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Outline

• Multi vs. hyperspectral definition

– Multi-spectral…think mapping pre-selected 
elements

– Hyper-spectral is collection all the data 
possible

• Spectral image analysis

• Historical timeline of developments

– Multi-to-hyperspectral happened 35 years ago

– Commercial version less than 20 years ago

• 2D to 3D examples along the way
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Data analysis primer
What is a spectral image?

• A series of complete spectra resolved in

2- or higher dimensions
– Conventional spectral images-2D*

• Demonstrated in 1979 and first product by PGT in 1995

– Tomographic spectral images-3D**
• Direct-FIB**, Metallography

• Computed-Tilt series of spectral images

• Confocal

– Resolved in other dimensions
• Time, process condition, projection, etc.

• As far as MSA is concerned these can all be treated the same

voxel

z

energy

*e.g., P.G. Kotula et al. Microsc. Microanal. 9 (2003) 1-17.
**e.g., P.G. Kotula et al. Microsc. Microanal. 12 (2006) 36-48.



What are the basic steps of MSA?

• Keenan, M.R., Multivariate analysis of spectral images 
composed of count data, in Techniques and applications of 
hyperspectral image analysis, H. Grahn and P. Geladi, Editors. 
2007, John Wiley & Sons: Chinchester.

• Scale data for non-uniform noise*
– Down-weights large variations in intense spectral or image 

features which are due to noise
– Rank 1 approximation to the noise

• In the image domain divide by the square-root of the mean image
• In the spectral domain divide by the square-root of the mean spectrum
• Essentially the same answer as maximum likelihood methods with but 

far less computational complexity**

• Factor analysis (PCA, factor rotation, MCR)
– Analysis goal: compact and readily interpreted factors

• Inverse noise scaling

*M.R. Keenan and P.G. Kotula, Surf. Int. Anal. 36 (2004) 203-212
**M.R. Keenan, J. Vac. Sci. Tech. A 23 [4] (2005) 746-750 



We have several options in our 
multivariate “Toolbox”

• Principal Component Analysis (PCA)
– Factors are orthogonal

– Factors serially maximize variance

– Provides best LS fit to data

– Non-physical constraints

– Factors are abstract

• PCA + factor rotation (VARIMAX)*
– Rotate factors to “simple structure”

• MCR-ALS**
– A refinement of Rotated PCA

– Non-negativity of C and/or S

– Equality, closure and others 

– Constraints may not be effective

– Bias due to error in variables

Analysis goal: Obtain an 
easily interpretable 

representation of the data
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*M.R. Keenan, Surf. Int. Anal. 41 (2009) 79-87.
**P.G. Kotula, et al. Microsc. Microanal. 9 (2003) 1-17.



Historical timeline of multi- to hyper-
spectral imaging

1951 1956

Castaing builds 
the first practical 
EPMA (single-
point analysis)

J.J. Friel and C.E. Lyman, Microsc. Microanal. 12, 2-25, 2006.

Cosslett & 
Duncumb collect 
first x-ray maps

1968

Fitzgerald, et al. 
develop the Si (Li) 
EDS detector

1979

Legge & Hammond 
acquire the first 
hyperspectral image

1989

Jeanguillaume & 
Colliex describe 
“spectrum images”

1991

Hunt & William collect an 
EELS spectrum image

1995

Mott et al. at PGT 
commercialize 
event streaming 
(PTS) for EDS

PDP 11 IBM PC

1984

Gatti & Rehak
SDD

2000

Lechner et al. 
multi-channel SDD 

2006

Niculae et al. 
perfect the SDD

Kotula et al. collect a 3D  
spectrum image (FIB-SEM)



Historical timeline of multi- to 
hyper-spectral imaging

2000

Lechner et al. 
multi-channel SDD 

2006

Niculae et al. 
perfect the SDD

2005

Doyle et al. 
demonstrate 1.1 
sr annular SDD 
and spectral 
imaging

PNSensor/Roentec

2007

PNSensor/Bruker
deliver ‘annular’ 
SDD for SEM to 
Sandia 

2010

von Harrach et al. 
demonstrate 4-channel 
SDD on AEM (SuperX)



Historical timeline of hyper-spectral 
image analysis (partial)

1990

Trebbia & Bonnet
EELS-SI and MSA

19981995

Titchmarsh et al.
MSA (PCA) of X-ray 
spectrum line

2002

I joined Sandia and work with Keenan 
and begin research to develop better 
tools for spectral image analysis

2006

Sandia’s AXSIA commercially 
licensed/Patents issued 1-year later

(Specific influences of our early work plus some of our contributions)

Anderson et al.
MSA (PCA) of X-ray 
spectrum images

PGT-PTS/EmiSpec

2003

Kotula, et al. 
publish first 
journal article
SEM-EDS SI 
and MSA /MCR

2004

Keenan, et al. 
publish 
Poisson 
normalization

Kotula, et al. 
publish 3D EDS 
by FIB-SEM 
and MSA 
analysis

2012

Kotula et al. 
Atomic-
resolution EDS, 
MSA and quant



1968, Si(Li) detector…enabling 
technology for spectral imaging

R. Fitzgerald, K. Keil, K.F.J Heinrich, Science (1968) 159 528-530. 

• Si (Li) EDS started at 600eV resolution
• Over the years improved to about 130eV

FWHM at Mn-K
• Parallel detection
• Downsides:

• Liquid nitrogen cooling 
• Lack of flexible geometries
• You can get either throughput or 

good spectral resolution but not both



1979, The First Hyperspectral Image

• Proton microprobe with Si(Li) EDS
• Custom-designed beam control and data 

acquisition
• Events streamed to magnetic tape 



1984, SDD…eventually a game changer

E. Gatti and P. Rehak, Nuc. Inst. Meth. Phys. Res. 225 (1984) 608-614.

• The silicon drift detector is born 
but will take a few decades to hit 
its stride

• Thin (300 m to 400 m thick)
• Less sensitive to high-

energy photons vs. Si(Li)
• Low capacitance allows for very 

fast read out (short shaping 
times in the 100s of nsec)

• Several orders of magnitude 
better throughput

• Issues with peak position and 
resolution changing with count 
rate…

Image courtesy PNSensor



Early SDDs had issues
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2006, SDDs finally ready for prime time

• The silicon drift detector is finally 
better in virtually every respect 
than the Si(Li).

• Improved read-out scheme fixed 
the stability issues at higher 
count rates

• Thin (300 m to 400 m thick)
• Less sensitive to high-

energy photons vs. Si(Li)
• Low capacitance allows for very 

fast read out (short shaping 
times in the 100s of nsec)

• Several orders of magnitude 
better throughput

• Peltier cooled so flexible 
geometries are possible



2006, SDDs now excellent performers
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2006, SDDs now excellent performers
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2005, Multi-element SDD and Spectral Imaging

B.L. Doyle, D.S. Walsh, P.G. Kotula, P. Rossi, T. Schulein and M. Rohde, X-Ray Spectrom. (2005) 34 279-284.

• Sandia/Rontec collaboration
• PIXE microprobe, 1.1 sr SDD array
• 3 MeV Carbon excitation.
• Ionization energies all shift.
• Spectral image acquired with 

custom-designed system.
• MSA data analysis

• No a priori information such as 
peak position needed.

• In fact peak positions were 
unknown for these conditions 
prior to this work

22.5 mm



2007, Multi-element SDD and Spectral Imaging

4mm

Pole piece

Chamber view

• Collaboration between PNSensor
Bruker and Sandia

• Funding from DHS in relation to 
Sandia’s work for the FBI’s 
Amerithrax investigation

• Design existed, Sandia ordered the 
first for SEM implementation

• 4 x 15 mm2 sensors with a hole 
combined solid angle of 1.1sr

• Spectral image of a 750 m diameter 
ball bearing. MSA analysis.

P.G. Kotula, J.R. Michael and M. Rohde, Microsc. Microanal. Suppl.2 (2008) 14 116-117.



Anatomy of a Bacillus anthracis spore

1 m

Exosporium

Hirsute layerSpore coat

Layers present –
Outside to inside

Hirsute Layer

Exosporium

Spore coat

Cortex

Scanning transmission electron annular dark-field image

Work for the FBI’s  Amerithrax investigation with Joe Michael at Sandia.



0 2.00 4.00 6.00
0

0.1

0.2

0.3

0.4

0.5

20 40 60 80

Sn

Si

O

C

keV

Fe

0 2.00 4.00 6.00
0

0.1

0.2

0.3

0.4

0 20 40 60

Si

O

FeSn

0 5.00 10.00
0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80

Fe

Si

O

keV

Daschle Material

New York Post Material

Leahy Material

Bacillus Anthracis chemical signatures from 300kV AEM 

STEM ADF

Red = Cortex/stain
Green = Spore coat/Si-O-Sn-Fe
Blue = Plastic

MSA results
(overlay)



Solving the sample throughput problem

• Not every spore had the Si-O-Sn-Fe signature 
so we needed to analyze a larger population of 
spores…in the tens of thousands

• AEM fields of view are small…8-10m while in 
SEM it can be millimeters

• Features of interest are 10-20 nm requiring thin 
samples (STEM in SEM).

• STEM in SEM would be good but typical solid 
angels for EDS are 60 msrad so count rates are 
very low for thin samples.

• One solution is a multi-sensor annular SDD



Improved resolution- LV vs. STEM in SEM

bulk sample

X-ray 
generation 

volume

Electron beam

EDS

bulk sampleX-ray 
generation 

volume

Electron beam

EDS

FIB-thin sample

Electron beam

EDS

Conventional Low voltage

STEM in SEM
(also AEM at higher voltages)

4mm

Pole piece



Red= Si, Green = Ca-P, Blue, Cl-SSEM defines field of view 
for spectral image 
acquisition 

MSA identifies three 
chemical signatures  

Si-containing spore coat

From this it is possible to count x and n

STEM in SEM of unstained, microtomed section

(Samples from Bruce Ivans’ lab at USAMRIID) 



The true test of the annular detector: 
13 samples from the investigation

• In April of 2008 we were provided 13 samples for analysis

• Over 40 STEM in SEM x-ray spectral images were acquired by a 
Technologist with the new annular x-ray detector 

– Over 13,000 spores imaged in 3 work-days (24 hours)

– MSA and counting populations took 7 work-days (56 hours)

– 10 days (80h) total for over 13,000 spores 

– 0.04 seconds per spore for identification (compare with 2 
minute per spore for STEM)

Thanks to Bonnie McKenzie at 
Sandia for data acquisition.
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Advanced statistical analysis
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2006, 3D spectral imaging via FIB-SEM/EDS

3 spatial dimension analysis, just more spectra 

Kotula et al., Microsc. Microanal. 12 (2006) 36-48.



3D EDS spectral imaging
Analysis of Ag-2Zr/Alumina Braze 

Movie of 
electron images
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Analysis of Ag-2Zr/Alumina Braze:
3D Component Images

Red = Al2O3

Green = Ag
Blue = Glass
Magenta = Zr-Si
Yellow = ZrO2



2010, SuperXTM: Large solid angle silicon drift detector 
array provides more flexible AEM integration

•4-30mm2 (120mm2) SDDs with large solid angle
• 0.9 sr (Osiris-uncorrected)
• 0.7 sr (Titan-probe corrected)
• State-of-the-art SDDs 
• Windowless & PNWindow…good light-
element performance (C, N, O easily)
• High-throughput…10 sec instantaneous 
dwell times, multiple pass, drift correction

Revolutionary change 
in AEM-EDS

sample

Conceived by FEI with 
collaboration from Bruker and 

PNSensor
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Paliney 7, electrical 
contact material 
nanometer-scale 

spinodal decomposition. 
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7 minutes at 
0.5nm/pixel with the 

new AC-STEM

120 minutes at 
2nm/pixel Tecnai.

The new AEM is at least 70x better than our older AEM 

(Philips/FEI Tecnai F30-ST)

Sub-nm microanalysis of electrical contact materials

Titan G2 80-200 Cs 
probe corrected 
with ChemiSTEM
(SuperX)
MSA analysis

D.F. Susan, Z. Ghanbari, P.G. Kotula, J.R. Michael & M.A. Rodriguez, 
Metall. and Mat. Trans. A 45A (2014). DOI: 10.1007/s11661-014-2334-x



FWTM enrichment at the 
boundary less than 2nm

Analysis of Mn-doped STO =13 Boundary

Quantitative EDS and EELS

Mn+2 at boundary
Mn+4 in bulk near boundary 
(subsitutional with Ti)

∑13 (510)/[001]

H. Yang, P.G. Kotula, Y. Sato, Y. Ikuhara, N.D. Browning. Materials 
Research Letters (2013). DOI: 10.1080/21663831.2013.856815



Tomographic Spectral Imaging and 
Multivariate Statistical Analysis
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Advanced statistical analysis

Reconstruction of component 
images into 3D model (Inspect 3D)

Rendering Tip of the Fischione 
Model 2050 on-axis 
tomography holder Atom-probe tip

SEM image of the 
prepared needle

P.G. Kotula, et al. Microsc. Microanal. 13 (Suppl2), 2007 1324CD-1325CD



MSA of the entire projection series

0°

-90°

Region of spectral 
images 2000nm x 400nm

Drift-correction region

Color overlays of component images

19 hours (over 3 days) of data acquisition
30 min on the Titan if automated!

P.G. Kotula, et al. Microsc. Microanal. 13 
(Suppl2), 2007 1324CD-1325CD

FEI Tecnai F30-ST, 0.1sr

Then, reconstruct component projection 
images into 3D model (Inspect 3D)



Raw tomography series

Ni

Al-O

HAADF



3D reconstruction for alumina nanoparticles

Needle sample, Al2O3 component
FEI Tecnai F30-ST, 0.1sr

P.G. Kotula, et al. Microsc. Microanal. 13 
(Suppl2), 2007 1324CD-1325CD



3D chemistry of a nanoparticle 

A Genc, et al., (2013) “XEDS STEM tomography for 3D chemical 
characterization of nanoscale particles,” Ultramicroscopy 131 24-32.



Conclusions

• In the last 10 years SDDs have come into their own and 
enabled huge gains in analytical speed and sensitivity making 
comprehensive 2- and 3-D microanalysis both possible as well 
as faster and better (FIB-SEM-EDS and AEM)

• New analytical electron microscopes are 100 times better than 
the last generation…faster, higher resolution, more sensitive.
– Practical 3D microanalysis via computed tomography

• MSA methods are very useful for simplifying the analysis of 
large, complex data sets 
– Unbiased analysis powerful for materials science, etc. Needle in the 

haystack….

– Quantification can them be performed with added knowledge

• All of these developments have depended upon the availability 
of inexpensive and powerful computers


