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tissue engineering scaffolds and high temperature insulation. One route for
manufacturing ceramic foams pioneered by Akartuna et al. (2008) is to make
concentrated Pickering emulsions stabilized by ceramic micro- or nano-particles
which are then dried and sintered.
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Pickering Emulsions
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Battery Testing

Octane For use in a battery, the ceramic foam must be filled with the electrolyte. Several methods from aqueous deposition
L to vacuum impregnation were tried. In particular the large pores in the emulsion samples were very difficult to fill with
electrolyte. Gel ceramic foams were easier to fill with electrolyte and compare well to existing molten salt technology
valeric acid In single cell testing. However the cell impedance is noticeable higher as evidenced in the pulse discharge curves.
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