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Summary: ZAPP experiments measure fundamental () i
properties of atoms in plasmas to solve important
astrophysical puzzles.

Fe Opacity

« Why can’t we predict the location of the
convection zone boundary in the Sun?

» Opacity of Fe at ~200 eV ' g

Si Photoionization
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* How does ionization and line formation occur
in accreting objects and warm absorbers?

» lonization distribution and spectral
properties of photoionized Ne and Si

« Why doesn’t spectral fitting provide the correct
properties for White Dwarfs?

» Stark-broadened H-Balmer line profiles
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Experiments on Z access a broad range of the ) i,
energy-density phase space s

Petawatt Hot Neutron
Laser Star Interior:
1 010 B Plasmas
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The fundamental science program is an essential ) e,
. Laboratories
part of the research portfolio on Z

Distribution of Shot Days in FY13
Fundamental science collaborations ~

provide: .
Fundamental Science Facilit
« Peer review and critique on methods (8%) (4% )y
and results

* New ideas

 Growth in the HED science
community

« Atalent pool of trained HED
experimental and theoretical
scientists

ICF
(30%)

\\v

Programmatic science can leverage the intellectual and financial investments
made by the world-wide fundamental science community




ZAPP campaigns simultaneously study multiple i) e

Laboratories

issues spanning 200x in temperature and 10%x in density

Solar Opacity Photoionized Plasmas White Dwarf Line-Shapes

Question: Question: Question:

Why can’t we predict the How does ionization and Why doesn’t spectral fitting
location of the convection line formation occur in provide the correct properties
zone boundary in the Sun? accreting objects? for White Dwarfs?

Achieved Conditions: Achieved Conditions: Acheived Conditions:

T, ~ 200 eV, n, ~ 108 cm3 T.~20eV,n,~ 10" cm-3 T.~1eV,n,~ 10" cm™3
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The z-pinch dynamic hohilraum (ZPDH) produces (i)
record currents of 25.8 MA with 1.5% reproducibility

Load Currents (20 shot average) Z- meh Dynamlc Hohlraum
-"’
30~ - ~ 1 T T T T T T T T T T ] .. _
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25 =N
= oL / : Standard ZPDH Characteristics
~ o0 : 360 W wires — 11.4 um diameter
£ 15 _ 1 m = 8.5 mg W total
ZA: ‘ V... = 85kV (21 MJ)
g 10F : |, =25.8 0.4 MA [20 shots]
- Sanford et al., POP 9 (2002)
Bailey et al., POP 13 (2006)

S Lemke et al., POP 12 (2004)
3000 . (330)50 209 Slutz et al., POP13 (2006)
Rochau et al., PPCF 49 (2007)




X-ray Power (TW)

The ZPDH x-ray emission is reproducible to £ 10% () o

in peak power and * 7% in energy

Radial X-ray Power and Energy

Laboratories

Z-pinch Dynamic Hohlraum
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: Mass 8.5 mg
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Power (10%)
Radiated 1.6 MJ
Energy (7%)

3.8 mg

120 TW
(14%)

0.82 MJ
(17%)



The ZPDH can simultaneously drive four i) it
independent experiments on a single ZAPP shot

3 Radial Experiments

X-ray Z-pinch 1 Axial Experiment
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ZAPP campaigns acquire up to 59 spectra on a i) it
single shot

Solar Opacity Photoionized Plasmas White Dwarf Line-Shapes
24 Space-Resolved 4 Space-Resolved | 3 Streaked '
Fe Absorption Spectra Si Absorption Spectra H Absorption Spectra

12 Space-Resolved
Ne Absorption Spectra

16 Time-Resolved
Fe Absorption Spectra




The x-ray drive on radial samples needs to be i) Menon
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corrected for the view-factor

Monochromatic Images (277 eV) Calibrated VISRAD view-factor model
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[ Assumption:

I Each ‘pixel’ emits a Planckian spectrum at its
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characteristic T,




The calibrated VISRAD model is used to infer the ()
radiation drive spectrum at each sample

r-0 Peak Brightness Peak Drive Flux on a Sample
Temperature Contours
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The ZPDH can also radiatively heat samples placed (i) i
above the z-pinch to T,~200 eV.

Framing Pinhole Camera Images

Tungsten
Shocked
Foam
Unshocked Axial Fe Foil Temperature
Foam
+

290 195k0eV T
Radiating | |
Shock 21 J

200F - -----d----— - -
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40 mm

Rochau et al., PRL 100 (2008)



ZAPP campaigns simultaneously study multiple i) e
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issues spanning 200x in temperature and 10%x in density

Solar Opacity

Question:

Why can’t we predict the
location of the convection
zone boundary in the Sun?

Achieved Conditions:
T.~200eV, n,~10%2 cm™3

@v

Question:

How does ionization and
line formation occur in
accreting objects?

Achieved Conditions:
T,~20eV,n,~10"® cm™3

v B

Question:

Why doesn’t spectral fitting
provide the correct properties
for White Dwarfs?

Acheived Conditions:
T.~1eV, n,~10" cm3
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Models for solar interior structure disagree with ) e,
. . . Laboratories
helioseismology observations.

Convection-Zone (CZ) Boundary
Models are off by 10-30 o

Models depend on:
« Composition (revised in 2005)

« EOS as a function of radius
» The solar matter opacity

* Nuclear cross sections

.

Question: Is opacity uncertainty the cause of the disagreement?

Objective: Measure Fe opacity at CZ base conditions.




The ZPDH radiating shock is used to both heat and )
backlight samples to stellar interior conditions. o

Foil is heated during 1.0
the ZPDH implosion 508

transmission spectrum
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Bailey et al., POP 16 (2009)




The achieved temperature and density depend on (i) %,

Laboratories

the target design.

Thin Tamper
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Modern computations of Fe opacity show large i) it
disagreements with data at CZ base conditions

Thin Tamper (T, = 156 eV, n, = 6.9x102" cm -3)

Present Status

» Agreement between data and
computation becomes worse at

. [ Z-data ] increasing temp. and dens.

2 I PrismSpect B

é S '« Disagreements at CZ base

& Thick Tamper (T, = 196 eV, n_ = 39x102" cm -3) conditions can partially explain
|_

100 T T ] the CZ boundary problem.

» The differences are probably
not unique to Fe... more
scrutiny of the data is prudent.

- Z-data _
- PrismSpect 1 N

Wavelength (A)




ZAPP campaigns simultaneously study multiple i) e
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issues spanning 200x in temperature and 10%x in density

Photoionized Plasmas

Question: Question: Question:

Why can’t we predict the How does ionization and Why doesn’t spectral fitting
location of the convection line formation occur in provide the correct properties
zone boundary in the Sun? accreting objects? for White Dwarfs?

Achieved Conditions: Achieved Conditions: Acheived Conditions:

T, ~200 eV, n, ~ 102 cm-3 T.~20eV,n,~ 10" cm-3 T.~1eV, n,~ 10" cm3

U >
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We learn about black holes from the matter falling ()
into them — these are photoionized plasmas

Conceptual Picture of a Black-Hole Accretion Disk
Photoionization parameter

mission by — —1
photoionized — [erg .CIN1.S ]

matter

—

Te

Accretion Disks

Hﬁﬁmd,ﬂ-n;., > ./Eve“t Pl &~10-10,000 erg.cm.s™

* infall

lonization Laboratory Plasmas

by phot
L y photons

n,~ 10" cm3

Accretion F>1 01 9 erg/cmz/S
disk

>1 TW/cm? for & > 10




Ratio

A Specific Problem: Emission from L-shell ions is
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not seen in some prominent black-hole accretion disks.

Measured Fe Emission from ???
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: -e- Suzaku
— XMM-Newton
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1.0 R

09 ........................

Observed energy (keV)

No observed emission from
Fe ionized to the L-shell

Is Resonant Auger Destruction
(RAD) the Reason?
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New models suggest that RAD may not be as )
efficient as previously thought. o

0.6 ......... T T T —rrrrrr—
' Be-like Fe XXIII

new atomic physics
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new Kinetics
L new atomic physics
old kinetics
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Fractional X-ray Yield

Question: Is Resonant Auger Destruction the reason we don’t see emission
from L-shell ions in some black-hole accretion disks?

Objective: Measure spectra in a highly photo-ionized lab plasma.

Liedahl, X-ray Diag. of Astrophysical Plasmas (2005)




ZAPP experiments achieve ¢ ~ 20 at the correct
column depths to study the RAD question.
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Emission measurements in FY14 will measure the ) e,
quenChing due to RAD_ Laboratories

If RAD-affected lines are quenched:

New Spherically-Bent « New atomic modeling methods wiill
Crystal Spectrometer need to be re-evaluated
image

« we will have strong experimental
support for current assumptions used
in accretion disk modeling

S

1” Tungsten plate

- entrance
- snout

alignment If RAD-affected lines aren’t quenched:

telescope

» L-shell ionization zones cannot be
there, counter to accretion models

» data archive will need re-examination

spherically-bent
crystal




ZAPP campaigns simultaneously study multiple i) e
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issues spanning 200x in temperature and 10%x in density

White Dwarf Line-Shapes

Question: Question: Question:

Why can’t we predict the How does ionization and Why doesn’t spectral fitting
location of the convection line formation occur in provide the correct properties
zone boundary in the Sun? accreting objects? for White Dwarfs?

Achieved Conditions: Achieved Conditions: Acheived Conditions:
T.~200eV, n,~ 102 cm3 T,~20eV,n,~ 10" cm™ T.~1eV,n,~ 10" cm™3
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The properties of White Dwarfs are determined by () i _
spectral fitting, but disagrees with other methods

« White Dwarfs are fundamentally 1.4x10715 —
important
» Evolutionary endpoint for ~98% of stars 1.2x1071¢

> Simple in structure and evolution ‘%
» Cosmic laboratories (cosmochronology) E o !
0 I
E Bx10-16 f -
- WD surface temperature and total ”
mass are usually determined by fitting 3 6xto;
the observed spectra ~ _ _
4X10'"’_- ]
» The spectroscopic method and erouel

P TR TR NN SRR SN TN T U SN SN NSNS TN (N TR TR T S
gravitational redshift disagree by 3800 4000 4200 4400 4600 4800
>10% in the stellar mass e



Recent line-profile calculations partially fix the i) it
problem — are they right?

T.=10,000 K Tremblay & Bergeron
n,=1E17cm3s T Vidal-Cooper-Smith
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Question: Are inaccurate H-Balmer line shapes responsible for the inaccurate
determination of WD mass?

Objective: Measure H-Balmer line shapes at relevant temperature and density.

P. Tremblay and P. Bergeron, ApJ (2009)



ZAPP experiments utilize radiatively heated gas i)
cells to provide benchmark data for the WD problem

Gas Cell Model

» Gas cells provide a precisely ]
known atom density o ——

\Y's hectrometer
Fiber

Large cell size provides optical
depths needed for high-n lines

* Large cell minimizes the effect of
boundary layers

* Long fielding distance provides
uniform heating flux
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Simultaneous streaked absorption and emission (f
in absolute units provide a unique capability

Emission Absorption
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Measured H-Balmer line shapes can discriminate () i
between theories

121

H-B Hy , H-5 He,

—
@]

Present Status

o
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« Measurement of relative line-
shapes up to n=7 provides a

Transmission (fraction)
o
o

0N
;.P T 1| r ] 1t 1 | 1117 [ 1T

Get strong constraint on models
- Data
- n.=_8e16 cm= YCS_ |+ Additional measurements at
2.6 2.8 3.0 3.2 higher density may be required to
—~ lep T T T ] fully address the WD problem
N H-B H-y H-5 H- °
:8; oal » Continued scrutiny on the data is
L prudent:
§ 0.6} ! > Reproducibility of the result
% 0.4l Data 1 > Plasma uniformity
2 aal Tremblay-] <
= oo .\l n=8e16.cm? Bergeron
2.4 2.6 2.8 3.0 3.2
Photon Energy (eV) 30




Summary: ZAPP experiments measure fundamental () i
properties of atoms in plasmas to solve important
astrophysical puzzles.

Fe Opacity

« Why can’t we predict the location of the
convection zone boundary in the Sun?

» Opacity of Fe at ~200 eV ' g

Si Photoionization
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* How does ionization and line formation occur
in accreting objects and warm absorbers?

» lonization distribution and spectral
properties of photoionized Ne and Si

« Why doesn’t spectral fitting provide the correct
properties for White Dwarfs?

» Stark-broadened H-Balmer line profiles




