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Research to advance our understanding of geomaterials

 Develop advanced validated 
constitutive models for 
geomechanics and multiphas flow 
that directly impact our ability to 
predict:
 aquifer response to injected fluids

 hydrocarbon production decline, 

 efficiency of subsurface carbon 
storage, 

 Induced seismicity
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Injection-pressure-induced 
deformation and shear failure

Induced seismicity

SPE-135555

Production decline

Hydraulic Fracturing



Digital rock physics for understanding poromechanics

 Models of poromechanics, multiphase flow, and 
wave propagation are based on simplistic porous 
texture, e.g. penny-shaped cracks, spherical 
pores, bundled capillary tubes, and volume-
averaging.

 Current understanding of poromechanics
“smears” the effects of pore-scale structure 
(occluded porosity, organic/inorganic pockets)

 Applicability of Biot effective stress concepts in 
anisotropic media, partial saturation and the 
effects of plastic yielding can be addressed via 
digital rock physics.

 Mesoscale analysis – linking discrete and complex 
pore-scale behavior to continuum (macroscale) 
reservoir response – is key, yet remains elusive as 
a result of the extreme heterogeneity and 
resulting scale dependence.
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Venerable conceptualizations of porous media

Porous electrode

Iglauer et al 2011

Sandstone



Image analysis and digital rock physics has advanced our 
understanding of porous media

 Alignment

 Enhance contrasting

 Multiple Filtering

 Thresholding

 Post processing (e.g, 
dilation, erosion)
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Medial Axis Analysis

 Binary or ternary pore 
and fluid distribution 
construction

Topological Analysis



Modeling at the Mesoscale

Sierra Mechanics/CDFEM

Prodanovic & Bryant 2006

Fluid interface

Iglauer et al 2011

Multiphase Flow 
with Level Sets  

Flow of “frac” fluid in 
proppant-containing 
fracture

Lattice Boltzmann

Yoon et al. SNL
Jeremy Lechman, SNL

Effective Thermal Conductivity of 
Particle Dispersions



Digital rock schema could be improved with 3D printing
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•Science-based approach to develop advanced constitutive laws
•Testing and modeling on same pore topologies and materials 
•Scale dependence & model validation

Impact:

Reproducible synthetic media that mimic natural media, 
potentially enabling a limitless set of experiments 

benefiting all manner of scientific research

3D printing enables us to: 
• surmount problems with sample-to-

sample heterogeneity
• to test material response independent 

from pore-structure variability
• develop functional porous structures
• print porous specimen with integrated 

test frame 
• addresses issues of scale-up 



3D printing as the “next big thing”

 Additive Manufacturing (ASTM F2792), aka, 3D printing is projected to 
revolutionize manufacturing – GE Aircraft report “… we are at the dawn of the 
next Industrial Revolution …”

 State of the Union Address – 3D print-driven manufacturing hub

 National Labs join America Makes (Ref: 3Dprint.com) 

 Europe utilizing 3D printing in their nuclear industry

 GE’s newest aircraft engine is designed with parts made from 3D printing

 Biomedical – porous lattice metallic implants and prosthetic limbs

 Makerbot (available through Home Depot)

 Toys, dishes, automotive, electronics, prototype models

 Key benefits of AM

 Easily and economically build complex geometries with internal features impossible 
or impractical with traditional manufacturing techniques

 Parts on demand

 Adaptive Topological Optimization (shapes optimized for function)
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Weight-optimized torsion bar



Representative 3D Printing Process Categories

“Fused deposition modelling”, 
Wikipedia

“Selective laser sintering”, Wikipedia

Objet material jetting, www.me.vt.edu

Binder jetting, www.utwente.nl

“Stereolithography”, Wikipedia

http://en.wikipedia.org/wiki/File:Selective_laser_melting_system_schematic.jpg
http://en.wikipedia.org/wiki/File:FDM_by_Zureks.png


Material properties for 3D printing
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Randal Schubert, HRL Laboratories @ 2013
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3D Printing of digital rocks

 Issues

 Materials & characteristics (brittle vs ductile)

 Feature size

 Finish

 Attainable porous structure features:

 100 micron (preferably less) pore sizes

 ~2 cm3 specimen for testing

 Wettability manipulation

 Real pore structures on specimens greater than 1 REV
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Technology Materials Min. feature size 
(mm)

fused deposition
modelling (FDM)

thermoplastics (ABS, PLA, nylon,
PC…)

~0.5 mm

material jetting photocurable plastics ~0.4 mm

laser sintering metals (SS, Inconel, Al…)
ceramics (alumina, Ceramet, WC)

~0.2 mm
~0.5 mm

binder jet printing gypsum / acrylate unknown

stereolithography
(SLA)

photocurable resins / epoxies <0.1 mm claimed

direct write inks, slurries, paste, resins, etc., 
any material w/1-1x106 cPs viscosity

material dependent

direct write extrusion 
casting

Metal Foam (UTEP)



Microfluidics
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PDMS 3D Printing Stereolithography(SL):
 Rapid prototyping technique to print in 

transparent 3D polymer structures from a liquid 
photopolymer resin with a focused laser or LED

 Printing resolution at 20-100’s m corresponding 
to a minimum channel width of ~200 m

 Simplified design processing for complex device

 Desktop SL 3D printers are available!!

 Printing on pre-processed surfaces (e.g., 
biochemically treated or nanopatterned surfaces)

 Feasibility of imaging

 Surface wettability can be adjusted after printing

Au et al. (2014, Lab on a Chip)
Static Water Contact Angles of self assembled nanoparticles on printed 
surface with variation of an additive contractions resulting; (a) 93°, (d) 31°. 



Digital Rock Physics with 3D printing at SNL

Yoon & Dewers 
(2013)

FIB-SEM sample volume has a size of 
statistical elementary volume at ~ 10 m

FDM with ABS

AE testing

3000x
50.83 mm3
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Conclusions

Digital rock physics augmented with 3D printing of porous 
structures has a lot of potential to advance our 

understanding of poromechanics
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Backup slides
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Workflow for Digital Rock Physics
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Digital rock physics workflow for mesoscale simulation

 We utilize both FEM and Lattice-Boltzmann methods, the latter can utilize voxel 
data directly. The former requires some form of mesh generation

 Despite the availability of commercial software for building grids based on voxel 
descriptions, the ability to design well-conditioned grids for modeling remains 
somewhat of an art. 
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3D image stack

Dream3D
reconstruction

Background mesh

Decomposition of
background mesh
using CDFEM

Dream3D surface 
mesh (STL)



Multi-Scale Imaging  (potential for upscaling?)

X-ray computed Tomography (CT)

2.54 cm

Focused Ion 
Beam/SEM 

15 m (~15 nm res.)

TEM/EDS for mineral 
compositions

5 m (~1 nm res.)

Fluorescent 
Microscopy

Optical 
Microscopy

Beads packing Fracturing
Core (~1m)

Thin Section

Laser Scanning Confocal Microscopy



comments:

 Concern about surrogate geomechanical properties of printed media
 3D printing of ceramics and/or calcium carbonate (limestone) is possible, and we do not anticipate studying fracture or strain 

localization, but anticipate  heterogeneity and occluded porosity can be studied in REV specimens

 Control of surface properties and whether treatments might weaken printed media
 Surface properties are important for multiphase flow configurations; we would use treatments (vapor deposition ) to minimize 

interactions with printed material

 How will upscaling be tackled?
 Tests and models performed at various scales will be combined for application of response function approach, utilizing Dakota

optimization technology on multiple model realizations

 How is large strain going to be modeled with Lattice Boltzmann? 
 Mesoscale and macroscale flow models will utilize LB and Sierra; Mesoscale and macroscale geomechanical models will be 

performed with Sierra Mechanics or ABAQUS

 Suggested starting with idealized porous structures
 We’ve discussed this as a potential risk mitigation strategy 



Sierra Mesoscale Example:
Effective Thermal Conductivity of Particle Dispersions

 Verification of CDFEM for Average thermal conductivity in 
static random dispersions

 Particle configurations taken from Brownian Dynamics 
Simulations of Repulsive Colloids

 Suspending fluid insulating, particles conductive (ratio of 
conductivities ~ 1000)
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Jeremy Lechman, 1516



Pore Scale Lattice Boltzmann Simulations
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 Estimation of anisotropic permeability and tortuosity at multiple scales
 Single phase flow simulations to determine a representative element volume
 Develop constitutive models for parametric models for continuum scale models  -
Sierra Mechanics

Fracking fluid flow 
in the presence of 
proppants


