SAND2013-9853C

Task Mapping Stencil Computations

David P. Bunde

Knox College
dbunde@knox.edu

Vitus J. Leung

Sandia National Labs
vjleung@sandia.gov

Johnathan Ebbers

Knox College
jebbers@knox.edu

Nickolas W. Price

Knox College
nprice@knox.edu

Matthew Swank

Knox College
mswank®@knox.edu

for Non-Contiguous Allocations

Stefan P. Feer

3M Health Information Systems
sfeer@mmm.com

Zachary D. Rhodes

Allstate Corporation
rhodesz87@gmail.com

Abstract

We examine task mapping algorithms for non-contiguously al-
located parallel jobs, such as those on Cray X systems. Several
studies have shown that task placement affects job running time for
both contiguously and non-contiguously allocated jobs. Tradition-
ally, work on task mapping either uses a very general model where
the job has an arbitrary communication pattern or assumes that jobs
are allocated contiguously, completely isolating them from each
other. Between these cases is mapping for non-contiguous jobs hav-
ing a specific communication pattern. We apply novel and adapted
task mapping algorithms to this setting and evaluate them using
experiments and simulations. Our focus is on jobs with a stencil
communication pattern. We evaluate them with a miniApp whose
communication behavior mimics CTH, a shock physics applica-
tion with this pattern. Our strategies improve its running time by as
much as 35% over a baseline strategy. Furthermore, this improve-
ment increases markedly with job size, demonstrating the impor-
tance of task mapping as systems grow.

Categories and Subject Descriptors D. Software [D.1 Program-
ming Techniques]: D.1.3 Concurrent Programming

Keywords Task mapping, stencil communication pattern, shock
physics, parallel jobs, non-contiguous allocation, improved scala-
bility, Cray X systems

Sandia National Laboratories is a multi-program
laboratory operated and managed by Sandia
Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction

This paper focuses on improving the performance of parallel
jobs by optimizing the placement of their tasks. This problem is
called rask mapping because the tasks are being mapped to process-
ing elements. When using MP], it is equivalent to reordering the
tasks so that each MPI rank works on the desired task. This prob-
lem has a long history (eg. [14]) and parallel algorithms used to be
designed for specific architectures so that the task placement could
be specified. This changed in the mid-1980s, when the adoption of
wormhole routing made task mapping less important by making a
message’s latency independent of its size. Several generations of
machines were made and used with little concern for task mapping.

Now it appears that this hiatus is ending. Several recent experi-
ments have shown that task placement can significantly impact per-
formance on modern systems (e.g. [5, 9, 12, 16, 18, 20, 22, 24]).
These experiments include actual applications, one of which ex-
hibited a speedup of 1.64 times when the task mapping was im-
proved [20]. The issue now is contention for limited bandwidth.
Since a message consumes part of the capacity of each link along
its route, poorly placed tasks mean wasted bandwith. This has al-
ways been the case, but this fact’s importance is being fueled by two
ongoing trends. First of all, processors continue improving faster
than networks, increasingly making bandwidth the limiting factor
in performance. In addition, node counts in state of the art HPC sys-
tems have continued to grow, increasing both the number of hops
between nodes and the potential for hotspots.

Growing recognition of the importance of task placement has
led to a resurgence of work on the problem. Broadly speaking, prior
work on task mapping falls into two categories, graph-based ap-
proaches and whole-machine approaches. Graph-based approaches
are too general. The problems are hard, and the solutions do not
exploit the regular structure of some common communication pat-
terns. Whole-machine approaches are targeted at systems such as
Blue Gene that allocate contiguous groups of nodes that are isolated
from each other. These assume structured communication patterns
that fold and stretch one grid into another. Such algorithms cannot
be directly applied to systems which use non-contiguous allocation,
such as those from Cray.

2013/11/13

adphill
Text Box
Sandia National Laboratories is a multi-program laboratory operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

adphill
Typewritten Text
SAND2013-9853C

Job Mapped job

Figure 1. Possible mapping of a 4x3 job onto a 5x4 machine.
Left: Job tasks with communication pattern shown. Right: Tasks
mapped to dark nodes.

1.1 Contribution

In this paper, we begin the study of task mapping for jobs with
structured communication patterns and non-contiguous allocations.
Specifically, we look at mapping jobs that communicate in a regular
3D nearest neighbor pattern onto a 3D mesh with xyz routing.
This is the simplest possible case, but non-trivial because nodes
allocated to other jobs interfere with the mapping. Figure 1 shows
a good 2D mapping of a 4 x3 job onto 12 allocated nodes of a 5x4
machine. The solid lines connecting allocated nodes show which
pairs of nodes communicate; actual communication must use the
mesh edges (shown as dotted lines).

We propose new algorithms and also adapt some algorithms
previously proposed for the contiguous setting. We also propose
a general preprocessing step that rotates jobs so their aspect ratio
more closely matches that of the allocated nodes.

We evaluate our algorithms using experiments on Cielo [25],
number 22 on the June 2013 Top500 list [3]. It is a Cray XE6
organized as a 3D torus and which uses non-contiguous allocation.
The application we run is miniGhost [8], a code whose structure
is modeled on the computational core of CTH [21], from which it
inherits nearest neighbor as its dominant communcation pattern.

One of our algorithms, which recursively divides both the task
graph and the set of ranks, is shown to greatly outperform the other
algorithms, including the current mapper on Cielo. This algorithm
divides based on coordinates rather than using graph partitioning,
exploiting the structured nature of the application for both mapping
speed and quality.

In addition, our experiments show that the average number of
hops between communicating tasks is strongly correlated with the
running time, facilitating later simulator-based studies by others.
Based on this, we perform some simulations that obtain results
consistent with the experiments and also begin a comparison of
allocation algorithms.

1.2 Organization of the paper

The rest of the paper is organized as follows. We summarize re-
lated work in Section 2. In Section 3, we explain our algorithms.
Section 4 describes the results of our experiments. Section 5 de-
scribes simulations used to evaluate the algorithms on a variety of
traces. Finally, in Section 6 we summarize our results and discuss
future work.

2. Motivation and related work

As mentioned above, previous work on task mapping falls
into two main categories. The first category was introduced by
Bokhari [14] in the first paper on task mapping. In this category, the
job is represented as a graph whose vertices are the tasks and whose
edges represent communication between their endpoints. Similarly,

the machine (or the available part of it) is represented as a graph
of ranks with connections. In general, both graphs have weighted
edges to represent the amount of communication needed between
pairs of tasks and the cost of communicating between pairs of ranks
respectively. Since the problem is clearly NP-complete (formally
shown in [22]), the papers generally use heuristic techniques such
as genetic algorithms [17] and simulated annealing [15]. Since the
graph formulation of task mapping is the most general, it remains
a goal for recent researchers. Chung et al. [18] use a hierarchical
approach to simplify the mapping problem to reasonable complex-
ity. Hoefler and Snir [22] use a combination of heuristics: greedy,
recursive bisection, a spectral method, and a local search scheme.

In the worst case, the graph representation of task mapping is
necessary since jobs can have arbitrary communication patterns and
failures or interference from other jobs can complicate network-
ing. The generality of the model obscures some practical simplifi-
cations, however: both the network and the job are likely to exhibit
useful structure. HPC systems have highly structured topologies,
such as a mesh or fat-tree. Similarly, jobs often communicate in
regular patterns such as trees and stencil patterns.

The other main category of work on task mapping focuses on
mapping mesh communication patterns onto meshes, a restriction
we adopt as well. The difference is that this work implicitly as-
sumes that the entire machine is devoted to a single job. (This
occurs for capability jobs that use the entire machine, but is also
the norm on BlueGene systems, which guarantee each job its own
submesh, which is kept isolated from other jobs [7].) For exam-
ple, Yu et al. [32] devise strategies based on folding one mesh into
another with a minimum of dilation (stretching a communication
graph edge across multiple communication links). Several other
heuristics for the mesh to mesh mapping problem are proposed by
Bhatel€ et al. [13]; we adapt some of their heuristics and evaluate
them with non-contiguous allocations. (The adaptation, detailed in
the next section, generalizes the idea to handle non-contiguous al-
locations, switches how it handles the third dimension, and adds a
preprocessing step.)

Prior to our work, the task mapping algorithm used by ALPS,
Moab, and miniGhost was a simple linear strategy that works with
a non-contiguous allocation while avoiding the complexity of the
fully general approaches. Instead, it first assigns a number to each
MPI rank, assigning the ranks of each node consecutive numbers
and visiting the nodes in the order given by the allocator, which
uses a space-filling curve similar to the linear scheme described
in Section 5; see [4] for details. It then orders tasks according to
row-major order (consecutive numbers move in the x direction,
then start the next row by increasing y (jumping back to x =
0) and eventually increasing the z coordinate). Given these two
orderings, each task is assigned to its corresponding rank. We call
this algorithm BASELINE.

Separate from our effort, Barrett et al. [9] developed an im-
provement over BASELINE, which they also tested using the
miniGhost application on Cielo. They noticed that miniGhost did
not scale well above four thousand processes and changed the task
mapping to assign 2 X 2 x 4 submeshes of the job’s tasks onto each
sixteen-core node of Cielo. The groups of tasks were numbered
consecutively in an x major fashion and mapped onto nodes num-
bered in the allocation order. We call this algorithm GROUPING. It
reduced both the average number of hops traversed by messsages
and the job processing time. Brown et al. [16] performed similar
work on the more general processors command for LAMMPS [1].

3. Our Algorithms

Now we describe our task mapping algorithms. Our examples
assume one rank per node and one node per XYZ coordinate value,

2013/11/13

Figure 3. Mapping by ROWMAJOR.

but the algorithms also work when ranks share coordinates (as in
our experiments).

Rotations As a preprocessing step, our algorithms rotate the job
if doing so makes its aspect ratio match more closely with the
allocated ranks. Specifically, we compare the relative orders of
dimension lengths for the job and the bounding box of the set of
ranks. If these orders differ, we rotate the job to make the orders
match. For example, if the job has a longer x dimension while the
bounding box has a longer y dimension, we rotate the job so that
both have a longer x dimension.

This rotation step is performed for all algorithms we consider
except BASELINE and GROUPING, which represent prior work.

Linear algorithms The first set of algorithms we considered are
linear algorithms, in which a linear ordering is used to assign
tasks to ranks. These algorithms are fast and easily implemented,
making them attractive as a starting point. Naturally enough, both
BASELINE and GROUPING fall into this category.

Our first new algorithm is COLMAJOR, in which both the tasks
and the ranks are numbered in column major order (coordinates
increase first in y, then x, and finally in z). Each task is assigned
to its corresponding rank. This algorithm in 2D is illustrated in
Figure 2.

The algorithm ROWMAIJOR is the same as COLMAJOR except
that the numberings are done in row major order, as illustrated in
2D in Figure 3. ROWMAJOR differs from BASELINE except for the
latter’s use of a space-filling curve for the allocation order.

We also proposed a novel algorithm ORDERED, which extends
COLMAJOR and ROWMAJOR by trying multiple linear orderings.
Specifically, it considers row- and column-major orderings plus
their “flips”, where the dimensions are traversed in the opposite
direction. (For example, using a row major ordering, but traversing
the rows right to left instead of left to right.) In two dimensions,
there are 2 - 22 = 8 such orderings. ORDERED compares all these
orderings and takes the one that yields the lowest average hops. (As
we show later, this metric is highly correlated with running time.)

Corner-based algorithms Our next set of algorithms are called
corner-based algorithms since they build mappings from the cor-

Figure 5. Mapping by ALLCORNERS.

ners rather than the sides. The first of these is the CORNER algo-
rithm. As in the linear algorithms, CORNER numbers both the tasks
and ranks, mapping each task to the corresponding rank. The or-
dering it uses is distance from (0, 0, 0), with ties broken by the z
coordinate, then the y coordinate, and finally the x coordinate. This
algorithm in 2D is illustrated in Figure 4.

The ALLCORNERS algorithm is similar except that it rotates be-
tween the corners. Thus, its first rank is the one closest to (0, 0, 0),
the second is closest to (0, Ymax, 0), the third to (Zmax, Ymax, 0), the
fourth to (Zmax, 0,0), and so on. (We use Zmax and ymax for the
maximum coordinates in these dimensions.) This ordering in 2D is
illustrated by Figure 5.

The corner-based algorithms are adaptations of heuristics “Ex-
pand from corner” and “Corners to center” described by Bhatelé
et al. [13] for task mapping when the allocated ranks form a con-
tiguous rectangle. These previous versions were presented in 2D
and then “stacked” to form 3D algorithms for contigous allocations.
Our corner-based algorithms differ by being a “native 3D” version
of the idea and incorporating rotations as described above.

Overlay-based algorithms An entirely new set of algorithms con-
structs the mapping by “overlaying” the job on the mesh to find a
desired location for each task. The desired location of the task at
(0,0, 0) is the coordinatewise minimums of each coordinate among
ranks assigned to the job. We call this location the basepoint. De-
note its coordinates with (bz, by, b-). The desired location of each
other task is placed relative to this. Thus, a task with coordinates
(4, J, k) within the job has desired location (bz + ¢, by + 7,0 + k).
The algorithm OVERLAY considers tasks in column major order
and assigns each task to the unassigned rank closest to that task’s
desired location. Figure 6 illustrates the OVERLAY algorithm in 2D.

The algorithm TWOWAYOVERLAY extends this idea to work
from both directions, with the sequence of tasks to assign alter-
nately selected in column major order from the front bottom left
and the reverse order from the back top right. When assigning a task
reached in the forward direction, it behaves identically to OVER-
LAY. When assigning a task reached in the reverse direction, it uses
the overlay computed from a back top right basepoint whose loca-

2013/11/13

Figure 7. Mapping by TWOWAYOVERLAY.

O 00
OOIQ, O
OO0 O
O .0

Figure 8. First cut made by RCB.

tion is the coordinatewise maxima of ranks assigned to the job. This
algorithm in 2D is illustrated by Figure 7.

Recursive Coordinate Bisection Our final algorithm, recursive
coordinate bisection (RCB), works by recursively dividing both
the job and the set of allocated ranks. Specifically, it splits the job
into two parts along its largest dimension as evenly as possible.
Then it divides the allocated ranks into two parts of the same size
along the same dimension (with tie-breaking). Figure 8 shows a
division based on x coordinate. Next, the algorithm recursively
maps each half of the job onto the corresponding half of the ranks.
The recursion stops when a part contains just a single task, at
which point that task is mapped to the single rank. The completed
mapping in 2D is illustrated in Figure 9.

Recursive bisection has long been used for problem partitioning
(e.g. [11]). Our approach turns this into a task mapping algorithm
by also partitioning the set of allocated ranks in order to identify
local subsets not only in the task graph, but also in the allocation
graph. Hoefler and Snir [22] also use a recursive bisection heuristic
for mapping, but they seek to map an arbitrary graph to an arbitrary
graph. This is a more general problem, but the general formulation
misses some of our problem’s geometry since the “direction” of the
cuts can be inconsistent between levels of recursion. The addition
of rotations is also a departure from these other applications of
recursive bisection.

Figure 9. Mapping by RCB.

Total Cores per Rank (X, Y, Z)

Cores 16 8 4 2 1
32 1,2,1 1,2,2 2,2,2 2,4,2 2,4,4
64 1,4,1 1,4,2 2,4,2 2,8,2 2,8,4

128 2,4,1 2,4,2 4,4,2 4,8,2 4,8,4
256 2,4,2 2,4,4 4,4, 4 4,8,4 4,8,8
512 2,8,2 2,8, 4 4,8, 4 4,16, 4 4,16, 8
1K 4,8,2 4,8,4 8,8,4 8,16, 4 8,16, 8
2K 4,8, 4 4,8,8 8,8,8 8,16, 8 8,16,16
4K 4,16, 4 4,16, 8 8,16, 8 8,32, 8 8,32,16
8K 8,16, 4 8,16,8 16,16, 8 16,32,8 16,32,16
16K 8,16, 8 8,16,16 16,16,16 16,32,16 16,32,32
32K 8,32, 8 8,32,16 16,32,16 16,64,16 16,64,32
64K 16,32,8 16,32,16 32,32,16 32,64,16 32,64,32

Figure 10. Job Dimensions

4. Experiments
4.1 Experiment setup

The experiments were run on the ACES [6] system Cielo [25],
located at Los Alamos National Laboratories. Cielo is a Cray XE6
with 143,104 compute cores in 8,944 compute nodes. Each com-
pute node is a dual AMD Opteron 6136 eight-core “Magny-Cours”
socket G34 running at 2.4 GHz. Each service node is a 272 AMD
Opteron 2427 six-core “Istanbul” socket F running at 2.2 GHz. The
high speed interconnect is a Cray Gemini 3D torus in a sixteen by
twelve by twenty-four (XYZ) topology. There are two nodes (sock-
ets) per Gemini. The bi-section bandwidth is 6.57 by 4.38 by 4.38
(XYZ) TB/s. As of June 2013, Cielo was number 22 on the Top500
list [3].

The applicaton used in the experiments was miniGhost. As part
of the exascale research program, the DOE lab community is devel-
oping mini applications (miniApps) that are representative of the
computational core of major advanced simulation and computing
codes. MiniGhost is a miniApp for exploring boundary exchange
strategies using stencil computations in scientific parallel comput-
ing. The miniGhost application [8] is a bulk-synchronous message
passing code whose structure is modeled on the computational core
of CTH [21]. CTH is a multi-material, large deformation, strong
shock wave, solid mechanics code developed at Sandia National
Laboratories.

A set of experiments consists of miniGhost runs for various
numbers of total cores and cores per MPI rank as shown in Figure
10, which gives the job dimensions. All jobs in a set of experiments
were submitted at roughly the same time. Due to system load, the
first set of experiments took almost two weeks to get on and off of
Cielo. Others were faster; the second set ran in less than a day.

For a given number of cores, a single script (allocation) was
used. Ten task mapping algorithms were then run for each core per
rank on that allocation. The entire set of ten algorithms were run
one job after another. This was done to minimize the experimental

2013/11/13

70

Cores per rank: =
2
L M Ac— |
60 ST m
lez—=a
50 - b
—
m i
Q
N
Q
E]
=]

Baseline Colmajor Ordered All corner

Grouping Row major Corner

Mapping Algorithm

TwoWayOverlay
Overlay RCB

Figure 11. Running time for 64K-core job as a function of the
number of cores per MPI rank.

variances other than the cores per rank and task mapping algorithms
for a given number of cores in a single set of experiments.

The task mapping algorithm is selected early in the
miniGhost application. All the task mapping algorithms are im-
plemented in a similar manner. The results show that the task map-
ping algorithms themselves (as opposed to the application being
mapped) are fast and differences in their running times are in-
significant. The miniGhost output includes total time, communica-
tion time as a percentage of total time, and average hops between
neighboring ranks in the application. The application spends about
thirty percent of its time communicating.

4.2 Number of cores per MPI rank

The miniGhost application has as a tuning option the number of
cores assigned to each MPI rank. This can range from 1 (each core
gets its own MPI rank) to 16 (one MPI rank per socket). Note that
we place multiple MPI ranks per socket as we increase the number
of ranks; these experiments are about changing the balance of MPI
and OpenMP used by the job rather than its size. Figure 11 shows
the running time for our largest size job (64K cores) for different
numbers of core per rank. Each entry is the average of five runs
except for the 1 core per rank entries of CORNER, ALLCORNERS,
OVERLAY, and TWOWAYOVERLAY; one of our runs for each of
these timed out so those entries is the average of only 4 runs.

Figure 11 shows two different performance trends. For some
of the mappers, the best performance is at 16 cores per MPI rank,
the maximum value considered. For others, it is at an intermedi-
ate value. Because the latter behavior is consistent with results ob-
tained by others [9] and the algorithms with the best overall perfor-
mance fall into the second camp, we focus on the results for 4 cores
per MPI rank (best for most of these algorithms).

We note that using 16 cores per rank minimizes the number of
ranks and means that each node has a single rank. That the more
poorly-performing algorithms tend to favor this setting and dete-
riorate monotonically as the number of cores per rank decreases
suggests that they are network bound, while the higher quality map-
pings provided by better-performing algorithms allow other factors
to come into play.

4.3 Comparison between mappers

Figure 12 shows the running time as a function of job size for
all ten algorithms. RCB performs consistently well and is the best
algorithm for most job sizes.

N
~

T - T
—+—Baseline

--%-- Grouping

26 - "~ B RCB F

25 b
o
2
L4 i
5}
g
=23 b

| | |
512 1K 2K 4K 8K 16K 32K 64K
Job size (cores)

Figure 13. Running time as a function of job size for the best
mapping algorithms

Of the linear algorithms, COLMAIJOR is consistently worse than
ROWMAJOR and it turns in some poor performances at large sizes.
We attribute this to the job dimensions, in which the y dimension is
often larger than the others (see Figure 10). This is the dimension
that COLMAJOR’s order moves down first and going down the long
dimension is bad for the linear algorithms since long communica-
tion distances occur when the ranks in a line along that dimension
end before the tasks in the corresponding line, causing the last rank
in one line to communicate with the first rank in the next.

Surprisingly, ORDERED is sometimes worse than COLMAJOR
and ROWMAJOR even though it chooses between these (and other)
possible orderings. We attribute this to the imperfect knowledge
with which ORDERED makes its decision; even though we show
that average hops and running time are correlated, ORDERED can
misjudge the relative quality of its choices.

Figure 13 focuses on the algorithms from prior work (BASE-
LINE and GROUPING) plus RCB, which performs best on the
largest jobs. The results are mixed for relatively small jobs, but it is
clear that RCB performs much better than the others at large scale.
Its outperformance of BASELINE increases with the job size, reach-
ing just over 16% at 64K cores. The outperformance is even better
with different numbers of cores per MPI rank. For 64K cores, with
2 cores per MPI rank RCB achieved a 24.1% improvement over
BASELINE and with 1 core per MPI rank it achieved a 28.4% im-
provement.

These gains are fairly consistent across runs. For jobs with 64K
cores, RCB with 4, 2, and 1 cores per rank gave improvements
over BASELINE of 12.8-18.6%, 12.5-29.6%, and 22.1-35.5% re-
spectively. The 12% improvements were both on the Sth run in
which BASELINE performed relatively well; without this run the
ranges become 15-18.6%, 20.2-29.5%, and 25.8-35.4% respec-
tively. Note that most of the variation within these ranges comes
from BASELINE; the standard deviations for running time with
RCB were 0.6 seconds, 0.4 seconds, and 0.2 seconds while with
BASELINE they were 0.6 seconds, 2.2 seconds, and 2.3 seconds.
Thus, RCB gives both better and more predictable performance.

Furthermore, the overall best running time for jobs with 8K and
more was nearly always RCB with 2 cores per rank. (This value
does not give the best improvement over BASELINE because BASE-
LINE performs worse with 1 core per rank than 2.) Of the twenty
experiments with these settings (5 repetitions of 4 sizes), RCB with
2 cores per rank was only beaten twice by RCB with 1 core per
rank (both on jobs with 32K cores) and once by GROUPING with
two cores per rank (16K cores). Even in these exceptions, RCB
with 2 cores resulted in a running time within 1.2% of the best.

2013/11/13

a5k AN N Baseline HER Row major /4 All corner
[Grouping [AA Ordered [T Overlay
30 223 Col major [Corner TwoWayOverlay

’
N
N/
N
N/
!

AVAVAVAVAVAVAVAVAY

>
9
A
4
A
<
3
9
A
4
A
<
3
9
4
=

W
—
[\

I RCB

S 3> 5SS SSSSN N
ANSANANENKIN{NKNNY

AAAAAAAAA)]

5
5
S
5
5
S
5
5
N
5

16K

Job size (cores)

Figure 12. Running time as a function of job size

Beyond the specific numbers, the lesson of Figure 13 is that task
mapping becomes increasingly important with job size; the spread
between the largest and smallest values starts at 2% at 512 cores
and grows to over 16% at 64K cores. Since the number of nodes
and cores are expected to continue growing, the apparently-scalable
performance of RCB (or successor algorithms) could be crucial to
keeping communication costs reasonable.

4.4 Benefit of rotations

We were also interested in measuring the impact of rotations on
task mapping performance. To do this, we ran a set of experiments
with some of the algorithms above and versions of those same
algorithms where the rotation code had been removed. For each
job size, we looked at all the numbers of cores per rank.

On average over all jobs of size 512 cores and larger, RCB
did 0.77% better with rotations, performing better in 24 of 40
trials. (If rotations were irrelevant, we would expect a 0% average
improvement and performing better on exactly half of the trials;
changes in machine state between the runs mean that actual ties
are unlikely.) When restricted to jobs with 8K cores or more, it did
1.03% better, performing better on 13 or 20 trials.

For the other algorithms we considered (ROWMAJOR, COR-
NER, and ALLCORNERS), having rotations was always better on
average for jobs with 8K+ cores and better on average for jobs with
512+ cores except for the ROWMAJOR mapper (where it was worse
by 0.05% on average). For all of these mappers, the average im-
provement was always bigger for 8K+ core jobs than 512+ core
jobs. The benefit of rotations was greatest for the CORNER mapper,
where they improved average performance by 3.33% for jobs with
512+ cores and 5.9% for jobs with 8K+ cores.

Thus, despite the limitation of having just a single set of runs,
we conclude that rotations provide a small but consistent gain on
average and that, like the effect of mapping overall, this effect
seems to increase with job size.

4.5 Correlation with hop metrics

To more deeply understand our results, we investigated the
relationship between experimentally-observed running time and
several abstract metrics. The first of these is the average L distance
between ranks with communicating tasks. Assuming x-y-z routing,
this is equal to the average number of hops (average hops) required
for a message to traverse a communication path. The number of
hops that a message travels has a direct impact on its latency, but
also serves as a proxy for contention since the message consumes
bandwidth on each traversed link. If the job performs the same
amount of communication between each adjacent pair of tasks, this

metric is equivalent to the hops-bytes metric considered in prior
work (e.g. [13]).

Our second metric is the variance of the number of hops, the
average of the squared deviation from the average number of hops.
This provides a measure of the “jitter” in communication times.

Our final metric is the maximum hops, the longest distance of
any communication path. This is justified by the observation that
long communication distances can have disproportionate impact
on job running time because other tasks may wait for delayed
messages.

Of these metrics, average hops turns out to be the best correlated
with job running time. For each combination of job size and num-
ber of threads per MPI rank, we calculated the Spearman’s rank
correlation. (Recall that we used job sizes that were powers of 2
from 32 to 64K and that the number of threads per MPI rank was
a power of 2 from 1 to 16.) The rank correlation coefficients are
generally increasing with job size and decreasing with the number
of threads per MPI rank. Based on the achieved values, we can re-
ject the null hypothesis with significance level less than 0.05 for
all configurations of jobs having at least 1024 cores (all numbers
of threads per rank). The significance level was less than 0.01 for
all configurations having at least 8K cores and all configurations
having at least 2K cores except those with 16 threads per rank. We
used the table in [31] for the confidence values. In addition, if we
combine the data points for different numbers of threads per rank,
we find that all jobs sizes except 64 cores achieve the 0.005 signif-
icance level (determined by multiplying by /n — 1 to convert the
distribution of rank correlation coefficients to normal).

We used the same procedure to examine the other metrics, but
the correlation was less strong. For variance, the rank correlation
coefficient still generally increased with job size, but there was no
clear pattern involving the number of threads per MPI rank. Among
configurations having at least 1K cores, all but three acheived
the 0.05 significance level. (The exceptions were 1K cores with
8 threads/rank, 4K cores with 16 threads/rank, and 16K cores
with 1 thread/rank.) When combining the data points for different
numbers of threads per rank, it achieved the 0.005 significance level
for jobs of size 2K and larger.

For max hops, the rank correlation coefficient again generally
increased with job size, but 4 threads per rank most often achieves
the 0.05 significance level. It does so for jobs having 8K or more
cores. This level is achieved rarely for jobs smaller than 64K having
16 threads/rank or 1 threads/rank and for jobs smaller than 32K
having 8 threads/rank or 2 threads/rank.

In addition to these piecewise results, all three metrics achieved
the 0.005 significance level when all the runs were combined. Com-

2013/11/13

paring the values of the rank correlation coefficients individual con-
figurations and the values for each size or number of threads/rank,
suggests that average is most highly correlated with running time,
then variance, and finally max hops. The values when all runs are
combined actually slightly favor max over variance.

5. Trace-based simulation

To further explore the performance of our algorithms and to see
them in more varied scenarios, we examined them with a high-level
trace-based simulator. This simulator was used to schedule and
allocate jobs from the traces using algorithms similar to those used
in practice. The resulting allocations were then used as input to our
task mapping algorithms. The traces used to run our simulator did
not provide any information about the messages sent by each job
so we assumed a stencil pattern and evaluated the quality of the
mappings by their average hops. Thus, our simulations represent
a tradeoff in terms of fidelity: we used actual traces from HPC
systems and performed scheduling and allocation with algorithms
used in practice, but did not model the interaction between jobs and
evaluated mappings using an approximation of their true quality.
By making these approximations, we were able to evaluate the
mapping algorithms on more than a million combinations of job
and allocator. (For each job in a trace, the allocator’s previous
decisions determine which nodes are free and this, plus its decision
on the job itself, determine the ranks that are passed to the mapping
algorithm for that job.)

5.1 Simulation setup

To drive the simulator, we draw on the Parallel Workloads
Archive [19], which contains job logs from a variety of HPC sys-
tems. From these logs, we are able to get each job’s arrival time,
size, running time, and (in many cases) the running time estimate
submitted by the user. Unfortunately, the logs do not provide any
information on job communication patterns and very few give any
guidance about the job’s desired shape. Since this information was
unavailable, we supposed that every job used a stencil pattern on a
mesh whose dimensions we assigned. Although not all jobs would
use a stencil pattern in practice, the scheduler and allocators are
independent of the communication pattern and that our evaluation
function (average hops) works on only a single job. Thus, assum-
ing all jobs have this pattern allows us to look at how the mappers
would perform on each job if it used a stencil pattern without our
assumptions causing any interference between jobs.

To assign dimensions with as little dependence on relative
shapes as possible, we made everything as square as possible.
Specifically, we used traces for machines whose number of nodes
allowed those nodes to be arranged in a perfect square. To assign
job dimensions to a job that wanted p ranks, we assigned it dimen-
sions x by y (by 1) where x was the largest integer < ,/p such that
z divides p and y = p/z. Since some algorithms could perform
poorly on long, skinny jobs, we skipped jobs whose dimensions
z or y exceeded the machine dimensions. (In practice, these jobs
would need to be mapped of course. Some ideas would be to “fold”
or “squish” them in a preprocessing step so that they would fit.) We
also skipped serial jobs, which are uninteresting from a mapping
perspective. Figure 14 lists the traces used, the shape assigned to
each machine, and the number of jobs that were included in our
simulations, along with the percent of total trace jobs they repre-
sent. The traces where we are using less than 90% of the jobs both
have large numbers of serial jobs; 32.9% of the jobs in the KTH-
SP2 trace and 15.2% of the jobs in the SDSC-Par95 trace are serial
jobs. (Note that we simulate all the jobs since skipped jobs still
affect when the others run and which ranks they are allocated due
to the use of non-contiguous allocation.)

Log name Machine # jobs used

DAS2-fs0-2003-1.swf 12x12 204,777 (93.3%)
DAS2-£5s1-2003-1.swf 8x8 37,392 (95.0%)
DAS2-fs2-2003-1.swf 8x8 61,214 (93.6%)
DAS2-£53-2003-1.swf 8&x8 64,876 (98.1%)
DAS2-fs4-2003-1.swf 8x8 32,506 (98.6%)
KTH-SP2-1996-2.swf 10x10 18,603 (65.3%)
LLNL-T3D-1996-1.swf 16x16 21,323 (100%)
SDSC-Par-1995-2.1-cln.swf 20x20 45,238 (83.8%)
SDSC-Par-1996-2.1-cln.swf 20%20 29,172 (90.8%)
LLNL-Atlas-2006-2.1-cln.swf ~ 96x96 37,378 (98.0%)

Figure 14. Summary of traces used in simulations

Figure 15. Snake curve

To schedule these traces, we used EASY [28], an algorithm that
maintains a FIFO queue but allows a job not at the front to start
anyway (called backfilling) if it is not expected to interfere with
the job at the front of the queue when it does so. EASY is used in
practice and it is often used as a baseline in scheduling research.

To allocate jobs once EASY decides to run them, we used
two different allocators. The first is MC1x1 [10], which identifies
ranks for an allocation by adding those at successively greater Lo
(Manhattan) distances from a rank it selects as the center. The ranks
at a given Lo, distance are called a shell. If all ranks are free, the
resulting allocation is a square with odd side length except that the
outermost shell may not be completely populated depending on the
number of tasks being allocated. Ranks that are busy with other
jobs become holes in this square, potentially requiring additional
shells to be examined.

The second allocation algorithm we considered is a linear
scheme called snake best fit that combines ideas of Lo et al. [29]
and Leung et al. [27]. This algorithm organizes the nodes in a
linear order along a “snake” or “s-curve”, which goes along the
machine’s short dimension and then curves back as shown in Fig-
ure 15. The free nodes are grouped into intervals according to their
position along the curve and the algorithm allocates nodes from
the smallest interval containing enough nodes (best fit). If no inter-
val is large enough, then nodes are selected to minimize the span,
the maximum distance along the curve between selected nodes. If
all nodes are free, snake best fit will tend to create rectangular al-
locations that cross the entire machine, possibly with gaps in the
boundary columns. If there is no interval entirely free, then busy
nodes again create holes in the allocation. The snake best fit algo-
rithm is much faster than MC1x1 and has been shown to generate
allocations of comparable quality to MC1x1 [30] when “quality” is
measured in terms of the average pairwise distance between nodes
allocated to a job. This is equivalent to our average hops metric
if the job’s communication pattern is all-to-all, the worst case and
perhaps the safest assumption if nothing is known about the job’s
actual communication pattern.

This linear scheme is similar to allocation algorithms provided
as options in common cluster management software. SLURM [26]
provides one that organizes the nodes using an approximation to a
Hilbert curve (also considered by Leung et al. [27]). ALPS [23]
orders the nodes based on a curve selected from a number of

2013/11/13

‘ MClxl —+
2.4 - snake best fit --x-- |

22 X i

Average hops

121 I I I I
2 4 6 8 10

Job side length

Figure 18. Average hops as a function of job side length for the
RCB mapper over “squareable” jobs in all traces.

options at startup. ALPS does not use best fit packing, which was
shown to be of lesser importance than curve selection [27].

5.2 Incremental improvement mapper

To provide context for the average hops metric, we also ran
a simple incremental improvement or local search task mapping
algorithm which we call INCIMPROVE. This algorithm starts with
RCB and then swaps the mappings of pairs of tasks as long as doing
so improves the average hops. We do not intend INCIMPROVE to be
used in practice, but present it as an estimate of the best possible
mapping. Note that INCIMPROVE is not guaranteed to find the
absolute best possible since it can get caught in a local minima,
but it serves as a useful proxy since there are too many possibilities
to use brute force search to find the best mapping even for small
jobs.

5.3 Results on traces

Figures 16 and 17 show the average hops for each trace using
the MC1x1 and snake best fit allocators, respectively. Note that we
only ran the LLNL-Atlas trace with the snake allocator; MC1x1 ran
too slowly to include in our simulations. (Comparing centers takes
cubic time in our implementation so the first 10 jobs of this trace
averaged around 40 minutes each.)

As in the experiments, RCB looks to be the best algorithm of
the ones discussed in Section 3. It was 2nd best to INCIMPROVE
for all traces when using the MC1x1 allocator and all but one when
using the snake allocator. (CORNER beat both RCB and INCIM-
PROVE by a small amount on the DAS2-fs4 trace with the snake
allocator.) In fact, RCB’s average hops are consistently quite close
to INCIMPROVE, suggesting that it gives nearly optimal solutions
according to the average hops metric.

We were interested in whether the allocators would favor differ-
ent sized jobs. To examine this, we compared the average mapping
quality between the two allocators on just the jobs that can form
squares. Figure 18 shows the average hops for RCB over all the
jobs in all the traces except LLNL-Atlas (for which we only ran the
snake allocator). The results are broken out by side length. Note
that there are no jobs of side length 12, 13, 14, 17, 18, or 19. We
also excluded side length 20 since that occupies all of the largest
machine, meaning they get the entire machine and a perfect map-
ping.

The results for the two mappers are quite similar, giving curves
with similar shapes even though the specific values differ. For
both mappers, the snake best fit allocator is nearly always worse
by the average hops measure. We believe this is explained by
the tendency of MCI1x1 to give more “rounded” allocations while
snake best fit favors skinnier allocations, with small jobs receiving

a group of ranks all in a line. Since all the jobs considered in
these results are square, mappers working with MC1x1 generally
have to “stretch” the mesh communication pattern less to make it
fit onto the allocated ranks, giving better average hop counts. On
larger jobs, however, the disadvantage is somewhat lessened since
the curve comes back and the job begins to widen. In addition,
rectangles that run the entire length of the machine will pack more
easily than the squarish allocations that MC1x1 tends to produce.

6. Summary and future work

Our work shows that task mapping can improve job running
times, with the effect becoming crucial to high performance as the
job size grows. We also showed that RCB is an effective task map-
ping algorithm for jobs using a stencil communication pattern. Fu-
ture research will also benefit from our result that average hops is
highly correlated with job running time— this facilitates simula-
tions to identify promising algorithms and also provides a tractable
metric for theoretical analysis.

We plan a number of steps going forward. Currently, RCB is
implemented as a rank remapping performed within miniGhost.
We will transfer it into a library so that other programs can eas-
ily adopt it. We also plan on investigating other communication
patterns, with extensions of RCB being a natural place to start. In
addition, we are interested in further investigating INCIMPROVE.
Currently, it can run for a potentially-unbounded time, which is
clearly unacceptable, but it might be possible to capture some of its
benefits while adding limits (e.g. no more than x swaps, only make
swaps that improve by x%, etc).

References

[1] LAMMPS molecular dynamics simulator.
sandia.gov/.

[2] 2006.

[3] Top 500 list - November 2012. http://www.top500.org/list/
2012/11/.

[4] C. Albing, N. Troullier, S. Whalen, R. Olson, and J. Glensk. Topology,
bandwidth and performance: A new approach in linear orderings for
application placement in a 3d torus. In Proc. Cray User’s Group
(CUG), 2011.

[5]1 G. Almasi, S. Chatterjee, A. Gara, J. Gunnels, M. Gupta, A. Henning,
J. Moreira, and B. Walkup. Unlocking the performance of the Blue-
Gene/L supercomputer. In Proc. 2004 ACM/IEEE Conf. on Supercom-
puting, page 57, 2004.

[6] J. Ang, D. Doerfler, S. Dosanjh, S. Hemmert, K. Koch, J. Morrison,
and M. Vigil. The Alliance for Computing at the Extreme Scale. In
Proc. 52nd Cray User Group, 2010.

[7]1 Y. Aridor, T. Domany, O. Goldshmidt, J. Moreira, and E. Shmueli.
Resource allocation and utilization in the Blue Gene/L supercomputer.
IBM J. Research and Development, 49(2/3):425, 2005.

R. Barrett, C. Vaughan, and M. Heroux. MiniGhost: A miniapp for
exploring boundary exchange strategies using stencil computations
scientific parallel computing. Technical Report SAND2011-5294832,
Sandia National Laboratories, 2011.

R. Barrett, S. Hammond, C. Vaughan, D. Doerfler, J. Luitjens, and
D. Roweth. Navigating an evolutionary fast path to exascale. In
Proc. 3rd Intern. Workshop Performance Modeling, Benchmarking
and Simulation of High Performance Computing Systems (PMBS),
2012.

[10] M. Bender, D. Bunde, E. Demaine, S. Fekete, V. Leung, H. Meijer, and
C. Phillips. Communication-aware processor allocation for supercom-
puters: Finding point sets of small average distance. Algorithmica, 50
(2):279-298, 2008.

[11] M. Berger and S. Bokhari. A partitioning strategy for nonuniform
problems on multiprocessors. IEEE Trans. Computers, 36(5):570—
580, 1987.

http://lammps.

[8

—

[9

—

2013/11/13

Column major&g Corner I TwoWayOverla)FE
25 Row majol] AllCorners ™Y rcB I
Orderedd {1 Overlay I IncImprovd___]

()
T

Average hops
O
T

o
n

E
\
\

b
>
>
b
>
NE¢=A

N
DAS2-fs3

(/7 7 7 7 7 7]
I
OO

DAS2—fs0 DAS2—fs1

DAS2—fs4

D>
KTH-SP2

Figure 16. Average hops for each trace using the MC1x1 allocator.

8 =

Column major NN Corner I TwoWayOverlay rz1
Tr Row major L] AllCorners [~ rcs b
6 Ordered [XX] Overlay [| IncImprove 1]

Average hops
N
T

IR

DAS2—fs1 DAS2—fs2

(=]

DAS2—fsO

HA
O

[N
p ll'
b H

L
b A

LLNL-TD3

w

KTH-SP2 C—Par96 LLNL-Atlas

SDSC-Par95 SDi

Figure 17. Average hops for each trace using the snake best fit allocator.

[12] A. Bhatele and L. Kale. Benefits of topology-aware mapping for mesh
topologies. Parallel Processing Letters, 18(4):549-566, 2008.

[13] A. Bhatelé, G. Gupta, L. Kalé, and I.-H. Chung. Automated mapping
of regular communication graphs on mesh interconnects. In Proc.
Intern. Conf. High Performance Computing (HiPC), 2010.

[14] S. Bokhari. On the mapping problem. IEEE Trans Computers, C-30
(3), 1981.

[15] S. Bollinger and S. Midkiff. Heuristic technique for processor and link
assignment in multicomputers. IEEE Trans. Computers, 40(3), 1991.

[16] W. M. Brown, T. D. Nguyen, M. Fuentes-Cabrera, J. D. Fowlkes,
P. D. Rack, M. Berger, and A. S. Bland. An evaluation of molecular
dynamics performance on the hybrid Cray XK6 supercomputer. In
Proc. Intern. Conf. Computational Science (ICCS), 2012.

[17] T. Chockalingam and S. Arunkumar. Genetic algorithm based heuris-
tics for the mapping problem. Computers and Operations Research,
22(1):55-64, 1995.

[18] L-H. Chung, C.-R. Lee, J. Zhou, and Y.-C. Chung. Hierarchical
mapping for HPC applications. In Proc. Workshop on Large-Scale
Parallel Processing, pages 1810-1818, 2011.

[19] D. Feitelson. The parallel workloads archive. http://www.cs.
huji.ac.il/labs/parallel/workload/index.html.

[20] FE. Gygi, E. W. Draeger, M. Schulz, B. de Supinski, J. Gunnels, V. Aus-
tel, J. Sexton, E. Franchetti, S. Kral, C. Ueberhuber, and J. Lorenz.
Large-scale electronic structure calculations of high-Z metals on the
BlueGene/L platform. In Proc. 2006 ACM/IEEE Conf. on Supercom-
puting sc0 [2].

[21] E. Hertel, R. Bell, M. Elrick, A. Farnsworth, G. Kerley, J. McGlaun,
S. Petney, S. Silling, P. Taylor, and L. Yarrington. CTH: A software

family for multi-dimensional shock physics analysis. In Proc. 19th
International Symposium on Shock Waves, 1993.

[22] T. Hoefler and M. Snir. Generic topology mapping strategies for
large-scale parallel architectures. In Proc. 25rd ACM Intern. Conf.
Supercomputing (ICS), 2011.

[23] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing. The application
level placement scheduler. In Proc. Cray User’s Group (CUG), 2006.

[24] H. Kikuchi, B. Karki, and S. Saini. Topology-aware parallel molecular
dynamics simulation algorithm. In Proc. Intern. Conf. Parallel and
Distributed Processing Techniques and Applications, 2006.

[25] L. A. N. Laboratory. High-performance computing: Cielo supercom-
puter. http://www.lanl.gov/orgs/hps/cielo/index.html, .

[26] L. L. N. Laboratory. SLURM: A highly scalable resource manager.
https://computing.llnl.gov/linux/slurm/, .

[27] V. Leung, E. Arkin, M. Bender, D. Bunde, J. Johnston, A. Lal,
J. Mitchell, C. Phillips, and S. Seiden. Processor allocation on Cplant:
Achieving general processor locality using one-dimensional allocation
strategies. In Proc. 4th IEEE Intern. Conf. on Cluster Computing,
pages 296-304, 2002.

[28] D. Lifka. The ANL/IBM SP scheduling system. In Proc. 1st Workshop
Job Scheduling Strategies for Parallel Processing, number 949 in
LNCS, pages 295-303, 1995.

[29] V. Lo, K. Windisch, W. Liu, and B. Nitzberg. Non-contiguous proces-
sor allocation algorithms for mesh-connected multicomputers. /EEE
Trans. Parallel and Distributed Systems, 8(7):712-726, 1997.

[30] P. Walker, D. Bunde, and V. Leung. Faster high-quality processor al-
location. In Proc. 11th LCI Intern. Conf. High-Performance Clustered
Computing, 2010.

[31] R. Walpole and R. Myers. Probability and statistics for engineers and
scientists. Macmillan Publishers, 4th edition, 1989.

[32] H. Yu, I.-H. Chung, and J. Moreira. Topology mapping for Blue
Gene/L supercomputer. In Proc. 2006 ACM/IEEE Conf. on Super-
computing sc0 [2].

2013/11/13

