random graph with a given degree distribution

e Example: partitioning into 2 clusters
e Each node i assigned xi=-1 or xj=+1, based on cluster in which it lives

o (1 + xixj)/2 indicates edges within clusters

(1+xx)/2=(1+-1*1)/2=1 (1+xx)/2=(1+1*%1)/2=1

T

(1+xx)/2=(1+-1*1)/2=0




Community detection via Ising

e Modularity

e Fraction of edges within clusters minus expected number within clusters for a
random graph with a given degree distribution

e Example: partitioning into 2 clusters
e Each node i assigned xi=-1 or xj=+1, based on cluster in which it lives
o (1 + xixi)/2 indicates edges within clusters
e QUBO formulation for finding 2-clustering that maximizes modularity
o m - number of edges
0 3ji- 1if edgeiij is in the graph; 0 otherwise
o di- degree of node i, i.e., number of edges incident to i

e Note: this QUBO implementation requires a dense graph

2 (m =) 5 = (o) < 2 (-5 ) e

1,] ,] 1,]

Constant term (i,j) entry of QUBO matrix




Generating complex networks on a 1 =
Chimera graph

= Mapping arbitrary graph to Chimera is hard
= |nstead, alter Chimera graph to have “real-world” properties

= Merge nodes to increase node degree

= Remove edges between nodes to decrease degree
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Real-world complex networks

BGP | Twitter

Num Nodes




Classical Community Detection

= BGP Execution Time
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Classical Community Detection L
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Conclusion: We asked ) e,

= What is an appropriate measure of success?
= Awareness of artificially hard problems for “natural”
problems where close is good enough
= Should try properly leverage hardness in defining success
= What classical algorithm(s) should be used for comparison?
= Must select proper algorithm and configuration

= Achieving fairness is tough when comparing an infant
technology like quantum vs one honed over decades

= How should one select appropriate benchmark instances?

= Balance between real-world, random, and hard is
challenging
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