10

11

12

13

14

15

16

Confidential manuscript submitted to Geophysical Research Letters

Short-range, overpressure-driven methane migration in coarse-grained gas hydrate

reservoirs

Michael Nolel, Hugh Daiglel, Ann E. Cookz, and Alberto Malinverno®

'Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin,

TX, USA
?School of Earth Sciences, The Ohio State University, Columbus, OH, USA
*Lamont Doherty Earth Observatory of Columbia University, Palisades, NY, USA

Corresponding author: Michael Nole (michael.nole@utexas.edu)

Key Points:

e Short-range advection is proposed as a methane migration mechanism in marine hydrate-

bearing sands.

e Hydrate distributions in overpressured coarse-grained sands are hypothesized as

functions of sand dip angle.

e 2D basin-scale simulations show overpressured flow focusing as a significant means of

methane transport in sands.
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Abstract

Two methane migration mechanisms have been proposed for coarse-grained gas hydrate
reservoirs: short-range diffusive gas migration and long-range advective fluid transport from
depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine
sediments is a significant additional methane transport mechanism that allows hydrate to
precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional
simulations demonstrate that this migration mechanism, short-range advective transport, can
supply significant amounts of dissolved gas and is unencumbered by limitations of the other two
end-member mechanisms. Short-range advective migration can increase the amount of methane
delivered to sands as compared to the slow process of diffusion, yet it is not necessarily limited

by effective porosity reduction as is typical of updip advection from a deep source.

1 Introduction

An ice-like compound of natural gas molecules trapped in water lattices [Sloan and Koh,
2007], gas hydrate commonly forms within sediments along marine continental margins and
under arctic permafrost [Paull and Dillon, 2001]. Natural sub-seafloor gas hydrate
accumulations have been studied around the globe through a variety of subsurface, downhole,
and laboratory techniques. Attention in recent years has focused on the northern Gulf of Mexico
[Boswell et al., 2009], the Nankai Trough off the southeast coast of Japan [Uchida et al., 2004;
Fuji et al., 2008], the Krishna-Godavari Basin offshore India [Collett et al., 2008; Ramana, et al.,
2008; Lee and Collett, 2009], the northern Cascadia margin offshore the western U.S. and
Canada [Suess et al., 2001; Riedel et al., 2006], the Ulleung Basin in the East Sea [Kim ef al.,
2011], the South China Sea [Wu et al., 2005], and Blake Ridge off the coast of the Carolinas

[Holbrook et al., 1996; Collett and Ladd, 2000]. These studies make use of well logs and 2D/3D
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seismic data to interpret occurrences of gas hydrate and hypothesize mechanisms behind how
hydrate accumulations can be expected to vary across heterogeneous lithologies. Accumulations
of gas hydrate in nature are understood to represent a large global reservoir of methane gas and
are thus important as a potential source of energy and/or greenhouse gas emissions, yet their

formation and distribution remain somewhat enigmatic.

Observations of in-situ gas hydrate accumulations in marine sediments have illustrated
vast heterogeneity in hydrate location and distribution in natural environments. In such areas as
Walker Ridge in the northern Gulf of Mexico [Frye et al., 2012] and the northern Cascadia
margin offshore Canada [Torres et al., 2008], large saturations of gas hydrate (upward of 50%)
are observed to accumulate in coarse-grained sands (ranging in thickness from tens of
centimeters to several meters) surrounded by fine-grained sediments containing little or no

hydrate [ Cook and Malinverno, 2013; Malinverno, 2010].

To explain the occurrence of massive gas hydrate accumulations in coarse-grained sand
bodies bounded by hydrate-free fine-grained sediments, two end-member methane gas migration
mechanisms have been invoked. The first, long-range advective migration, requires either a free
gas source or a deep fluid source rich in methane to be sufficiently pressurized to drive fluid
updip along a high permeability sand. Once these fluids reach the gas hydrate stability zone
(GHSZ), concentrated hydrate deposits can precipitate directly from a gas phase migrating
through the GHSZ [Haeckel et al., 2004], or dissolved methane can drop out of aqueous solution
as solid hydrate due to a reduction in solubility. This mechanism has been proposed mainly
where a deeper thermogenic gas source or relatively deep (beneath the GHSZ) microbially-
generated source is suspected, such as the Gulf of Mexico [Boswell et al., 2012], offshore Brunei

[Warren et al., 2010], or the Hikurangi subduction margin offshore New Zealand [Kroeger et al.,
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2015]. The difficulties with successfully invoking this mechanism to explain high hydrate
saturations in sands include: (1) hydrate growth reduces effective porosity, which drops
permeability and makes it difficult to preferentially channel pressurized fluid updip along a sand
body; (2) methane hydrate growth is limited by the change in methane solubility in the sand with
depth; and (3) a sand layer within the hydrate stability zone must be hydraulically connected to a
deep methane source, which can be located at long distances down dip, creating particular

difficulty for supplying methane to shallow sands.

Alternatively, short-range diffusive migration transports methane generated microbially
within fine-grained clays in the hydrate stability zone into nearby sands along a persistent
concentration gradient created by a higher effective methane solubility in the fine-grained
sediments [Clennel et al., 1999; Liu and Flemings, 2011; Rempel, 2011]. This migration
mechanism has been invoked to describe gas hydrate accumulations offshore Canada
[Malinverno, 2010]; in the northern Gulf of Mexico [Cook and Malinverno, 2013]; in the
Andaman Sea, Indian Ocean; and the Kumano forearc basin, Nankai Trough offshore Japan
[Malinverno and Goldberg, 2015]. In this scenario, effective porosity is reduced with hydrate
growth as with a long-range advective mechanism, but methane transport occurs across a greater
surface area of a sand body. While this mechanism allows for methane hydrate to accumulate on
a regional scale throughout the hydrate stability zone without requiring a deep methane source, it

may not be sufficient to explain high-saturation hydrate accumulations in thick sand layers.

We propose a new migration mechanism, short-range advective transport, which
combines features of the two migration mechanisms above to explain the occurrence of high
hydrate saturations in sand layers. Short-range advective transport occurs when a coarse-grained

sand body is surrounded by overpressured fine-grained sediment. Methane enters a sand layer
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entirely from within the GHSZ (short-range), yet the dominant transport mechanism is advection
rather than diffusion. If the sand is dipping, far-field upward fluid flow within the surrounding
low permeability, fine-grained material is diverted toward the base and downdip sides of the high
permeability sand, which then channels fluid at high flow rates updip and expels it higher up in
the bounding fine-grained sediment [Flemings et al., 2002; Berndt et al., 2005]. Limitations of
updip advective transport are mitigated by providing a greater surface area over which methane
can enter a sand within the GHSZ, and flow focusing can generate large updip flow velocities
within the sand itself. The dissolved methane present in this type of system could be supplied by
microbial methanogenesis within the hydrate stability zone, methane built up as free gas beneath

the hydrate stability zone, or a deeper microbial or thermogenic source.

Free gas build-up upon hydrate dissociation with burial can generate overpressuring in
hydrate systems, because a low-density gas column blocked from flowing upward can maintain a
higher pressure than overlying water [Hornbach et al., 2004]. Since this mechanism provides
both a source of overpressuring and a source of methane, it could be effective in both focusing
flow into dipping sands and recycling methane back into sands as solid hydrate. Both the sand-
clay methane solubility contrast as well as the updip fluid flow velocity would contribute to the
amount of methane that can be transported through overpressured flow focusing. Although
hydrate growth still reduces effective porosity (and thus permeability), in this type of system
methane transport into the sand occurs across a greater surface area than a downdip advective
mechanism, and the flow rate within the sand layer itself is enhanced by sand-clay permeability

contrasts.

While permeability contrasts in hydrate systems have been shown to focus gas hydrate

growth in sand layers [Chatterjee et al., 2014]; the combined effects of pore size contrasts,
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focused fluid flow, and sand layer burial through the GHSZ on gas hydrate growth in coarse-
grained sands have not been fully explored. In this study, we employ 2D basin-scale reactive
transport simulations to better understand the impact of focused fluid flow on both the relative
quantity and spatial distribution of gas hydrate in marine sediments. We find that a short-range
advective system can produce significant amounts of methane as hydrate in thick sand strata with
hydrate-free zones in the wake of exiting fluid, resembling hydrate occurrences observed in

nature.

2 Hydrate Formation and Distribution Potential due to Flow Focusing

We hypothesize that the quantity and distribution of gas hydrate in a sand body in an
overpressured system primarily depends on the magnitude of overpressuring beneath a sand
body, the dip angle of the sand, the difference in methane solubility between the sand and
surrounding clay (which is a function of depth as well as pore size contrast), and the sand-clay
permeability contrast. Figure 1 contains a set of hypothetical fluid flow pathways in the vicinity
of a sand body filling with hydrate for varying sand dip angles. Because flow in the vicinity of a
sand body behaves differently depending on the sand’s angle of inclination, the distribution of

hydrate within a sand layer should correspondingly depend on the dip of the sand.

As illustrated in Figure 1a, we hypothesize that a horizontal sand will capture
overpressured fluid along its base. As hydrate grows along the bottom of the sand, over time the
permeability of the sand will drop and the fluid flux into the sand will decrease. Very little
hydrate is able to grow above the base of the sand because the solubility contrast is small

between the sand’s base and its top; dissolved methane entering from below will tend to form
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hydrate immediately upon entering the base of the sand layer. A dipping sand body, however,
focuses fluid flow such that flow enters the sand from below and from the sides, before being
channeled updip at a higher velocity and out into the surrounding clay [Flemings et al., 2002;
Berndt et al., 2005] (Figure 1b). As hydrate formation decreases the permeability of the sand,
the flow shifts its focus updip, allowing flow to enter the sand at shallower depths. Methane-
charged fluid can thus enter the sand not only at the deepest part of the sand, but also updip;
hydrate growth blocks pore space downdip and only works to divert flow, focusing it farther
updip. Over time, a sand body with greater dip should therefore be able to fill with greater
amounts of hydrate. In the limit of a completely vertical sand body (Figure 1c), all flow driven
from the clay, characterized by the far field flow velocity (ug), is captured within the sand over a

distance away from the sand equal to the sand’s length [Phillips, 1991].
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Increasing Time

>

a) Hydrate growth (green) lowers permeability in the sand (yellow), decreasing fluid flux from the
clay (brown) to the entire sand layer. Solubility contrast within the sand is low.

Increasing Dip

b) Hydrate growth (green) lowers permeability in the sand (yellow), diverting fluid flow from the
clay (brown) updip in the sand. Solubility contrast within the sand increases with increasing dip,
as does focused flow along the sand

//, 7
c) Hydrate growth (green) lowers permeability in the sand (yellow), diverting fluid flow from the
clay (brown) up the sand column until it fills with hydrate. The solubility contrast within the sand is large.

142
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Figure 1. Diagram of the theoretical flow pattern of an overpressured system in which gas hydrate
precipitates from methane-charged water. a) Flow lines diverge from a horizontal sand as hydrate
accumulates at its base, b) flow lines focus updip in the sand as hydrate accumulates along its base and in
its center, and ¢) as hydrate fills the sand from both sides and up its center, flow focuses updip. Flow into
the sand is proportional to the length of the sand body divided by its width multiplied by the far field

velocity, ug.

3 Simulation Methods

To test our hypothesis that a dipping sand body exposed to overpressured, methane-
charged fluid in the gas hydrate stability zone will focus flow updip and fill with hydrate, we
employ a basin-scale gas hydrate reservoir simulator. The simulations performed in this work
bury a dipping, tabular sand body encased in low-permeability marine mud through the GHSZ.
That is, the sand layer moves progressively deeper into the GHSZ with time as younger sediment
layers are deposited on top of it. Methane is produced within the clays through microbial activity
in the shallow sediment column, and overpressured fluids inject methane-charged water into the
base of the hydrate stability zone at an aqueous methane concentration equal to the solubility of
methane just above the base of the model (characteristic of a system where buried hydrate

dissociates beneath the base of the gas hydrate stability zone) [Bhatnagar et al., 2007].

Methane hydrate growth is tracked in 2D by solving a system of highly coupled,
nonlinear mass balance equations for methane and water along with a system energy balance.
Using a finite volume difference method, the solution scheme employs primary variable
switching and iterates on nonlinearities using a Newton-Raphson search method. The numerical
model is described in detail in Sun and Mohanty [2005]. The governing equations as well as the

flow and heat transfer models are summarized in the Supplementary Information. Below, we
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discuss the processes incorporated in the simulator that exert significant influence on hydrate

accumulation due to flow focusing in heterogeneous systems.

3.1 Microbial Methanogenesis

Microbial methane sourcing is expressed as a steady-state exponentially decaying

function of depth according to the formulation of Malinverno [2010]:

q(z) = kqdagyrexp[— i (z — zsmr)], (D

where ¢(z) is the depth-varying methane source term to the clay grid blocks in the model,
ko is a conversion factor from metabolizable organic matter to methane (2241 kg/m’
[Malinverno, 2010], A is the metabolic reaction rate of microbial methanogenesis, asmT 18
the total amount of metabolizable organic carbon at the base of the sulfate reduction zone
(the sulfate-methane transition), o is the sedimentation rate, and zsyr is the depth below

seafloor of the sulfate-methane transition.
3.2 The Gibbs-Thomson Effect

The pore size contrast between clays and sands means that the effective methane
solubility is higher in clays than sands. This difference results in a dissolved methane
concentration gradient at the sand-clay contact that can drive diffusive methane flux from
clays to sands and can also allow for advective methane transport within the clays at
dissolved methane concentrations above the solubility of the sands. Known as the Gibbs-
Thomson effect, an increase in curvature with decreasing pore size in a porous medium
causes the solid-liquid interfacial energy of a crystal precipitating from the dissolved

phase to increase the overall Gibbs free energy of the system. In a system of dissolved
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gas and water, this in turn leads to an increase in the effective solubility of methane in
smaller pores, inhibiting hydrate growth in comparison to bulk water [Clennell et al.,
1999]. This phenomenon is implemented in the simulator as a depression in the methane

hydrate freezing temperature as follows [Anderson et al., 2009]:

-T 2 0
ATm —_ mb:l iahl*cos( ), (2)
FPR*T

where T, 1s the bulk melting temperature of methane hydrate, oy, is the solid-liquid
interfacial energy between hydrate and liquid water, set at 0.027 N/m [Clennell et al.,
19991, 6 is the hydrate wetting angle (0° assuming hydrate is a nonwetting phase), Hj;
the hydrate bulk enthalpy of fusion, is 439 kJ/kg, py, is the density of methane hydrate,
925 kg/m’ [Waite et al., 2009], and r is the pore radius governing effective methane

solubility.

In the current work, we neglect pore size distribution and pore curvature impacts
on the Gibbs-Thomson equation, which would reformulate effective methane solubility
additionally as a function of hydrate saturation [Liu and Flemings, 2011; Rempel, 2011].
In terms of Equation (2), an increase in hydrate saturation would decrease the effective
pore radius, intensify the freezing point depression, and increase the methane solubility.
While this would limit the rate of change of hydrate saturation within a sand layer at
small grid spacing and high hydrate saturation, the focus of this work is on the first order
effects of fluid flow and permeability reduction on gas hydrate accumulations in a

dipping sand at a relatively coarse spatial resolution.

3.3 Sedimentation and Burial
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Over geologic time in marine basins, sedimentation works to consolidate and bury
material once deposited at the seafloor. Additionally, tectonic activity can deform
sediments while they are buried. The stratigraphic relationships between sediments of
varying lithologies can potentially have a large impact on basin-scale fluid flow and
methane transport, so it is essential to capture stratigraphic evolution in 2D and 3D basin-
scale models. In order to incorporate sedimentation effects over geologic time on the
spatial evolution of different lithologic units from horizontal and flat to dipping and

curved, this simulator expresses lithologic properties as functions of both space and time.

Sediment porosity is expressed as an exponentially decaying function of depth

[Rubey and Hubbert, 1959]:

¢ = o + (o — ¢m)e‘<‘%> 3)

where ¢ is the sediment porosity at the seafloor (set at 75%), ¢, is the asymptotic
porosity achieved (set at 30%), . is the effective stress (lithostatic stress less pore

pressure), and o, is a characteristic stress constant, set at 20 MPa.

Permeability evolves as sediments are compacted with burial according to a

Kozeny-Carman permeability-porosity power law relationship [Civan, 2001]:

_ dko (¢(1-0,) \2P
k= b0 (¢o(1—¢>) “)

where [, the power law parameter, is set to 2 (see Sun and Mohanty [2006]), and ko is a

reference seafloor permeability (set to 1 Darcy [10"? m*] in the clay).
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Additionally, permeability decreases with increasing saturation of pore-filling
hydrate as follows [Dai and Seol, 2014]:

_ 4, (a-sp)?

k' = (1+28p)?

)

where £’ is the sediment permeability in the presence of hydrate, £ is the clean sediment

permeability in the absence of hydrate, and S, is the hydrate saturation.
4 Results and Discussion

Walker Ridge in the northern Gulf of Mexico has been identified as a significant gas
hydrate prospect and is the subject of upcoming exploratory drilling expeditions; observed
hydrate accumulations in sands both shallow and deep indicate that multiple methane migration
mechanisms could be contributing to hydrate accumulations in this region. Therefore, the
environmental parameters used in this study were selected to emulate a Walker Ridge-like gas
hydrate system in which a deep seafloor (set to 1917 m) and a low local geothermal gradient
(19.6 °C/km) contribute to a thick hydrate stability zone (approximately 900 m thick) [Collett et
al., 2012] that is microbially active and potentially subject to overpressuring at depth. Parameters
describing the rate of microbial methanogenesis are not well constrained at Walker Ridge; asmr
is approximated as 0.5 dry wt% (following Malinverno, [2010]), A is set at 1x10™"2 per second, ®
is approximately 1 mm/yr [Boswell et al., 2012], and zsyr is estimated as 10 m [Kastner et al.,
2008; Smith et al., 2014]. An overpressured system is simulated in this study by imposing a
hydrostatic pressure boundary condition at the seafloor (the top of the model domain), no flow
boundaries on the sides of the domain, and a constant pressure boundary condition at the base of

the gas hydrate stability zone (BHSZ). The overpressure boundary condition was estimated for
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this environment using a 10.5 ppg mud weight [Collett et al., 2012]; since the weight of seawater
is approximately 8.6 ppg (at a density of 1030kg/m”), overpressured fluid at the BHSZ is set at

1.22 times the hydrostatic pressure.

A binary system of sand and clay lithologies is considered. To isolate the majority of
hydrate growth to the sand layer from the rest of the domain, the sand lithology is characterized
by pore radii of 10 microns, in which methane solubility is nearly the same as that of bulk
seawater, and the clay pore size is modeled as 10 nanometers (an approximate median pore size
as indicated by NMR log data at nearby Keathley Canyon in the Gulf of Mexico [Bihani et al.,
2015]), at which point effective aqueous methane solubility is enhanced to inhibit hydrate growth
outside the sand. Within the simulation domain, a 36.6 m thick section of grid blocks labeled as
sand lithology are initially oriented horizontally, with a length of 2.3 km. Each sand grid block
moves down through the domain with a particular sedimentation velocity; this velocity varies
spatially to allow rotation until reaching the midpoint of the domain, at which point the dip of the
sand body is held constant at 10 degrees while it is buried to the bottom of the domain. The
surrounding clays are initialized with 6 orders of magnitude lower permeability than the sand.
The initial permeability values are set according to the permeability-porosity relationship

described above.

Figure 2 illustrates a 2D view of the planar sand body modeled in this work: it is first
deposited flat and then rotates to dip as depicted in the diagram. A pressure profile depicts the
hydrostatic and approximate lithostatic pressure gradients along with a transect mapping the
pressure through the sand after it is buried in an overpressured clay to just above the BHSZ. For
this comparison, lithostatic stress was approximated assuming a clay grain density of 2800

kg/m’. Because the permeability in the sand is so high, excess pressure is very quickly dissipated
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271 as fluid flows updip. The pressure gradient in the sand is therefore lower than that in the
272 surrounding clays, approaching the hydrostatic gradient, as is often observed in natural

273 overpressured environments [Flemings et al., 2002].

Simulated Overpressure in a Planar Sand
I 1 1 1

- Hydrostatic

Lithostatic
—— Sand Pressure 1
= = = Qutside Sand

Depth (mbsf)

[#2]
o
o

700

800

900

1000

5 20 25 30 35 40 05 10 15 20 25 30 35
Pressure (MPa) Lateral Distance (km)

274

275  Figure 2. Simulated pressure profile through a buried dipping sand (left), along with a physical depiction
276  of the simulated sand (right). The sand body in this simulation is dipping at 10 degrees, and its thickness

277 1s 36.6 m.

278 Two-dimensional simulation profiles depicted in Figure 3 illustrate the regional-scale
279 impact of methane-charged, focused fluid flow within the GHSZ. Hydrate growth (Figure 3a) is
280  restricted mainly to the sand bodys; it is concentrated unevenly down dip and along the base of
281  the gently dipping sand, and minimal hydrate saturations are present in the clay because of

282 focused methane transport. The permeability of the sand drops correspondingly, mirroring what
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283 would be anticipated based on the expected flow focusing pattern in the dipping sand diagram

284  shown in Figure 1b.

285 Methane solubility increases with depth in the sediment column, shown in the aqueous
286  methane concentration profile (Figure 3¢). Throughout the domain away from the sand, fluid
287  flux is sufficiently low that only very small hydrate saturations exist and pore water methane
288  concentrations are equal to the solubility of methane (contours are horizontal and parallel).

289 Directly above the sand, aqueous methane concentrations are undersaturated with respect to the
290  solubility of the clays because net fluid migration is out of the sand, carrying fluid with a

291  dissolved methane concentration equal to the aqueous methane solubility of the sand. This

292 creates a hydrate free zone in the wake of fluid exiting any dipping, overpressured sand. Very
293 low hydrate saturations beneath the sand indicate fluid flow rates near the sand are high enough

294 in this instance to precipitate hydrate accumulations that persist with burial.

295 The overpressure profile depicted in Figure 3b is indicative of the flow focusing that

296  occurs in response to overpressure imposed on the bottom boundary of the system. Fluid

297  streamlines flow perpendicular to pressure contours, so it is clear that if flow is being driven

298  from the bottom of the domain, it will first flow toward the dipping sand and then become

299  diverted updip before being expelled upward out of the sand. As hydrate precipitates out of this
300  flowing fluid, the pore space in the sand becomes occluded, and thus the permeability of the sand
301  drops. The permeability within the hydrate-bearing sand (Figure 3d) is 2-3 orders of magnitude
302 lower than the seafloor permeability, but it is still 4-5 orders of magnitude greater than the fine-
303  grained sediment around it. This indicates that although hydrate generation is decreasing

304  permeability, focused fluid flow can still take place because a permeability contrast still exists to

305  focus overpressured flow.
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Figure 3. Profiles of hydrate saturation (3a), pore fluid overpressure (defined as the difference between

307

fluid pressure and hydrostatic pressure) accompanied by fluid streamlines (white dashed lines) (3b),

308

aqueous methane concentration (3c¢), and permeability (3d) in and around a dipping sand in an

309

overpressured hydrate system located within the hydrate stability zone. The sand layer is outlined in red.

310

The sand layer dips approximately 10 degrees from horizontal and is 36.6 m thick.

311

The results of these 2D simulations illustrate that overpressure-driven short-range

312

advection within the GHSZ will focus methane-charged fluids into a dipping sand body, even

313

under conditions of modest overpressuring (well below lithostatic pressure) and low dip angle.

314

Correspondingly, hydrate growth reflects the fluid flow pattern, the sand-clay methane solubility

315

contrast, and the methane solubility contrast within the sand itself. Even if the flow rate outside

316
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of the sand is insufficient to produce much hydrate in the low permeability, fine-grained
sediment, large amounts of hydrate can still precipitate in the sand because the sand-clay
permeability contrast channels fluid updip at high velocity in a lithology where the effective
methane solubility is lower and hydrate formation is favored. This stands in contrast to a
diffusive system, where methane can only migrate along concentration gradients. For the
simulated system described above, including the overpressuring boundary condition yields about
50% greater average hydrate saturations in the sand layer than simulating the environment as a

diffusive system alone (see Supplementary Information).

As a hydrate-bearing sediments are buried beneath the GHSZ, overpressure produced via
hydrate dissociation can be dissipated by channeling fluid into a sand layer from its sides instead
of just downdip. This provides an effective mechanism for recycling methane back into sands as
hydrate because fluids can enter the sand layer over greater surface area. If at any point the fluid
pressure in an overpressured sand exceeds the minimum principal stress in the clay overburden,
channeled fluid flow could induce fracturing in the bounding clay. In this instance, methane in
the pore fluid could potentially precipitate out as hydrate within open fractures in clays, as the
effective aqueous solubility of methane could be reduced to that of bulk seawater if fracture

aperture is sufficiently wide.

5 Conclusions

We present short-range advective migration as a methane transport mechanism leading to
methane hydrate accumulations in marine sands within the gas hydrate stability zone. Methane
transport through fluid flow in the vicinity of a sand body is enhanced by both sand/clay

solubility gradients and fluid flow within the sand. We hypothesize that when a high
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permeability sand layer is enclosed in an overpressured, low permeability clay, the amount and
distribution of gas hydrate within the sand will depend on its dip angle. Higher dip angles will
tend to more strongly focus fluid flow into the sand, which over time will more evenly distribute
gas hydrate throughout the sand layer. In order to validate this hypothesis, we utilized 2D basin-
scale methane hydrate reservoir simulations. We show that by imposing an overpressuring lower
boundary condition, methane-charged fluid flow is focused from a bounding clay updip along a
thick dipping sand. Short-range advective migration mechanism combines the methane transport
mechanisms of both short-range diffusive migration and long-range advective migration, in that
it is magnified by large clay-sand spatial solubility gradients and significant updip fluid flow. As
a methane supply mechanism to thick dipping sand bodies, it has the potential to transport
significantly more methane faster than diffusive migration and with the benefit of not being

restricted by sand pore blockage, as is typical of long-distance advective transport.

While this work demonstrates the impact overpressuring can have on hydrate formation
on a dipping sand confined to within the gas hydrate stability zone, future work will elucidate the
impact of short range advective methane transport on hydrate growth patterns in multilayered
sand systems, building off of the approach of Rempel, 2011. Because fluid exiting a sand body
from above is undersaturated in methane with respect to the solubility of the surrounding clay, it
is likely that in a multilayered system high hydrate saturations in sand layers could be separated
by hydrate free zones in clays between them. The mechanism proposed in this work could be
applicable anywhere in the GHSZ where in situ pressure measurements indicate contrasts in

pressure gradients between sands and clays, as Figure 2 illustrates.
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Figure 1. Figure



Increasing Time
—_—
a) Hydrate growth (green) lowers permeability in the sand (yellow), decreasing fluid flux from the
clay (brown) to the entire sand layer. Solubility contrast within the sand is low.

Increasing Dip

b) Hydrate growth (green) lowers permeability in the sand (yellow), diverting fluid flow from the
clay (brown) updip in the sand. Solubility contrast within the sand increases with increasing dip,
as does focused flow along the sand

c) Hydrate growth (green) lowers permeability in the sand (yellow), diverting fluid flow from the
clay (brown) up the sand column until it fills with hydrate. The solubility contrast within the sand is large.
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Figure 2. Figure
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Figure 3. Figure
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