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Research to advance our understanding of geomaterials i) i

= Develop advanced validated
constitutive models for
geomechanics and multiphas flow
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Digital rock physics for understanding poromechanics
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=  Models of poromechanics, multiphase flow, and
wave propagation are based on simplistic porous
texture, e.g. penny-shaped cracks, spherical
pores, bundled capillary tubes, and volume- “15
averaging. '

= Current understanding of poromechanics
“smears” the effects of pore-scale structure
(occluded porosity, organic/inorganic pockets)

= Applicability of Biot effective stress concepts in
anisotropic media, partial saturation and the
effects of plastic yielding can be addressed via
digital rock physics.

=  Mesoscale analysis — linking discrete and complex
pore-scale behavior to continuum (macroscale)
reservoir response — is key, yet remains elusive as
a result of the extreme heterogeneity and
resulting scale dependence.

Porous electrode

Venerable conceptualizations of porous media

Iglauer et al 2011



Image analysis and digital rock physics has advanced our -
understanding of porous media i) famat

Segmentation Process | | 3D Digital Rock Construction | | Quantitative Analysis |
= Alignment

= Binary or ternary pore
and fluid distribution
construction

= Enhance contrasting
= Multiple Filtering
=  Thresholding

= Post processing (e.g,

Medial Axis Analysis

Topological Analysis

S-way segmentation
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Modeling at the Mesoscale ) teona
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Digital rock schema could be improved with 3D printing ) taior
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Reproducible synthetic media that mimic natural media,
potentially enabling a limitless set of experiments
benefiting all manner of scientific research

Imaging &
3D printing enables us to: microstlruc_:tural
« surmount problems with sample-to- analysis

N

sample heterogeneity d 3D printing of Numerical grids

+ to test material response independent digital rocks from digital rocks
from pore-structure variability L )

» develop functional porous structures p ¥ ¥

* print porous specimen with integrated Experimental Mesoscale
test frame testing of printed transport and

media mechanics
» addresses issues of scale-up . modeling

S/
Development of
validated
constitutive
models

Impact:

*Science-based approach to develop advanced constitutive laws
*Testing and modeling on same pore topologies and materials
*Scale dependence & model validation




3D printing as the “next big thing” ) Neiona
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= Additive Manufacturing (ASTM F2792), aka, 3D printing is projected to
revolutionize manufacturing — GE Aircraft report “... we are at the dawn of the
next Industrial Revolution ...”

= State of the Union Address — 3D print-driven manufacturing hub
= National Labs join America Makes (Ref: 3Dprint.com)

= Europe utilizing 3D printing in their nuclear industry
= GE’s newest aircraft engine is designed with parts made from 3D printing
= Biomedical — porous lattice metallic implants and prosthetic limbs

= Makerbot (available through Home Depot)

i | - T eeelele,
= Toys, dishes, automotive, electronics, prototype models o te st st T T e

[ Key beneﬁts Of AM Weight-optimized torsion bar

= Easily and economically build complex geometries with internal features impossible
or impractical with traditional manufacturing techniques

= Parts on demand
= Adaptive Topological Optimization (shapes optimized for function)




Representative 3D Printing Process Categories
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“Fused deposition modelling”,
Wikipedia

Layers of solidified resin

Liquid resin

Platform and piston

“Stereolithography”, Wikipedia

)

Jetting Head

/7 X axis
£ t -‘.'E‘_n_/— ¥ axis
UV Light

Fullcure M
(Model Material)

Fullcure S
(Support Material)

N

Objet material jetting, www.me.vt.edu

Build Tray

fabricated

Powder delivery pistan Fabrication pision

“Selective laser sintering”, Wikipedia



http://en.wikipedia.org/wiki/File:Selective_laser_melting_system_schematic.jpg
http://en.wikipedia.org/wiki/File:FDM_by_Zureks.png

Material properties for 3D printing ) teona
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Randal Schubert, HRL Laboratories @ 2013




3D Printing of digital rocks ) fmas

= |ssues
= Materials & characteristics (brittle vs ductile)
= Feature size
= Finish

= Attainable porous structure features:
= 100 micron (preferably less) pore sizes Metal Foam (UTEP)
= ~2 cm? specimen for testing
= Wettability manipulation
= Real pore structures on specimens greater than 1 REV

Technology Materials Min. feature size
(mm)

fused deposition thermoplastics (ABS, PLA, nylon, ~05mm
modelling (EDM) PC )

material jetting photocurable plastics ~0.4 mm

laser sintering metals (S8 Inconel Al ) =02 mm

direct write extrusion

ceramics (alumina Ceramet, WC) ~0.5 mm )
casting

binder jet printing gypsum/ acrylate unknown

stereolithography photocurable resins / epoxies =01 mmclaimed
(SLA)

direct write inks, slurries, paste, resins, etc., material dependent
any material w/1-1x108 cPs viscosity




Microfluidics ) teona
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PDMS 3D Printing

[ | Ste reo I ith Og ra p h y( S L ) : poms:) '{gr:‘i:::a::?mwe STEREOLITHOGRAPHY
= Rapid prototyping technique to print in a(@)

transparent 3D polymer structures from a liquid
photopolymer resin with a focused laser or LED

molding @
//\
s =

build -
platform 7

" Printing resolution at 20-100’s um corresponding . 1
to a minimum channel width of ~200 um =

FABRICATION

= Simplified design processing for complex device
= Desktop SL 3D printers are available!!

= Printing on pre-processed surfaces (e.g.,
biochemically treated or nanopatterned surfaces)

WaterShed XC Glass

= Feasibility of imaging

= Surface wettability can be adjusted after printing

(a) (b) (c)

Static Water Contact Angles of self assembled nanoparticles on printed
surface with variation of an additive contractions resulting; (a) 93°, (d) 31°.

(d)

Phase Contrast

Calcein AM

Au et al. (2014, Lab on a Chip)




Digital Rock Physics with 3D printing at SNL ) taior
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FDM with ABS
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statistical elementary volume at ~ 10 um




Conclusions ) teona
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Digital rock physics augmented with 3D printing of porous
structures has a lot of potential to advance our
understanding of poromechanics
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Workflow for Digital Rock Physics ) teona
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Flow and SlElile
Rock Multiscale Image Effective Wave
) Transport : .
Sample image Process ) Elastic Propagation
Properties

Properties




Digital rock physics workflow for mesoscale simulation ) teona
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=  We utilize both FEM and Lattice-Boltzmann methods, the latter can utilize voxel
data directly. The former requires some form of mesh generation

= Despite the availability of commercial software for building grids based on voxel
descriptions, the ability to design well-conditioned grids for modeling remains
somewhat of an art.

Dream3D surface
mesh (STL)

Dream3D
reconstruction

background mesh
Background mesh using CDFEM

3D image stack




Multi-Scale Imaging (potential for upscaling?) i) ttona
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Characterization of pore structures, surface properties, patterns using various
techniques such as optical microscopy, microCT, FIB-SEM, TEM, EDS

X-ray computed Tomography (CT)

TEM/EDS for mineral
Beads packing  Fracturing compositions

!

Core (~“1m)

—

5 um (~1 nm res.)

15 um (~15 nm res'.)

| Optical  Fluorescent
Microscopy Microscopy Focused lon
Laser Scanning Confocal Microscopy Beam/SEM

—— Thin Section




comments: ) teona
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= Concern about surrogate geomechanical properties of printed media

= 3D printing of ceramics and/or calcium carbonate (limestone) is possible, and we do not anticipate studying fracture or strain
localization, but anticipate heterogeneity and occluded porosity can be studied in REV specimens

= Control of surface properties and whether treatments might weaken printed media

=  Surface properties are important for multiphase flow configurations; we would use treatments (vapor deposition ) to minimize
interactions with printed material

=  How will upscaling be tackled?

=  Tests and models performed at various scales will be combined for application of response function approach, utilizing Dakota
optimization technology on multiple model realizations

= How is large strain going to be modeled with Lattice Boltzmann?

= Mesoscale and macroscale flow models will utilize LB and Sierra; Mesoscale and macroscale geomechanical models will be
performed with Sierra Mechanics or ABAQUS

= Suggested starting with idealized porous structures
=  We've discussed this as a potential risk mitigation strategy




Sierra Mesoscale Example:
Effective Thermal Conductivity of Particle Dispersions
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= Verification of CDFEM for Average thermal conductivity in
static random dispersions

= Particle configurations taken from Brownian Dynamics
Simulations of Repulsive Colloids

= Suspending fluid insulating, particles conductive (ratio of
conductivities ~ 1000)

<V : (G(x,y,z)VT(x,y,z))> =0
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Pore Scale Lattice Boltzmann Simulations
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e Estimation of anisotropic permeability and tortuosity at multiple scales
e Single phase flow simulations to determine a representative element volume

200 300 400 500 600
Subvolume length (voxels)

700
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Fracking fluid flow
in the presence of
proppants

e Develop constitutive models for parametric models for continuum scale models -
Sierra Mechanics




