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ANALYSIS OF AN OPTIMIZATION-BASED ATOMOSTIC-TO-CONTINUUM

COUPLING METHOD FOR POINT DEFECTS ∗

Derek Olson1, Mitchell Luskin2, Alexander V. Shapeev3 and Pavel B.
Bochev4

Abstract. We formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling
method for problems with point defects. Near the defect core the method employes a potential-based
atmostic model, which enables accurate simulation of the defect. Away from the core, where site
energies become nearly independent of the lattice position, the method switches to a more efficient
continuum model. The two models are merged by minimizing the mismatch of their states on an
overlap region, subject to the atomistic and continuum force balance equations acting independently
in their domains. We prove that the optimization problem is well-posed and establish error estimates.
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Introduction

Atomistic-to-continuum (AtC) coupling methods combine the accuracy of potential-based atomistic models
of solids with the efficiency of coarse-grained continuum elasticity models by using the former only in small
regions where the deformation of the material is highly variable such as near a crack tip or dislocation. The
past two decades have seen an abundance of interest in AtC methods both in the engineering community to
enable predictive simulations of crystalline materials and in the mathematical community to understand the
errors introduced by AtC approximations. Of prime importance is the use of AtC methods to model material
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defects such dislocations and interacting point defects, which play roles in determining the elastic and plastic
response of a material [34].

A prototypical AtC method consists of dividing a computational domain into atomistic and continuum
regions. A discrete system involving non-local interactions between atoms models the atomistic region whereas
a conventional continuum model such as a hyperelastic continuum mechanics, represents the material in the
continuum region. AtC methods differ chiefly in how they couple the distinct models with each roughly being
able to be categorized as either force or energy-based [21]. Energy based couplings define a hybrid energy
functional as a combination of atomistic and continuum energy functionals, and this hybrid energy functional
is then minimized over a class of admissible deformations. Force based couplings instead derive atomistic and
continuum forces from the separate energies and then equilibrate them. We refer to [19,21] for a review of many
existing AtC methods.

The primary challenge in developing energy-based methods has been the existence of “ghost forces” [19, 24]
near the interface between the atomistic and continuum regions. These ghost forces may lead to uncontrollable
errors in predicted strains, and to date, no method has been implemented that completely eliminates these errors
for general many-body potentials and general interface geometry in two and three dimensions. Many force-based
methods do not suffer from the perils of ghost forces; however, for two and three dimensions establishing the
stability of these methods in the absence of an energy functional remains a difficult task.

Owing to the practical potential of AtC methods, their error analysis has recently attracted a significant
attention from mathematicians and engineers. In one dimension, this analysis is well-developed, see e.g., [19]
for a thorough review. In two and three dimensions, analytic results have been obtained for quasinonlocal
(QNL) type methods [8, 26, 27, 29, 32, 38], and blended methods [12–14, 18, 43]. Sharp error estimates for the
energy-based method of [37] have only been established in two dimensions assuming pair interactions with an
additional a priori assumption on the magnitude of the true atomistic solution in [32]. The analyses of the
QNL method of [38] and its subsequent extensions [8, 32] are valid for arbitrary interactions but are limited to
two dimensions and by allowing only planar interfaces [8] or corners [32] between the atomistic and continuum
domains. The work [18] has presented a force-based AtC method and established sharp error estimates in three
dimension, but it is not applicable to defects. Most recently, [14] has presented a complete analysis valid in two
and three dimensions of the blended quasicontinuum energy (BQCE) [12,20] and blended quasicontinuum force
(BQCF) [13, 15] methods valid for finite-range interactions with no geometrical restrictions on the interface
between atomistic and continuum regions. A recent modification of a BQCE method was also proposed and
analyzed in [33].

The purpose of the present paper is to analyze an optimization-based AtC, introduced in [22, 23], which
couches the coupling of the two models into a constrained minimization problem. Specifically, a suitable
measure of the mismatch between the atomistic and continuum states, the “mismatch energy,” is minimized over
a common overlap region, subject to the atomistic and continuum force balance equations holding in atomistic
and continuum subdomains. This differs substantially from energy AtC based methods such as [1,12,24,36,38]
which minimize a hybrid combination of atomistic and continuum energies, approximating the original atomistic
energy. Also, unlike the force-based, non-energy methods [7, 13, 18], we do not directly equilibrate forces but
instead employ the force balance equations as constraints in a minimization problem.

Our approach is related to non-standard optimization-based domain decomposition methods for Partial
Differential Equationa (PDEs); see e.g., [6, 10, 16, 17] and the references therein. In [23], we analyzed an
optimization-based AtC formulation for a linear system with next-nearest neighbor interactions using the L2

norm of the difference between the states as a cost functional, and in [22] we formulated the approach for many
dimensions with nonlinear interactions and studied it numerically for a 1D chain of atoms interacting through
a Lennard-Jones potential.

A useful setting for studying the errors of various AtC methods, and the setting we utilize in the present
work, is a single defect embedded in an infinite lattice. A comprehensive analysis of several AtC methods has
been carried out in one dimension in [19]. In addition to the continuum error and coupling error, this setting
introduces a third error resulting from truncating the infinite domain to a finite domain in order to obtain a
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computable quantity. We provide a comprehensive analysis of the optimization-based AtC method in Rd for
d ≥ 2 in the context of a point1 defect located at the origin of an infinite lattice and establish bounds on the
error of the method in terms of two parameters: the “diameter” of the defect core, Rcore, and the size of the
continuum region, Rc.

Our results are comparable to the results for BQCF method in [14] in that the coupling error of our method
is dominated by the continuum error and truncation error. In contrast, the leading order error term established
in [14] for the BQCE method is precisely the coupling error, which can be minimized but never altogether
removed [12,14]. Our analytical results have been numerically confirmed in [22] in one dimension; however, the
analysis presented here is not directly applicable in that scenario because the continuum region is a disconnected
set in one dimension after a neighborhood of the defect core at the origin is removed.

This paper is organized as follows. We begin by describing the atomistic defect problem in an infinite domain
and formulate the associated AtC method in Section 1. In Section 2, we prove that the AtC problem has a
solution and subsequently estimate a broken norm error. These results rely on an essential norm equivalence
property established in Section 3. The norm equivalence result generalizes a 1D linear result established in [23]
and draws upon ideas from heterogeneous domain decomposition methods developed in [10].

0.1. Notation

For the convenience of the readers below we summarize the key notation used throughout the paper.

• ξ - an element of Zd or εZd for ε > 0.
• | · | - meaning depends on context: | · | is `2 norm of a vector, matrix, or higher order tensor, |T | is area

or volume of element T in a finite element partition, |α| is order of a multiindex.
• ‖·‖`2(A) - `2 norm over a set A. If f : A→ Rd is a vector valued function, ‖f‖`2(A) = (

∑
α∈A |f(α)|2)1/2.

• Br(y) = {x ∈ Rd | |y − x| ≤ r} - Ball of radius r in Rd
• Ū - closure of a domain U .
• U◦ - interior of a domain U .
• conv(x, y) - convex hull of x and y.
• (Rd)R - direct product with |R| terms.
• G - a d× d matrix.
• > - transpose of a matrix.
• ⊗ - tensor product.
• ∇j - jth Frechet derivative of a function defined on Rd.
• ∂α - multiindex notation for derivatives.
• Lp(U) =

{
f : U → Rd|

∫
U
|f(x)|p dx <∞

}
• W k,p(U) =

{
f : U → Rd|

∫
U
|∂αf(x)|p dx <∞∀|α| ≤ k

}
• W k,p

loc (U) =
{
f : U → Rd|f ∈W k,p(V )∀V ⊂⊂ U

}
.

• Hk(U) = W k,2(U), H1
0 (U) =

{
f ∈ Hk(U)|Trace(f) = 0 on ∂U

}
.

• Ck,γ(Ū) =

{
f : U → Rd|

∑
|α|≤K supx∈U |f(x)|+

∑
|α|=k supx,y∈U

x 6=y

|f(x)−f(y)|
|x−y|k

}
• ∗ - used to denote convolution
• −
∫
U
f dx - average value of f over U .

• T - a finite element discretization of triangles in 2D or tetrahedra in 3D.
• P1(T ) - set of affine functions over a triangle or tetrahedron, T .
• P1(T ) - set of piecewise affine functions with respect to the discretization T .
• Q5(ξ + (0, 1)d) - set of biquintic functions over the square ξ + (0, 1)d for d = 2 or triquintic functions

over the cube ξ + (0, 1)d for d = 3.

1Aside from additional technicalities needed to account for differences in a suitable reference configuration and the decay of the
elastic deformation fields of a dislocation, our analysis can also include dislocations.
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1. Problem Formulation

We consider a point defect such as a vacancy, interstitial, or impurity located at the origin on the infinite
lattice, Zd. To formulate the AtC method, we will introduce a finite atomistic domain Ωa surrounding the
defect, and a finite continuum domain, Ωc, which overlaps with Ωa in Ωo. Restriction of the atomistic energy to
Ωa and application of the Cauchy-Born strain energy on Ωc yield notions of restricted atomistic and continuum
energies. Minimizing the H1-(semi)norm of the mismatch between the atomistic and continuum states in Ωo,
subject to the Euler-Lagrange equations of these energies in Ωa and Ωc, respectively, completes the formulation
of the AtC method.

1.1. Atomistic Model

In this paper, we will model atoms located on the integer lattice Zd. We assume the atoms interact via a
classical interatomic potential, and the displacement of atoms from their reference configuration will be denoted
by u : Zd → Rd. We require that atomistic energy can be written as a sum of site energies, Vξ, associated to each
lattice site ξ ∈ Zd. This site energy is not unique, and there is great freedom in defining it, see e.g [40]. From
the axiom of material frame indifference, Vξ is allowed to depend only upon interatomic distances. Furthermore,
we assume a finite cut-off radius in the reference configuration, rcut, so that Vξ depends only on a subset of the
position of atoms in Brcut

(ξ). The set of atoms interacting with an arbitrary ξ ∈ Zd is given by ξ +R where

R ⊂
{
ρ ∈ Zd : 0 < |ρ| ≤ rcut

}
Note that we measure distance in the reference configuration rather than the deformed configuration. An
example interaction range is displayed in Figure 1.

Figure 1. A possible interaction range with rcut = 2 in R2.

It is convenient to write differences between atoms’ displacements using finite difference operators, Dρu for
ρ ∈ R, defined by

Dρu(ξ) := u(ξ + ρ)− u(ξ).

The collection of finite differences for ρ ∈ R yields a stencil in (Rd)R, which we denote by

Du(ξ) :=
(
Dρu(ξ)

)
ρ∈R.

Thus, formally, the site energy at ξ is a mapping (Rd)R 7→ R, which we denote by Vξ(Du). The atomistic
energy is then given by

Ea(u) :=
∑
ξ∈Zd

Vξ(Du). (1.1)

We refer to [9] for a discussion of how to define Vξ for various point defects such as vacancies or impurities and
the case of dislocations.



TITLE WILL BE SET BY THE PUBLISHER 5

Remark 1.1. By allowing V to depend upon the lattice site, ξ, we can include both point and line defects in
the analysis. For simplicity, we state our results for the case of point defects.

Admissible states of the atomic configuration correspond to local minima of (1.1). To define the relevant
displacement spaces of lattice functions, we introduce a continuous representation of a discrete displacement
via interpolation. To that end, let Ta be a partition of Zd into simplices such that (i) ξ is a node of Ta if and
only if ξ ∈ Zd and (ii) for each ρ ∈ Zd and each τ ∈ Ta, ρ+ τ ∈ Ta; see Figure 2.

Figure 2. An atomistic triangulation of Z2.

Let P1(Ta) be the standard finite element space of C0 piecewise linear functions with respect to Ta. The
nodal interpolant, Iu ∈ P1(Ta), of a lattice function u is defined by setting

Iu(ξ) = u(ξ) ∀ ξ ∈ Zd.

Using this interpolant, we define the admissible space of displacements as

U :=
{
u : Zd → Rd : ∇Iu ∈ L2(Rd)

}
, (1.2)

and endow it with a semi-norm, ‖∇Iu‖L2(Rd).

The kernel of the semi-norm is the space of constant functions, Rd, and elements of the associated quotient
space, U := U/Rd are equivalence classes

u =
{
v ∈ U : ∃ c ∈ Rd, v − u = c

}
.

In order to define the interpolation operator on equivalence classes, we define the space

Ẇ 1,2(Rd) :=
{
f ∈W 1,2

loc (Rd) : ∇f ∈ Lp(Rd)
}

and its quotient space modulo constant functions,

W 1,2(Rd) := Ẇ 1,2(Rd)/Rd.

Since the interpolation operator preserves constants Iu := {Iu : u ∈ u} is a well-defined equivalence class.
Consequently, the mapping I : U →W 1,2(Rd) is well-defined and |∇Iu|L2(Rd) induces a norm on U . Because
Ea(u) is invariant under shifts by constants, it is also well-defined on U . As a result, we can state the atomistic
problem as

u∞ = arg min
u∈U

Ea(u), (1.3)
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where arg min represents the set of local minimizers and the superscript “∞” is used throughout to indicate
the exact solution displacement field defined on Zd. Note that minimization over equivalence classes effectively
enforces a boundary condition2 u(ξ) ∼ const for ξ →∞.

We formulate and study our AtC method for approximating (1.3) under several hypotheses on the site energy
Vξ. First, we assume that the defect core is concentrated at the origin, i.e., outside of this core Vξ is independent
of ξ. Succinctly,

Assumption A. There exists M > 0 and V : (Rd)R → R such that for all |ξ| > M , Vξ(Du) ≡ V (Du).

Second, since Ea(u) may be infinite at the reference configuration, u ≡ 0, we should instead consider energy
differences from the homogeneous lattice, Zd. In lieu of this, without loss of generality, we ask that

Assumption B. The site energy vanishes at the reference configuration, i.e., V (0) = 0.

Finally, we will make the following assumption concerning the regularity of Vξ.

Assumption C. The site potential Vξ is C4 on all of (Rd)R. Furthermore, for k ∈ {1, 2, 3, 4}, there exists Mk

such that

|∂αVξ(ρ)| ≤Mk ∀ ξ ∈ Zd, ρ ∈ (Rd)R, |α| ≤ k. (1.4)

Assumption C allows us to avoid technicalities associated with handling potentials that are singular at
the origin, such as the Lennard-Jones potential3. This assumption also implies that Ea is four times Frechet
differentiable on the space of displacements

U0 := {u ∈ U : supp(∇Iu) is compact} , (1.5)

from which it is easy to deduce the regularity of the atomistic energy.

Theorem 1.2. The atomistic energy Ea can be extended by continuity to U and is four times Frechet differen-
tiable on U .

We omit the proof, which is a minor modification of the proof of Theorem 2.3 of [9].
The Euler-Lagrange equation corresponding to the local minimization problem (1.3) is

〈δEa(u∞),v〉 = 0 ∀v ∈ U0. (1.6)

We make the following assumption regarding the local minima of (1.6).

Assumption D. There exists a local minimum, u∞ ∈ U , of Ea(u) and a real number γa > 0 such that

γa‖∇Iv‖2L2(Rd) ≤ 〈δ
2Ea(u∞)v,v〉 ∀v ∈ U0. (1.7)

For point and line defects, solutions of (1.6) decay algebraically in their elastic far fields [9]. We quantify the

rates of decay using a smooth nodal interpolant of a lattice function, v, which we denote by Ĩv ∈ W 3,∞
loc (Rd).

Its existence follows from [14, Lemma 2.1], which we state below. We refer to [14] for the proof.

2This technique is also useful in establishing well-posedness results for linear elliptic systems on all of Rd [30].
3A more realistic assumption would be to assume smoothness in region of displacements in an energy well, which unduly

complicates the analysis.
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Lemma 1.3. There exists a unique operator Ĩ : U → C2,1(Rd) such that for all ξ ∈ Zd, Ĩv ∈ Q5(ξ + (0, 1)d),

Ĩv(ξ) = v(ξ), and for all multiindices |α| ≤ 2, ∂αĨv(ξ) = Dnn
α v(ξ) where Dnn

α is defined by

Dnn,0
i v(ξ) := v(ξ),

Dnn,1
i v(ξ) :=

1

2
(v(ξ + ei)− v(ξ − ei)),

Dnn,2
i v(ξ) := v(ξ + ei)− 2v(ξ) + v(ξ − ei),

Dnn
α v(ξ) := D

nn,|α1|
1 · · ·Dnn,|αd|

d v(ξ).

Furthermore,
‖∇j Ĩu‖L2(ξ+(0,1)d) . ‖Dju‖`2(ξ+{−1,0,1}d) for j = 1, 2, 3, 4 (1.8)

where

Dju(ξ) =
(
Dρ1

Dρ2
· · ·Dρju(ξ)

)
(ρ1,ρ2,...,ρj)∈Rj

.

The uniqueness assertion of Lemma 1.3 and the condition that ∂αĨv(ξ) = Dnn
α v(ξ) for all ξ ∈ Zd imply that

for any constant vector field, u(ξ) ≡ c ∈ Rd, Ĩu = c. Thus Ĩ is well defined as an operator from U to U with

Ĩu =
{
Ĩu : u ∈ u

}
. From (1.8) and a straightforward calculation it follows that

‖∇Ĩu‖L2(Rd) . ‖∇Iu‖L2(Rd). (1.9)

The following theorem provides a sharp estimate on the algebraic decay of the minimizers for point defects
only.

Theorem 1.4 (Regularity of a point defect). The local minimum, u∞, of (1.3) satisfies∣∣∇j Ĩu∞(ξ)
∣∣ . |ξ|1−j−d for j = 1, 2, 3. (1.10)

Proof. Theorem 3.1 and Lemma 3.5 of [9] imply∣∣Dju∞(ξ)
∣∣ . |ξ|1−j−d for j = 1, 2, 3.

�

The first step towards an AtC formulation for (1.3) is to approximate this problem by truncating the support
of the admissible functions to a regular polygon or polyhedron Ω of diameter N . The resulting displacement
space

UΩ :=
{
u ∈ U : supp(∇Iu) ⊂ Ω

}
(1.11)

is finite-dimensional and comprises all functions that are constant outside of Ω. Restriction of the optimization
problem (1.3) to (1.11) yields a finite dimensional atomistic problem

uΩ = arg min
UΩ

Ea(u). (1.12)

The corresponding Euler-Lagrange equation: seek uΩ ∈ UΩ such that

〈δEa(uΩ),v〉 = 0 ∀v ∈ UΩ, (1.13)

4In this context, the modified Vinogradov notation A . B means there is a constant C such that A ≤ CB where C may depend

on the dimension d. After introducing the relevant approximation parameters for the AtC method, we will explicitly state what
the constant C is allowed to depend upon.
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is a finite-dimensional approximation of (1.6). The truncated problem (1.13) provides an accurate and compu-
tationally feasible approximation for a single point defect [9]. However, its numerical solution quickly becomes
intractable as the number of defects increases.

Thus, the next step in the AtC formulation is to replace (1.13) with a local hyperelastic model in parts of the
domain that are sufficiently far away from the defect core; at a minimum, we require Vξ ≡ V in these regions.
In such regions, the hyperelastic model is derived from the Cauchy-Born rule [3], which defines a strain energy
per unit volume according to

W (G) := V
(
(Gρ)ρ∈R

)
for G ∈ Rd×d. (1.14)

Integration of the strain energy yields a continuum energy

Ec(u) :=

∫
Rd

W (∇u(x)) dx, (1.15)

which is defined for a suitable class of functions such as W 1,2(Rd). We use the Cauchy-Born rule far from the
defect core because in the absence of defects it provides a second-order accurate approximation for smoothly
decaying elastic fields [2, 42]. The advantage of (1.15) over (1.1) is that local minima of the former energy can
efficiently be approximated by the finite element method.

1.2. AtC Approximation

AtC methods use the more accurate but expensive atomistic model only in a small region surrounding the
defect core and switch to a more computationally efficient continuum model in the bulk of the domain where
the lattice and site energy are homogeneous. The challenge is to couple the models in a stable and accurate
manner without creating spurious numerical artifacts.

To describe our AtC approach we consider a configuration comprising a finite domain Ω, a defect core
Ωcore ⊂ Ω, and atomistic and continuum subdomains Ωa,Ωc ⊂ Ω. Let

Rt :=
1

2
Diam(Ωt) (1.16)

denote the outer radius of Ωt (t = a, c, core), and let rcore, ra, and rc be the radii of the largest circle inscribed
in Ωcore,Ωa, and Ω respectively.5

We first select Ω0 so that (i) it contains all ξ for which Vξ 6≡ V ; (ii) its boundary, ∂Ω0, is Lipschitz, and (iii)
∂Ω0 is a union of edges from Ta. Then we choose integers Rcore ≥ 1 and ψa > 1 and set Ωcore = RcoreΩ0 and
Ωa = ψaΩcore with the requirement that (ψa−1)rcore ≥ 4rcut. Finally, we choose Ω so that Rc/Rcore = Rκcore for
some integer κ ≥ 1. The continuum domain is then defined by Ωc := Ω\Ωcore, and we also define the “annular”
overlap region Ωo := Ωa\Ωcore. The requirement that (ψa − 1)rcore ≥ 4rcut can now be interpreted as requiring
the overlap “width” to be twice the size of the interaction range of the site potential. See Figure 3 for an
illustration in two dimensions.

The atomic lattices associated with the new domains are

Lt := Zd ∩ Ωt where t = a, c, o, core, (1.17)

and their atomistic interiors are
L◦t := {ξ ∈ Lt : ξ − ρ ∈ Lt ∀ρ ∈ R} . (1.18)

The atomistic interiors of the interiors are L◦◦t = (L◦t )
◦

while the atomistic boundary of Lt is

∂aLt := Lt\L◦◦t . (1.19)

5We define rc as the inner radii of Ω since Ωc itself will later be constructed to have a hole at the defect core and hence not
have an inscribed circle.
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Ωcore

Ωa

Ωc

Ωo

Figure 3. An example AtC configuration in two dimensions. The set Ω◦◦a is shown as open
circles. The boxes show ∂aLa for the case R = {±e1,±e2}.

See Figure 3 for an illustration of Ω◦◦a (open circles) and ∂aLa (closed boxes) for the case R = {±e1,±e2}.

Remark 1.5. Throughout the paper we state results involving a parameter R∗core such that if Rcore ≥ R∗core, then
a solution to a specific problem defined on the domains constructed above will be guaranteed to exist. Because
Rc � Rcore, this will automatically ensure that Rc � R∗core as well. These results always assume AtC domain
configurations constructed according to the above guidelines. Furthermore, when stating inequalities, we will use
modified Vinogradov notation, A . B in lieu of A ≤ C ·B, where C > 0 is a constant. This constant may only
depend upon Ω0, d, R

∗
core, rcut, ψa, and an additional constant, β, introduced in Section 1.2.2 as the minimum

angle of a finite element mesh.

1.2.1. Restricted Atomistic Problem

The basis for defining an atomistic problem restricted to Ωa are the Euler-Lagrange equations (1.13). By
requiring uΩ ∈ UΩ, we are effectively imposing Dirichlet boundary conditions (in the sense of equivalence
classes) for the variational problem by requiring the function to be constant outside Ω. Accordingly, we will
define a restricted atomistic problem by also specifying Dirichlet boundary conditions on ∂aLa.

The admissible displacement space for this problem is Ua := Ua/Rd where

Ua :=
{
ua : La → Rd

}
. (1.20)

The elements of Ua are equivalence classes, ua, of lattice functions on La differing by a constant c ∈ Rd. We
again use I to denote the piecewise linear interpolant of a lattice function on La and endow Ua with the norm
‖∇Iua‖L2(Ωa). We then define a restricted atomistic energy functional on Ua via

Ẽa(ua) :=
∑
ξ∈L◦◦a

Vξ(Du
a(ξ)). (1.21)
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We seek to minimize Ẽa(ua) over Ua subject to Dirichlet boundary conditions on ∂aLa. The set of all possible
boundary values is the quotient space Λa := Λa/Rd, where

Λa :=
{
λa : ∂aLa → Rd

}
. (1.22)

Elements of Λa are denoted again by λa (without boldface). Thus, the restricted atomistic problem reads

ua = arg min
Ua

Ẽa(wa) subject to ua = λa on ∂aLa. (1.23)

We refer to λa as a virtual atomistic controls. They are virtual because ∂aLa is an artificial rather than a
physical boundary. They are controls because by varying λa we can vary, i.e. “control,” the solutions of (1.23).

The Euler-Lagrange equation for (1.23) is: seek ua ∈ Ua such that

〈δẼa(ua),va〉 = 0 ∀va ∈ Ua
0,

ua = λa on ∂aLa,
(1.24)

where the space of atomistic test functions, Ua
0 := Ua

0/Rd, is the quotient space of

Ua
0 :=

{
ua ∈ Ua : ∃ c ∈ Rd, ua|∂aLa

= c
}
. (1.25)

After extending va ∈ Ua
0 by a constant to a function defined on all of Rd, [9, (2.5) in Lemma 2.1] implies∑

ξ∈L◦◦a

sup
ρ∈R
|Dρv

a|2 . ‖∇Iva‖2L2(Ωa) ∀va ∈ Ua
0. (1.26)

The following result is then a direct consequence of Assumption C and (1.26).

Theorem 1.6. The restricted energy functional Ẽa is four times Frechet differentiable on Ua, and each derivative
is uniformly bounded in the parameter Rcore. In particular, δ2Ẽa is Lipschitz continuous on Ua with Lipschitz
bound independent of Rcore.

Given the exact solution u∞, we will later require solving (1.24) where we take λa = u∞|∂aLa
. To do that,

first set u∞a := u∞|La
, and next note that elements of Ua

0 can be extended by a constant to functions defined
on all of Zd, and this extension will belong to U0. By identifying va ∈ Ua

0 as an element of U0, we have〈
δẼa(u∞a ),va

〉
= 〈Ea(u∞),va〉 = 0. (1.27)

The final equality holds since u∞ solves the Euler Lagrange equations (1.6). Similarly, Assumption D implies

γa‖∇Iva‖L2(Ωa) = γa‖∇Iva‖L2(Rd) ≤
〈
δ2Ea(u∞a )va,va

〉
=
〈
δ2Ẽa(u∞)va,va

〉
(1.28)

Hence the solution to (1.24) for λa = u∞|∂aLa is precisely u∞a := u∞|La . To avoid unnecessary notation, we
will often drop the subscript and just write u∞ as the solution to this problem.

1.2.2. Restricted Continuum

We define the continuum subproblem analogously by using the Euler-Lagrange equations corresponding to
minimizing the Cauchy-Born energy (1.15). In addition to the atomistic mesh, Ta, that covers Ωa and Ωc,
we introduce a partition, Th, of Ωc into finite elements. This is required to define the admissible continuum
displacement space. Let Nh be the nodes of Th. We assume that (i) an atomistc position ξ ∈ Ωa is a node of
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Th if and only if ξ ∈ La ∩ Ωc, (ii) nodes in Nh are also nodes of Ta, and (iii) the elements T ∈ Th satisfy a
minimum angle condition for some fixed β > 0. Further define

hT := Diam(T ), and h(x) := sup
{T∈Th:x∈T}

hT .

For example, if x is a vertex of a triangle, then h(x) is the largest diameter of the triangles which share this
vertex. Error estimates require an additional assumption on this function.

Assumption E. The mesh size function satisfies h(x) . (|x|/Rcore)υ for some (d+ 2)/2 ≥ υ ≥ 1.

We will also need the inner and outer continuum boundaries defined as

Γcore = ∂Ωcore and Γc = ∂Ωc\Γcore,

respectively.
Our analysis uses two families of interpolants. The first family comprises the standard piecewise linear

interpolants Ih and I defined on the finite element mesh Th and the atomistic mesh Ta on Ωc, i.e.,

Ihu ∈ P1(Th), Ihu(ζ) = u(ζ) ∀ζ ∈ Nh.
Iu ∈ P1(Ta), Iu(ξ) = u(ξ) ∀ξ ∈ L.

(1.29)

The second family comprises Scott-Zhang (quasi-)interpolants [4,35] Sa, Sa,n, and Sh,n defined on Ωc with the

atomistic discretization, Ta, a domain Ω̃a with a discretization T̃a,n = εnTa for some εn > 0; and a domain Ω̃c

with discretization T̃h,n = εnTh, respectively. We recall that for a given domain U , a mesh partition T and a
function f ∈ H1(U), the Scott-Zhang interpolant Sf has the following four properties [4, Chapter 4]:

P.1: (Projection) Sf = f for all f ∈ P1(T ).
P.2: (Preservation of Homogeneous Boundary Conditions) If f is constant on ∂U , then so is Sf .
P.3: (Stability of semi-norm) ‖∇Sf‖L2(U) . ‖∇f‖L2(U) - the implied constant depending upon the shape

regularity constant, or minimum angle of the mesh T .
P.4: (Interpolation Error for S) ‖Sf − f‖L2(U) . maxT∈T Diam(T )‖∇f‖L2(U).

The space of admissible continuum displacements is Uc
h := Uc

h/Rd, where

Uc
h :=

{
uc ∈ C0(Ωc) : uc|T ∈ P1(T ) ∀T ∈ Th, ∃K ∈ Rd, uc = K on Γc

}
. (1.30)

The norm on this space is ‖∇uc‖L2(Ωc). Similar to the definition of UΩ, we require the elements of Uc
h to be

constant on the outer continuum boundary Γc, which enables their extension to infinity by a constant. We do
not place such a requirement on the inner continuum boundary because Γcore is an artificial boundary. There
we will employ virtual continuum boundary controls belonging to the space Λc := Λc/Rd where

Λc :=
{
λc : Nh ∩ Γcore → Rd

}
(1.31)

Since Γcore represents a curve, we can define the piecewise linear interpolant of λc ∈ Λc with respect to Nh∩Γcore

by Iλc(ξ) = λc(ξ) for all ξ ∈ Nh ∩ Γcore. Again, if λc is constant, the Iλc is as well so that this operator is
well defined on Λc. Henceforth, we will always identify elements of Λc with their piecewise linear interpolant
on Γcore without explicitly using I.

The restricted continuum energy functional on Uc
h is then

Ẽc(uc) :=

∫
Ωc

W (∇uc(x)) dx =
∑
T∈Th

W (∇uc(x)) |T | . (1.32)
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Given λc ∈ Λc, we consider the following restricted continuum problem

uc = arg min
Uc
h

Ẽc(wc) such that uc = λc on Γcore. (1.33)

An appropriate space of test functions for (1.33) is Uc
h,0 := Uc

h,0/Rd, where

Uc
h,0 :=

{
uc ∈ Uc

h : ∃K ∈ Rd, uc|Γcore
= K

}
. (1.34)

Thus, the Euler-Lagrange equation for (1.33) is given by: seek uc ∈ Uc
h such that

〈δẼc(uc),vc〉 = 0 ∀vc ∈ Uc
h,0,

uc = λc on Γcore.
(1.35)

The following lemma is an analogue of Lemma 1.6.

Lemma 1.7. The restricted continuum energy functional Ẽc is four times continuously Frechet differentiable
on Uc

h with derivatives bounded uniformly in the parameter Rc. Moreover, δ2Ẽc is Lipschitz continuous with
Lipschitz bound independent of Rc.

1.2.3. Continuum Error

This section estimates the error between the restricted continuum and atomistic solutions. We refer to this
error as the continuum error. We will first define an operator taking functions in U to functions in Uc

h. This
will yield a representation of u∞ in Uc

h which we can input into the variational equation (1.35) to obtain the
consistency error.

To this end, let η be a smooth bump function equal to 1 on B3/4(0) and vanishing off of B1(0). Given R > 0
and an annulus AR := BR\B3/4R, we follow [9,14] to define an operator TR : U → UΩ according to

TRu(x) = η(x/R)
(
Ĩu− −

∫
AR

Ĩu dx
)
. (1.36)

Above, −
∫
U
f dx = 1

|U |
∫
f dx is the average value of f . We then set

Πhu = Ih ((Trcu) |Ωc
) . (1.37)

We will use Πhu
∞ in (1.35) to obtain the consistency error. The following lemma estimates the error of this

operator over Ωc. We note that the proof below is standard and is similar to, e.g., [30, Lemma 2.1]. Moreover,
rcore . Rcore . rcore and rc . Rc . rc so that estimates in terms of Rcore and Rc can be phrased in terms of
rcore and rc and vice versa.

Lemma 1.8.
‖∇Πhu

∞ −∇Ĩu∞‖L2(Ωc) . R−d/2−1
core +R−d/2c (1.38)

Proof. We first estimate the error by

‖∇IhTrcu∞ −∇Ĩu∞‖L2(Ωc) ≤ ‖∇IhTrcu∞ −∇Trcu∞‖L2(Ωc) + ‖∇Trcu∞ −∇Ĩu∞‖L2(Ωc) (1.39)

We can easily estimate the second term:

‖∇Trcu∞ −∇Ĩu∞‖L2(Ωc)

.
∥∥ 1
rc
∇η(x/rc)

(
Ĩu∞ − −

∫
Arc

Ĩu∞ dx
)

+ [η(x/rc)− 1]∇Ĩu∞
∥∥
L2(Ωc)

.
1

rc

∥∥∇η(x/rc)
(
Ĩu∞ − −

∫
Arc

Ĩu∞ dx
)∥∥
L2(Arc )

+ ‖(η(x/rc)− 1)∇Ĩu∞‖L2(Rd\B3rc/4)

. ‖∇Ĩu∞‖L2(Arc ) + ‖∇Ĩu∞‖L2(Rd\B3rc/4) . ‖∇Ĩu∞‖L2(Rd\B3rc/4).

(1.40)
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In the second to last inequality, we have used the Poincare inequality. Employing the decay rates in Theorem 1.4,
we obtain

‖∇Trcu∞ −∇Ĩu∞‖L2(Ωc) . R−d/2c . (1.41)

Similarly, the first term of (1.39) can be estimated by first using standard finite element approximation
results for smooth functions, the definition of Trc , the fact that h/rc ≤ 1, and the Poincare inequality.

‖∇IhTrcu∞ −∇Trcu∞‖L2(Ωc) . ‖h∇2Trcu
∞‖L2(Ωc)

.
∥∥h∇2

(
η(x/rc)(Ĩu∞ − −

∫
Arc

Ĩu∞ dx)
)∥∥
L2(Ωc)

=
1

rc

∥∥(h/rc)∇2η(x/rc)(Ĩu∞ − −
∫
Arc

Ĩu∞ dx)
∥∥
L2(Arc )

+ ‖∇Ĩu∞∇η(x/rc)‖L2(Arc )

+‖hη(x/rc)∇2Ĩu∞‖L2(Ωc)

. ‖∇Ĩu∞‖L2(Arc ) +
1

rc
‖h∇Ĩu∞‖L2(Arc ) + ‖h∇2Ĩu∞‖L2(Ωc)

. ‖∇Ĩu∞‖L2(Arc ) + ‖h∇2Ĩu∞‖L2(Ωc).

(1.42)

A straightforward application of the regularity estimates in Theorem 1.4 and the conditions on h(x) in Assump-
tion E give

‖∇IhTrcu∞ −∇Trcu∞‖L2(Ωc) . R−d/2c +R−d/2−1
core . (1.43)

Combining (1.41) and (1.43) and keeping only the leading order terms yields (1.38). �

The following Lemma provides information about the stability of the Hessian of Ẽc at Πhu
∞.

Lemma 1.9. There exists R∗core > 0 and γc > 0 such that for all Rcore ≥ R∗core (and all continuum partitions
Th satisfying the assumptions in this section),

γc‖∇vc‖2L2(Ωc)
≤
〈
δ2Ẽc(Πhu

∞)vc,vc
〉
∀vc ∈ Uc

h,0.

Proof. For u ∈ U define

Ea
hom(u) :=

∑
ξ∈Zd

V (Du).

From [9, Proposition 2.6] and Assumption D, we deduce that

〈δ2Ea
hom(0)v,v〉 ≥ γa‖∇Iv‖2L2(Rd) ∀v ∈ U0, (1.44)

while [31, Lemma 5.2] implies

〈δ2Ec(0)v,v〉 ≥ γa‖∇v‖2L2(Rd) ∀v ∈ H1
0 (Rd).

Furthermore, extending vc ∈ Uch,0 by a constant to all of Rd yields

〈δ2Ẽc(Πhu
∞)vc,vc〉 = 〈δ2Ec(Πhu

∞)vc,vc〉 − 〈δ2Ec(0)vc,vc〉+ 〈δ2Ec(0)vc,vc〉

≥ −
∣∣〈δ2Ẽc(Πhu

∞)vc,vc〉 − 〈δ2Ec(0)vc,vc〉
∣∣+ 〈δ2Ec(0)vc,vc〉

& −‖∇Πhu
∞‖L∞(Ωc) · ‖∇vc‖2L2(Ωc) + γa‖∇vc‖2L2(Ωc),

(1.45)



14 TITLE WILL BE SET BY THE PUBLISHER

The final bound is a consequence of the Lipschitz continuity of W . Next,

‖∇Πhu
∞‖L∞(Ωc) ≤ ‖∇Trcu∞‖L∞(Ωc)

= ‖∇
[
η(x/rc)

(
Ĩu− −

∫
Arc

Ĩu dx
)]
‖L∞(Ωc)

= ‖∇(η(x/rc))
(
Ĩu− −

∫
Arc

Ĩu dx
)

+ η(x/rc)∇
(
Ĩu− −

∫
Arc

Ĩu dx
)
‖L∞(Ωc)

≤ ‖∇(η(x/rc))
(
Ĩu− −

∫
Arc

Ĩu dx
)
‖L∞(Arc ) + ‖η(x/rc)∇

(
Ĩu− −

∫
Arc

Ĩu dx
)
‖L∞(Ωc)

.
1

rc
‖
(
Ĩu− −

∫
Arc

Ĩu dx
)
‖L∞(Arc ) + ‖∇Ĩu‖L∞(Ωc)

. ‖∇Ĩu‖L∞(Arc ) + ‖∇Ĩu‖L∞(Ωc)

. ‖∇Ĩu‖L∞(Ωc).

Using this result in (1.45) together with (1.10) yields

〈δ2Ẽc(Πhu
∞)vc,vc〉 & (−‖∇Ĩu∞‖L∞(Ωc) + γa)‖∇vc‖2L2(Ωc) & (−(Rcore)−d + γa)‖∇vc‖2L2(Ωc).

Choosing R∗core such that −(R∗core)−d + γa ≥ γa/2 completes the proof with γc := γa/2. �

For the proof of existence of a solution to the restricted continuum problem, we rely on the following quan-
titative version of the inverse function theorem [19,25].

Theorem 1.10 (Inverse Function Theorem). Let X and Y be Banach spaces with f : X → Y a continuously
differentiable function on an open set U containing x0. Let y0 = f(x0) with ‖y0‖Y < η. Furthermore, suppose
that δf(x0) is invertible such that ‖δf(x0)−1‖L(Y,X) < σ, B2ησ(x0) ⊂ U , δf is Lipschitz continuous on B2ησ(x0)

with Lipschitz constant L, and 2Lησ2 < 1. Then there exists a unique continuously differentiable function
g : Bη(y0)→ B2ησ(x0) such that

g(y0) = x0 and f(g(y)) = y ∀y ∈ Bη(y0) .

In particular, there exists x̄ = g(0) ∈ X such that f(x̄) = 0 and

‖g(y0)− g(0)‖X = ‖x0 − x̄‖X < 2ησ,

Theorem 1.11 (Continuum Error). Let λ∞c := u∞|Γcore
. There exists R∗core > 0 such that for all Rcore ≥ R∗core,

the variational problem

〈δẼc(u),vc〉 = 0 ∀vc ∈ Uc
h,0 subject to u = λ∞c on Γcore, (1.46)

has a solution ucon such that

‖∇ucon −∇Iu∞‖L2(Ωc) . R−d/2−1
core +R−d/2c (1.47)

Furthermore, there exists γ′c such that〈
δ2Ẽc(ucon)vc,vc

〉
≥ γ′c‖∇vc‖2L2(Ωc). (1.48)

Proof. The proof uses ideas from [14,31]. We employ Theorem 1.10 by linearizing f = δẼc(·) about x0 = Πhu
∞.

LetR∗core be as in Lemma 1.9. Then δ2Ẽc(Πhu
∞)−1 exists and is bounded by γ−1

c for allRcore ≥ R∗core. Moreover,
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δ2Ẽc is Lipschitz continous by Lemma 1.7. It remains to estimate the residual

sup
vc∈Uc

h,0,v
c 6=0

〈δẼc(Πhu
∞),vc〉

‖vc‖L2(Ωc)
. (1.49)

This task requires an atomistic version of the stress. Following [31], let ζ(x) be the nodal basis function at 0
on the atomistic partition Ta, i.e., ζ(0) = 1 and ζ(ξ) = 0 for 0 6= ξ ∈ Zd. This allows us to write the interpolant
as Iv(x) =

∑
ξ∈Zd v(ξ)ζ(x− ξ). Further define the “quasi-interpolant,” v∗, by

v∗(x) := (Iv ∗ ζ)(x),

and note that v∗ ∈ W 3,∞
loc [28, 31]. Letting χξ,ρ(x) :=

1∫
0

ζ(ξ + tρ − x) dt, the atomistic stress, Sa(u, x), is then

defined by ∫
Rd

Sa(u, x) : ∇Iv := 〈δEa(u),v∗〉 =

∫
Rd

∑
ξ∈Zd

∑
ρ∈R

χξ,ρVξ,ρ(Du)⊗ ρ : ∇Iv. (1.50)

See [14,31] for further details.
We now estimate the residual (1.49). Fix an element vc ∈ Uc

h,0, and assume it has been extended to all of

Rd. Let wc = Sav
c where Sa is the Scott-Zhang interpolant onto Ta. Note that Iwc = ISav

c = Sav
c for these

choices.
We now subtract 0 = 〈δEa(u∞),wc,∗〉 from the numerator of (1.49):

〈δẼc(Πhu
∞),vc〉

= 〈δẼc(Πhu
∞),vc〉 − 〈δEa(u∞),wc,∗〉

= 〈δẼc(Πhu
∞)− δẼc(Ĩu∞),vc〉+ 〈δẼc(Ĩu∞),vc − Sav

c〉+ (〈δẼc(Ĩu∞), Sav
c〉 − 〈δEa(u∞),wc,∗〉)

=: E1 + E2 + E3.

In the above, we have used the notation 〈δẼc(Πhu
∞), w〉 :=

∫
Ωc

W ′(∇Πhu
∞) : ∇w for an arbitrary w ∈ H1(Ωc).

E1 can be easily estimated:

〈δẼc(Πhu
∞)− δẼc(Ĩu∞),vc〉 . ‖∇Πhu

∞ −∇Ĩu∞‖L2(Ωc)‖∇v
c‖L2(Ωc)

. (R−d/2−1
core +R−d/2c )‖∇vc‖L2(Ωc) by Lemma 1.8.

We estimate E2 by integrating by parts

〈δẼc(Ĩu∞),vc − Sav
c〉 =

∫
Ωc

W ′(∇Ĩu∞) : ∇(vc − Sav
c)

=

∫
Ωc

divW ′(∇Ĩu∞) · (vc − Sav
c)

≤ ‖divW ′(∇Ĩu∞)‖L2(Ωc) · ‖vc − Sav
c‖L2(Ωc)

. ‖∇2Ĩu∞‖L2(Ωc)‖∇vc‖L2(Ωc),

. R−d/2−1
core ‖∇vc‖L2(Ωc),

where we have used the chain rule, bounded the second derivatives of Ĩu∞ by ‖∇2Ĩu∞‖L2(Ωc), utilized the
interpolation estimate (4) for Sa, and applied the decay rates of Theorem 1.4.
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We estimate E3 by observing

E3 =

∫
Ωc

W ′(∇Ĩu∞) : ∇Sav
c −

∫
Ωc

Sa(u∞, x) : ∇Iwc

=

∫
Ωc

(
W ′
(
∇Ĩu∞

)
− Sa(u∞, x)

)
: ∇Sav

c.

≤ ‖W ′(∇Ĩu∞)− Sa(u∞, x)‖L2(Ωc)‖∇Sav
c‖L2(Ωc)

≤ ‖W ′(∇Ĩu∞)− Sa(u∞, x)‖L2(Ωc)‖vc‖L2(Ωc),

where in the last step we used the stability of the Scott-Zhang interpolant. One may then modify the arguments
in [31, Lemma 4.5, Equations (4.22)–(4.24)] to prove that6

E3 . (‖∇3Ĩu∞‖L2(Ωc) + ‖∇2Ĩu∞‖2L4(Ωc))‖v
c‖L2(Ωc),

and using the regularity theorem, Theorem 1.4, shows E3 . R
−d/2−2
core ‖vc‖L2(Ωc).

Combining the bounds on all Ei yields the residual estimate

sup
vc∈Uc

h,v
c 6=0

〈δẼc(Πhu
∞),vc〉

‖vc‖L2(Ωc)
. R−d/2−1

core +R−d/2c . (1.51)

The stability result of Lemma 1.9 in conjunction with (1.51) and the inverse function theorem implies the
existence of ucon satisfying (1.46) and

‖∇ucon −∇Πhu
∞‖L2(Ωc) . R−d/2−1

core +R−d/2c . (1.52)

Observe that

‖∇ucon −∇Iu∞‖L2(Ωc) ≤ ‖∇ucon −∇Πhu
∞‖L2(Ωc) + ‖∇Πhu

∞ −∇Ĩu∞‖L2(Ωc) + ‖∇Ĩu∞ −∇Iu∞‖L2(Ωc)

Hence, combining (1.52) and Lemma 1.8 yields

‖∇ucon −∇Iu∞‖L2(Ωc) . R−d/2−1
core +R−d/2c + ‖∇Ĩu∞ −∇Iu∞‖L2(Ωc).

Since Ĩ is in H2 and Iu∞ = IĨu∞, standard finite element approximation theory and the decay estimates in
Theorem 1.4 give

‖∇Ĩu∞ −∇Iu∞‖L2(Ωc) = ‖∇Ĩu∞ −∇IĨu∞‖L2(Ωc) . ‖∇2Ĩu∞‖L2(Ωc) . R−d/2−1
core .

The last inequalities imply the desired estimate (1.47).
To prove the inequality (1.48), note that〈

δ2Ẽ(ucon)vc,vc
〉

=
〈(
δ2Ẽ(ucon)− δ2Ẽ(Πhu

∞)
)
vc,vc

〉
+
〈
δ2Ẽ(Πhu

∞)vc,vc
〉

& − ‖∇ucon −∇Πhu
∞‖L2(Ωc)‖∇vc‖2L2(Ωc) + γc‖∇vc‖2L2(Ωc)

& (γc −R−d/2−1
core +R−d/2c )‖∇vc‖2L2(Ωc).

�

6The difference is that our choice of Ĩu is not the same as the smooth interpolant used there.
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1.3. The AtC Coupled Problem

We couple the restricted atomistic and continuum subproblems by minimizing the H1 semi-norm of the
difference between their solutions, i.e. our AtC formulation seeks an optimal solution (ua, uc) ∈ Ua × Uc

h,
(λa, λc) ∈ Λa × Λc of the constrained optimization problem:

min
{ua,uc,λa,λc}

‖∇Iua −∇uc‖L2(Ωo) subject to{
〈δẼa(ua), va〉 = 0 ∀ va ∈ Ua

0

ua = λa on ∂aLa

;

{
〈δẼc(uc), vc〉 = 0 ∀ vc ∈ Uc

h,0

uc = 0 on Γc and uc = λc on Γcore

;
∫

Ωo

(Iua − uc) dx = 0
(1.53)

Alternatively, we may pose the AtC problem on quotient spaces:

min
{ua,uc,λa,λc}

‖∇Iua −∇uc‖L2(Ωo) subject to{
〈δẼa(ua),va〉 = 0 ∀va ∈ Ua

0

ua = λa on ∂aLa

,

{
〈δẼc(uc),vc〉 = 0 ∀vc ∈ Uc

h,0

uc = λc on Γcore

(1.54)

It is easy to see that (1.53) and (1.54) are equivalent in the sense that every minimizer (ua, uc) of the former
generates an equivalence class (ua,uc) that is a minimizer of the latter and vice versa. Indeed, if (ua, uc) solves
(1.53) then for all (va, vc) ∈ Ua × Uc

h,

‖∇Iua −∇uc‖L2(Ωo) = ‖∇Iua −∇uc‖L2(Ωo) ≤ ‖∇Iva −∇vc‖L2(Ωo) = ‖∇Iva −∇vc‖L2(Ωo).

Thus, (ua,uc) is a minimizer of (1.54). The reverse statement follows by the same argument.
Notwithstanding the equivalence of the two problems, (1.54) is more convenient for the analysis and so we

will study the existence of AtC solutions (uatc
a ,uatc

c ) in quotient spaces. Our main result is as follows.

Theorem 1.12 (Existence and Error Estimate). Let u∞a := u∞|La and u∞c := u∞|Lc . There exists R∗core such
that for all Rcore ≥ R∗core, the minimization problem (1.54) has a solution (uatc

a ,uatc
c ) and

‖∇
(
Iuatc

a − Iu∞a
)
‖2L2(Ωa) + ‖∇

(
uatc

c − Iu∞c
)
‖2L2(Ωc) . R−d/2−1

core +R−d/2c . (1.55)

We prove this result in the remainder of the paper.

2. Error Analysis

To carry out the analysis of the AtC problem we switch to an equivalent reduced space formulation of (1.54)
and apply the inverse function theorem.

2.1. Reduced space formulation of the AtC problem

Given λa ∈ Λa and λc ∈ Λc, there exist solutions of atomistic and continuum restricted problems (1.23)
and (1.33) which we use to define mappings Ua : Λa → Ua, and U c : Λc → Uc

h, respectively in Theorems 2.3
and 2.4. Using these mappings, we can eliminate the states from (1.54) and obtain an equivalent unconstrained
minimization problem in terms of the virtual controls only:(

λatc
a , λatc

c

)
= arg min

(λa,λc)∈Λa×Λc

J(λa, λc), (2.1)

where J is defined as

J (λa, λc) =
1

2
‖∇IUa(λa)−∇U c(λc)‖2L2(Ωo). (2.2)
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The Euler-Lagrange equation of (2.1) is given by

〈δJ(λa, λc), (µa, µc)〉 = 0, ∀ (µa, µc) ∈ Λa ×Λc, (2.3)

and the first variation of J is

〈δJ(λa, λc), (µa, µc)〉 = (∇ (IUa(λa)−U c(λc)) ,∇ (IδUa(λa)[µa]− δU c(λc)[µc]))L2(Ωo) . (2.4)

In terms of the reduced problem, the AtC error (1.55) assumes the form

‖∇
(
IUa(λatc

a )− Iu∞a )
)
‖2L2(Ωa) + ‖∇

(
U c(λatc

c )− Iu∞c
)
‖2L2(Ωc). (2.5)

Analysis of (2.5) requires several problem-dependent norms. Solutions of linearized problems on Ωa and Ωc

define these norms. Let δUa(λ∞a )[·] : Λa → Ua be the solution to the linearized problem7

〈
δ2Ẽa(Ua(λ∞a ))δUa(λ∞a )[µa],va

〉
= 0 ∀va ∈ Ua

0,

δUa(λ∞a )[µa] = µa on ∂aLa,
(2.6)

and δU c(λ∞c )[·] : Λc → Uc be the solution to a similar continuum linearized problem〈
δ2Ẽc(ucon)δU c(λ∞c )[µc],vc

〉
= 0 ∀vc ∈ Uc

h,0,

δU c(λ∞c )[µc] = µc on Γcore.
(2.7)

It is easy to see that

‖µa‖Λa := ‖∇IδUa(λ∞a )[µa]‖L2(Ωa) and ‖µc‖Λc := ‖∇δU c(λ∞c )[µc]‖L2(Ωc),

define norms norms on Λa, and Λc, respectively, while their sum

‖(µa, µc)‖2err := ‖µa‖2Λa + ‖µc‖2Λc (2.8)

is a norm on Λa ×Λc. In Section 3 we shall prove

‖(µa, µc)‖op := ‖∇ (IδUa(λ∞a )[µa]− δU c(λ∞c )[µc]) ‖L2(Ωo) (2.9)

is a norm equivalent to 2.8. We state this result below for further reference within this section.

Theorem 2.1 (Norm Equivalence). There exists R∗core > 0 such that for all Rcore ≥ R∗core,

‖ · ‖op . ‖ · ‖err . ‖ · ‖op. (2.10)

2.2. The Inverse Function Theorem framework

We consider the first order optimality condition (2.3) for (2.1), and apply the inverse function theorem,
Theorem 1.10, with f = δJ and X = Λa ×Λc equipped with the ‖ · ‖op norm. To apply the theorem, we must
prove there exist L, η, σ such that

sup
(λa,λc) near (λ∞a ,λ∞c )

‖δ3J(λa, λc)‖ ≤ L , ‖δJ(λ∞a , λ
∞
c )‖ ≤ η, and ‖(δ2J(λ∞a , λ

∞
c ))−1‖ ≤ σ.

7We show subsequently that Ua is differentiable, and δUa(λ∞a )[·] is the Gateaux derivative of Ua at λ∞a .
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Each of these results requires differentiability of the functional J , which in turn requires differentiability
of the functions Ua and U c. We prove the necessary differentiability results and boundedness of the third
derivative of J in Section 2.2.1. The second result is a consistency error estimate and is proven in Section 2.2.2
while the final estimate is a stability result proven in Section 2.2.3.

2.2.1. Regularity

We use the following version of the implicit function theorem to obtain regularity results for Ua and U c. It
can be obtained by adapting the proof of the implicit function theorem in [11] to Banach spaces and by tracking
the constants involved.

Theorem 2.2 (Implicit Function Theorem). Let X, Y , and Z be Banach spaces with U ⊂ X × Y an open
set. Let f : X × Y → Z be continuously differentiable with (x0, y0) ∈ U satisfying f(x0, y0) = 0. Suppose
that δyf(x0, y0) : Y → Z is a bounded, invertible linear transformation with

∥∥(δyf(x0, y0))−1
∥∥ =: θ. Also set

φ := ‖δxf(x0, y0)‖ and
σ := max {1 + θφ, θ} .

If there exists η such that

(1) B2ησ((x0, y0)) ⊂ U
(2) ‖δf(x1, y1)− δf(x2, y2)‖ ≤ 1

2ησ2 ‖(x1, y1)− (x2, y2)‖ for all (x1, y1), (x2, y2) ∈ B2ησ((x0, y0)),

then there is a unique continuously differentiable function g : Bη(x0) → B2ησ(y0) such that g(x0) = y0 and
f(x, g(x)) = 0 for all x ∈ Bη(x0). The derivative of g is

δg(x) = −
[
δyf(x, g(x))−1

]
[δxf(x, g(x))] .

Moreover, if f is Ck, then g is Ck, and derivatives of g can be bounded in terms of derivatives of f and
δyf(x0, g(x0))−1.

Theorem 2.3 (Regularity of Ua). Under Assumptions C and D, there exists R∗core > 0 such that for all
Rcore ≥ R∗core, there exists a mapping Ua : Λa → Ua such that Ua(λa) solves (1.23) and which is C3 on an
open ball V centered at λ∞a in Λa. The radius of V is independent of Rcore, and the derivatives of Ua are also
bounded uniformly in Rcore ≥ R∗core.

Proof. We apply Theorem 2.2 with X = Λa, Y = Ua
0, Z = (Ua

0)
∗
, U = X × Y , and

f (λa,v
a) := δẼa (h (λa,v

a)) ,

where h is an auxiliary function X × Y → Ua defined by (recall δUa(λ∞a )[µa] solves (2.6))

h (λa,v
a) = va + u∞a + δUa(λ∞a ) [λa − λ∞a ] .

Because h is affine, f is Ck provided that Ẽa is Ck+1 on Ua. Hence, Theorem 1.6 implies f is C3. For the point
(x0, y0), we take the point (λ∞a ,0) so that h (x0, y0) = u∞a . The chain rule shows

δyf(x0, y0) = δ2Ẽa (h (x0, y0)) ◦ δyh (x0, y0) .

In conjunction with δyh (x0, y0) [va] = va, it follows that δyf(x0, y0) : Y → Z is given by

〈δyf(x0, y0)va,wa〉 = 〈δ2Ẽa (u∞a )va,wa〉.

Since both va and wa are elements of Ua
0 they can be extended by a constant to all of Zd while keeping the

norm of their gradient the same. Then using Assumption D, we find

〈δyf(x0, y0)va,va〉 = 〈δ2Ẽa (u∞a )va,va〉 = 〈δ2Ea (u∞)va,va〉 ≥ γa‖∇Iva‖2L2(Rd) = γa‖∇Iva‖2L2(Ωa).
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This shows δyf(x0, y0) is coercive, and consequently that δyf(x0, y0)−1 exists with norm bounded by θ := γa.
Using again the chain rule, we obtain

δxf(x0, y0) = δ2Ẽa (h (x0, y0)) ◦ δxh (x0, y0) = 0

so that φ = ‖δxf(x0, y0)‖ = 0.

Next, observe that h is Lipschitz on its entire domain with Lipschitz constant 1, and δ2Ẽa is Lipschitz with
some Lipschitz constant M , as guaranteed by Theorem 1.6. As a result, δf is Lipschitz with Lipschitz constant
M . Now we may choose η small enough so that 1

2ησ2 ≤ M , which means both conditions (1) and (2) in the

statement of implicit function theorem are fulfilled. This allows us to deduce the existence of an implicit function
g : Bη(λ∞a )→ B2ησ(0), which we use to define a mapping Ua via

Ua(λa) = h (λa, g(λa)) = g(λa) + u∞ + δUa(λ∞a ) [λa − λ∞] .

Since f is C3, the implicit function theorem ensures g is also C3. Thus Ua is C3. The radius of V is η, which
is clearly independent of Rcore, and the uniform bounds on the derivatives of Ua follow by noting derivatives
of f correspond to derivatives of the restricted atomistic energy (which is uniformly bounded by Theorem 1.6)
and using the final remark in the statement of the implicit function theorem. �

We note that the Gateaux derivative, δUa(λa)[µa], of Ua at λa in the direction of µa solves the problem

〈δ2Ẽa(Ua(λa))δUa(λa)[µa],va〉 = 0 ∀va ∈ Ua
0,

δUa(λa)[µa] = µa on ∂aLa,
(2.11)

thus justifying our usage of notation in the proof.
With only minor modifications, the proof of Theorem 2.3 can be adapted to establish the regularity of U c.

Theorem 2.4 (Regularity of U c). There exists R∗core > 0 such that for all Rcore ≥ R∗core, there exists a mapping
U c : Λc → Uc such that U c(λc) solves 1.33 and which is C3 on an open ball V centered at λ∞c in Λc. The
derivatives of U c are bounded uniformly in Rcore, and the radius of V is independent of Rcore.

Combining the above results we obtain an upper bound on Hessian of the atomistic mapping

‖δ2Ua(λ∞a )[µa, νa]‖Ua . ‖µa‖Λa · ‖νa‖Λa , (2.12)

and a similar bound for the Hessian of the continuum mapping

‖δ2U c(λ∞c )[µc, νc]‖Uc . ‖µc‖Λc · ‖νc‖Λc . (2.13)

The proof of Theorem 1.12 relies on a stability result that enables the application of the inverse function
theorem. This stability result requires the following auxiliary lemma.

Lemma 2.5. There exists R∗core such that for all Rcore ≥ R∗core and all µa, νa ∈ Λa and all µc, νc ∈ Λc,

‖∇
(
Iδ2Ua(λ∞a )[µa, νa]− δ2U c(λ∞c )[µc, νc]

)
‖L2(Ωo) . ‖(µa, µc)‖op · ‖(νa, νc)‖op. (2.14)

Proof. The triangle inequality implies

‖∇
(
Iδ2Ua(λ∞a )[µa, νa]− δ2U c(λ∞c )[µc, νc]

)
‖L2(Ωo) ≤ ‖∇Iδ2Ua(λ∞a )[µa, νa]‖L2(Ωa)+‖∇δ2U c(λ∞c )[µc, νc]‖L2(Ωc).
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We then utilize (2.12)–(2.13) to bound the right hand side and apply the norm equivalence theorem, Theorem 2.1,
to obtain

‖∇
(
Iδ2Ua(λ∞a )[µa, νa]− δ2U c(λ∞c )[µc, νc]

)
‖ . ‖µa‖Λa · ‖νa‖Λa + ‖µc‖Λc · ‖νc‖Λc

≤ (‖µa‖Λa + ‖µc‖Λc) (‖νa‖Λa + ‖νc‖Λc)

. ‖(µa, µc)‖op · ‖(µa, µc)‖op.

(2.15)

�

We proceed to establish regularity of the reduced space functional J .

Theorem 2.6 (Regularity of J). Let V a and V c be the neighborhoods of λ∞a and λ∞c in Λa and Λc on which
Ua and U c are C3. Then J is C3 on V a × V c and its `th derivatives can be bounded by derivatives of Ua and
U c of order at most `.

Proof. Theorems 2.3–2.4 guarantee that Ua and U c are C3 on V a and V c. Moreover, the interpolant I is a
linear operator so λa 7→ IUa(λa) will also be C3 on V a. The assertion of the theorem then follows from the fact
that J = ‖∇IUa(λa)−∇U c(λc)‖2L2(Ωo) is a composition of a quadratic form and the C3 functions IUa(λa) and

U c(λc). �

2.2.2. Consistency

The consistency error measures by how much u∞ fails to satisfy the approximate problem, which in this case
is the reduced space formulation (2.1). Thus, we seek an upper bound for

‖δJ(λ∞a , λ
∞
c )‖op = sup

‖(µa,µc)‖op=1

∣∣∣(∇ (IUa(λ∞a )−U c(λ∞c )) ,∇ (IδUa(λ∞a )[µa]− δU c(λ∞c )[µc]))L2(Ωo)

∣∣∣ . (2.16)

Theorem 2.7 (Consistency Error). There exists R∗core > 0 such that for all Rcore ≥ R∗core, we have

‖δJ(λ∞a , λ
∞
c )‖op . R−d/2−1

core +R−d/2c . (2.17)

Proof. Applying the Cauchy-Schwarz inequality to (2.16) yeields

‖δJ(λ∞a , λ
∞
c )‖op

≤ sup
‖(µa,µc)‖op=1

‖∇ (IUa(λ∞a )−U c(λ∞c )) ‖L2(Ωo)‖∇ (IδUa(λ∞a )[µa]− δU c(λ∞c )[µc]) ‖L2(Ωo)·

= ‖∇ (IUa(λ∞a )−U c(λ∞c )) ‖L2(Ωo).

(2.18)

Note that λ∞a and λ∞c are traces of the exact atomistic solution and so,

‖∇ (IUa(λ∞a )−U c(λ∞c )) ‖L2(Ωo) = ‖∇Iu∞a −∇ucon‖L2(Ωo)

is the simply the continuum error made by replacing the atomistic model with the continuum model on Ωo.
Thus, (2.17) follows directly from (1.47) in Theorem 1.11. �

2.2.3. Stability

In this section we prove that the bilinear form 〈δ2J(λ∞a , λ
∞
c ) ·, ·〉 is coercive.

Theorem 2.8. There exists R∗core such that for each Rcore ≥ R∗core

〈δ2J(λ∞a , λ
∞
c )(µa, µc), (µa, µc)〉 ≥ 1

2‖(µa, µc)‖2op, ∀ (µa, µc) ∈ Λa ×Λc. (2.19)
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Proof. The Hessian of J is given by

〈δ2J(λ∞a , λ
∞
c )(µa, µc), (µa, µc)〉 = ‖∇ (IδUa(λ∞a )[µa]− δU c(λ∞c )[µc]) ‖2L2(Ωo)

+
(
∇ (IUa(λ∞a )−U c(λ∞c )) ,∇

(
Iδ2Ua(λ∞a )[µa, µa]− δ2U c(λ∞c )[µc, µc]

))
L2(Ωo)

.
(2.20)

Using the definition of ‖ · ‖op, this is equivalent to

〈δ2J(λ∞a , λ
∞
c )(µa, µc), (µa, µc)〉 =

‖(µa, µc)‖2op +
(
∇ (IUa(λ∞a )−U c(λ∞c )) ,∇

(
Iδ2Ua(λ∞a )[µa, µa]− δ2U c(λ∞c )[µc, µc]

))
L2(Ωo)

.
(2.21)

Lemma 2.5 implies the existence of R∗,1core and Cstab such that for all Rcore ≥ R∗,1core,

‖∇
(
Iδ2Ua(λ∞a )[µa, µa]− δ2U c(λ∞c )[µc, µc]

)
‖L2(Ωo) ≤ Cstab‖(µa, µc)‖2op. (2.22)

We then have that(
∇ (IUa(λ∞a )−U c(λ∞c )) ,∇

(
Iδ2Ua(λ∞a )[µa, µa]− δ2U c(λ∞c )[µc, µc]

))
L2(Ωo)

≥ −‖∇ (IUa(λ∞a )−U c(λ∞c )) ‖L2(Ωo) · ‖∇
(
Iδ2Ua(λ∞a )[µa, µa]− δ2U c(λ∞c )[µc, µc]

)
‖L2(Ωo)

≥ −Cstab‖∇ (IUa(λ∞a )−U c(λ∞c )) ‖L2(Ωo) · ‖(µa, µc)‖2op.

This implies

〈δ2J(λ∞a , λ
∞
c )(µa, µc), (µa, µc)〉 ≥ ‖(µa, µc)‖2op − Cstab‖∇ (IUa(λ∞a )−U c(λ∞c )) ‖L2(Ωo) · ‖(µa, µc)‖2op

=
(
1− Cstab‖∇ (IUa(λ∞a )−U c(λ∞c )) ‖L2(Ωo)

)
‖(µa, µc)‖2op,

where ‖∇ (IUa(λ∞a )−U c(λ∞c )) ‖L2(Ωo) is the continuum error. By Theorem 1.11, there exists R∗,2core such that

for all Rcore ≥ R∗,2core, (
1− Cstab‖∇ (IUa(λ∞a )−U c(λ∞c )) ‖L2(Ωo)

)
≥ 1/2.

Taking R∗core = max
{
R∗,1core, R

∗,2
core

}
completes the proof. �

2.2.4. Error Estimate

Having proven regularity of J , a consistency estimate, and a stability result, we are now in a position to
prove our main error result, Theorem 1.12. This will be a consequence of following theorem providing important
information about the AtC formulation.

Theorem 2.9. There exists R∗core > 0 such that for all Rcore ≥ R∗core, the reduced space problem (2.1) has a
solution (λatc

a , λatc
c ), such that

‖(λ∞a , λ∞c )− (λatc
a , λatc

c )‖op . R−d/2−1
core +R−d/2c . (2.23)

Proof. We apply the inverse function theorem, Theorem 1.10, with f = δJ , X = Λa × Λc endowed with the
norm ‖ · ‖op, Y = (Λa ×Λc)

∗
endowed with the dual norm ‖ · ‖op∗ , and x0 = (λ∞a , λ

∞
c ). Let R∗core be the

maximum of the R∗core guaranteed to exist in Theorems 2.3, 2.4, 2.7 and, 2.8. Noting that ‖f(x0)‖op∗ is the
consistency error defined in Section 2.2.2, Theorem 2.7, implies the bound

‖f(x0)‖op∗ . R
−d/2−1
core +R−d/2c =: η.

Observe also that δf(x0) = δ2J(λ∞a , λ
∞
c ) and the existence of a coercivity constant, σ := 1/2, from Section 2.2.3

implies ‖δf(x0)−1‖ < σ−1 = 2.
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Furthermore, Theorems 2.3 and 2.4 provide constants ηa and ηc such that Ua and U c are C3 on Bηa(λ∞a )
and Bηc

(λ∞c ) respectively. By Theorem 2.6, δ3J is bounded by derivatives of Ua and U c of order at most 3.
Furthermore, Theorems 2.3 and 2.4 state that derivatives of Ua and U c are uniformly bounded in Rcore. We
may therefore conclude that the third derivative of J is also uniformly bounded in Rcore. This implies δf = δ2J
is Lipschitz on Bηa(λ∞a )×Bηc(λ∞c ) with a Lipschitz constant that we denote by L.

The bound 2Lη(2)2 < 1 holds since the consistency error η may be made small for R∗core large enough.
Analogously, B4η(λ∞a , λ

∞
c ) ⊂ Bηa

(λ∞a ) × Bηc
(λ∞c ) for small enough η. Theorem 1.10, can now be invoked to

deduce the existence of a minimizer, (λatc
a , λatc

c ) ∈ B4η(λ∞a , λ
∞
c ) of J , satisfying the stated bounds (2.23). �

We now provide a proof of Theorem 1.12, which is our main result.

Proof of Theorem 1.12. Let R∗core be the maximum of the R∗core from Theorem 2.9 and Theorem 2.1 so there
exists (λatc

a , λatc
c ) satisfying (2.23). Furthermore, (Ua(λatc

a ),U c(λatc
c )) solve the minimization problem (1.54).

Hence,

‖∇
(
Iu∞a − Iuatc

a

)
‖2L2(Ωa) + ‖∇

(
Iu∞c − uatc

c

)
‖2L2(Ωc)

= ‖∇I
(
u∞ −Ua(λatc

a )
)
‖2L2(Ωa) + ‖∇

(
Iu∞ −U c(λatc

c )
)
‖2L2(Ωc)

= ‖∇
(
Ua(λ∞a )−Ua(λatc

a )
)
‖2L2(Ωa) + ‖∇

(
Iu∞ −U c(λ∞c ) +U c(λ∞c )−U c(λatc

c )
)
‖2L2(Ωc)

≤ ‖∇I
(
Ua(λ∞a )−Ua(λatc

a )
)
‖2L2(Ωa) + ‖∇ (Iu∞−U c(λ∞c )) ‖2L2(Ωc) + ‖∇

(
U c(λ∞c )−U c(λatc

c )
)
‖2L2(Ωc)

(2.24)

The second term above is the continuum error. To handle the remaining terms we recall that Ua and U c are
Lipschitz on Bηa

(λ∞a ) and Bηc
(λ∞c ) by virtue of δUa and δU c being uniformly bounded on these sets. Then,

using norm-equivalence (2.10), Theorem 1.11 and Theorem 2.9 yields

‖∇
(
Iu∞ − Iuatc

a

)
‖2L2(Ωa) + ‖∇

(
Iu∞ − uatc

c

)
‖2L2(Ωc)

. ‖λ∞a − λatc
a ‖2Λa + ‖∇ (Iu∞ −U c(λ∞c )) ‖2L2(Ωc) + ‖λ∞c − λatc

c ‖2Λc

= ‖(λ∞a , λ∞c )− (λatc
a , λatc

c )‖2err + ‖∇ (Iu∞ −U c(λ∞c )) ‖2L2(Ωc) . R−d−2
core +R−dc .

(2.25)

Taking square roots completes the proof. �

3. Norm Equivalence

The main result of this section is the norm equivalence result stated in Theorem 2.1. We recall that the finite
element mesh Th is subject to a minimum angle condition for some β > 0.

Theorem 3.1. There exists C,R∗core > 0 such that for all domains Ωa,Ωc and meshes Th constructed according
to the guidelines of Section 1.2 (in particular ψaRcore = Ra) with Rcore ≥ R∗core, there holds

‖(µa, µc)‖err ≤ C‖(µa, µc)‖op ∀(µa, µc) ∈ Λa ×Λc. (3.1)

Equivalently, for all (wa,wc) ∈ Ua × Uc
h such that

〈δ2Ẽa(u∞a )wa,va〉 = 0 ∀va ∈ Ua
0 and (3.2)

〈δ2Ẽc(ucon)wc,vc〉 = 0 ∀vc ∈ Uc
h,0 (3.3)

we have

‖∇Iwa‖2L2(Ωa) + ‖∇wc‖2L2(Ωc) ≤ C‖∇ (Iwa −wc) ‖2L2(Ωo) (3.4)
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Equivalence of (3.1) and (3.4) follows directly from definitions of ‖·‖err, ‖·‖op, Ua, and U c. Our assumptions
imply that Rcore and Ra are of the same order and grow at the same rate while Rc/Rcore getting large implies
Rc grows at a faster rate than Ra and Rcore.

In Section 3.1 we show that proving Theorem 3.1 reduces to proving the following result.

Theorem 3.2. There exists R∗core > 0 such that for all domains Ωa,Ωc and meshes Th constructed according
to the guidelines of Section 1.2 (in particular ψaRcore = Ra) with Rcore ≥ R∗core,

sup
wa,wc 6=0

(∇Iwa,∇wc)

‖∇(Iwa)‖L2(Ωo)‖∇wc‖L2(Ωo)
< 1, (3.5)

for all (wa,wc) ∈ Ua × Uc
h such that

〈δ2Ẽa(u∞a )wa,va〉 = 0 ∀va ∈ Ua
0,

〈δ2Ẽc(ucon)wc,vc〉 = 0 ∀vc ∈ Uc
h,0.

We prove Theorem 3.2 in Section 3.2 by using extension results from Theorems A.1–A.2. The latter allow
us to bound solutions to the atomistic and continuum subproblems in terms of the solution on Ωo only.

3.1. Reduction

In this section we prove Theorem 3.2. The first step in showing that Theorem 3.2 implies Theorem 3.1 is
to bound solutions of the atomistic and continuum problem in terms of their values over the overlap region.
The proof of this as well as the proof of Theorem 3.1 will be a proof by contradiction involving scaled versions
of (3.2) and (3.3). We distinguish objects in the scaled domain by using a tilde accent, i.e. L̃a,n = εnLa.

In each proof, we will consider sequences R∗,ncore →∞ and Rc,n →∞ with Rc,n/R
∗,n
core →∞. Givenwa

n andwc
n,

we will then set εn = 1/Rcore,n, and scale by εn to obtain functions w̃c
n(εnx) = wc

n(x) and w̃a
n(εnx) = wa

n(x).

Thus, each w̃a
n is defined on Ω̃a := εnΩa,n. Note also that the domains Ω̃core := εnΩcore,n and Ω̃a have fixed

radii of 1 and ψa respectively. The domains in the sequence {Ωc,n} have fixed inner boundaries but their outer
boundaries tend to infinity. Since each wc

n is constant on the outer boundary of Ωc,n, we may extend each of

them outside of this region to infinity to obtain functions defined on Ω̃c := Rn\Ω̃core.
The functions w̃a

n and w̃c
n now satisfy scaled versions of (3.2) and (3.3) in which the displacement spaces are

parametrized by n in the obvious manner: Ũa
n, Ũ

a
0,n, Ũ

c
h,n, and Ũc

h,0,n. For clarity, we introduce several new
notations. We use Vξ,ρ to denote the partial derivative of Vξ with respect to finite difference Dρu and Vξ,ρτ to

denote second derivatives. We further define scaled finite differences and finite difference stencils for ξ ∈ L̃a,n

and ρ ∈ R by

Dεnρũ(ξ) =
ũ(ξ + εnρ)− ũ(ξ)

εn
and Dεnũ(ξ) = (Dεnρũ(ξ))ρ∈R .

The norm (1.26) scales to

‖Dεn ṽ‖2`2εn (L̃◦◦a,n)
=

∑
ξ∈L̃◦◦a,n

sup
ρ∈R
|Dεnρṽ|2εdn, (3.6)

for which there continues to hold
‖Dεn ṽ‖`2εn (L̃◦◦a,n) . ‖∇Inṽ‖L2(Ω̃a,n).

The function w̃a
n satisfies the following scaled variational equation:∑
ξ∈L̃◦◦a,n

∑
ρ,τ∈R

Vξ,ρτ (εnDεnũ
∞
a,n(ξ)) ·Dεnρw̃

a
n, Dεnτ ṽ

aεd = 0 ∀va ∈ Ũa
0,n

≡
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnw̃

a
n : Dεn ṽ

aεdn = 0 ∀ ṽa ∈ Ũa
0,n. (3.7)
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It will be convenient to express (3.7) as an integral for ṽa for which Dεn ṽ
a vanishes on L̃a,n\L̃◦◦a,n and on a

neighborhood of the origin. This requires an additional tool. The cell, ςξ, based on ξ ∈ L̃n is

ςξ :=
{
x ∈ Rd : 0 ≤ xi − ξi < εn, i = 1, . . . , d

}
.

Let Īn be a piecewise constant interpolation operator defined by

Īnf(x) := f(ξ) wherex ∈ ςξ.

Then for such a ṽa and for n large enough such that Dεn ṽ
a vanishes on a neighborhood of the origin,∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnw̃

a
n : Dεn ṽ

aεdn =
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnw̃

a
n : Dεn ṽ

a vol(ςξ ∩ Ω̃a)

=
∑

ξ∈L̃a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnw̃

a
n : Dεn ṽ

a vol(ςξ ∩ Ω̃a)

=

∫
Ω̃a,n

ĪnV
′′(εnDεnũ

∞
a,n) : ĪnDεnw̃

a
n : ĪnDεn ṽ

a dx

=

∫
Ω̃a

ĪnV
′′(εnDεnũ

∞
a,n) : ĪnDεnw̃

a
n : ĪnDεn ṽ

a dx

(3.8)

Observe that we have replaced V ′′ξ with V ′′ in the integral since Dεn ṽ
a is assumed to vanish where V 6= Vξ.

Similarly, w̃c
n satisfies an analogous scaled version f (3.9):∫

Ω̃c,n

∑
ρ,τ∈R

〈V,ρτ (εn∇ũcon
n R)∇ρw̃c

n,∇τ ṽc〉 dx ≡
∫

Ω̃c,n

W ′′(εn∇ũcon
n ) : ∇w̃c

n : ∇ṽc
n dx = 0 ∀ṽc ∈ Ũc

h,0,n. (3.9)

Further define the fourth order tensor, C = W ′′(0) and note that

(C : G) : F :=
∑
ρ,τ∈R

V,ρτ (0)Gρ · Fτ = (V ′′(0) : (FR)) : (GR).

We bound solutions of the atomistic and continuum problem in terms of their values over the overlap region.

Lemma 3.3. Suppose that wa and wc are such that equations (3.2) and (3.3) hold. Then, there exists R∗core > 0
such that

‖∇Iwa‖L2(Ωa) . ‖∇Iwa‖L2(Ωo) and (3.10)

‖∇wc‖L2(Ωc) . ‖∇wc‖L2(Ωo). (3.11)

for all domains Ωa,Ωc and continuum meshes Th constructed according to the guidelines of Section 1.2 (in
particular ψaRcore = Ra) with Rcore ≥ R∗core.

Proof. Assume that (3.10)–(3.11) do not hold. Then, there exists a sequence R∗,ncore → ∞, with corresponding
sequences Rcore,n ≥ R∗,ncore, Rc,n, Ωa,n,Ωc,n, Th,n, wc

n and wa
n, such that Rcore,n →∞, Rc,n →∞, Rc,n/Rcore,n =

Rκcore,n →∞ with

‖∇Inwa
n‖L2(Ωa)

‖∇Inwa
n‖L2(Ωo,n)

→ ∞,
‖∇wc

n‖L2(Ωc)

‖∇wc
n‖L2(Ωo,n)

→ ∞. (3.12)
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After scaling the lattice, the domains, and the functions by εn := 1
Rcore,n

we find from (3.12) that

‖∇Inw̃a
n‖L2(Ω̃a)

‖∇Inw̃a
n‖L2(Ω̃o)

→∞. (3.13)

Extend Inw̃
a
n|Ω̃o

to Rd using the extension operator R from Theorem A.2. Then we have

‖∇(R(Inw̃
a
n|Ω̃o

))‖L2(Ω̃a) ≤ C(Ω̃o)‖∇Inw̃a
n‖L2(Ω̃o).

Moreover, R(Inw̃
a
n|Ω̃o

) = Inw̃
a
n on ∂aL̃a. Let Sa,n be the Scott-Zhang interpolant operator from H1(Ω̃a) to{

u ∈ C(Ω̃a) : u|τ ∈ P1(τ) ∀τ ∈ T̃a,n

}
.

Then Sa,nR(Inw̃
a
n|Ω̃o

) defines an atomistic function in Ua
n, which is equal to w̃a

n on ∂aΩ̃a since R(Inw̃
a
n|Ω̃o

) is

piecewise linear on Ω̃o and due to the projection property of Sa,n. This implies that z̃a
n := Sa,nR(Inw̃

a
n|Ω̃o

)|Ω̃a
−

w̃a
n ∈ Ũa

0,n and that z̃a
n solves the problem

〈δ2Ẽa
n(ũ∞a,n)z̃a

n, ṽ
a
n〉 = 〈δ2Ẽa(u∞a )Sa,nR(Inw̃

a
n|Ω̃o

)|Ω̃a
, ṽa
n〉 ∀ ṽa

n ∈ Ũa
0,n.

Thus, taking ṽa
n = z̃a

n, using (1.28), and the stability of the Scott-Zhang interpolant (see P.3 or [4, Theorem
4.8.16]), we see that

‖∇Inz̃a
n‖L2(Ω̃a) . ‖∇Sa,nR(Inw̃

a
n|Ω̃o

)|Ω̃a
‖L2(Ω̃a) . ‖∇R(Inw̃

a
n|Ω̃o

)‖L2(Ω̃a) ≤ C(Ω̃o)‖∇Inw̃a
n‖L2(Ω̃o).

This and the definition of zan imply

‖∇Sa,nR(Inw̃
a
n|Ω̃o

)|Ω̃a
−∇Inw̃a

n‖L2(Ω̃a) . C(Ω̃o)‖∇Inw̃a
n‖L2(Ω̃o),

which further leads to

‖∇Inw̃a
n‖L2(Ω̃a) . C(Ω̃o)‖∇Inw̃a

n‖L2(Ω̃o) + ‖∇R(Inw̃
a
n|Ω̃o

)‖L2(Ω̃a) ≤ 2C(Ω̃o)‖∇Inw̃a
n‖L2(Ω̃o),

a contradiction to (3.13). This establishes (3.10).

A similar argument utilizing the Scott-Zhang interpolant on Ω̃ with mesh T̃h,n yields (3.11). �

Proof of Theorem 3.1. According to Lemma 3.3 if wa and wc satisfy equations (3.2) and (3.3) then

‖∇(Iwa)‖2L2(Ωa) + ‖∇wc‖2L2(Ωc) . ‖∇(Iwa)‖2L2(Ωo) + ‖∇wc‖2L2(Ωo).

Consequently, to prove (3.4) in Theorem 3.1 it suffices to show that

‖∇(Iwa)‖2L2(Ωo) + ‖∇wc‖2L2(Ωo) . ‖∇(Iwa −wc)‖2L2(Ωo).

This result is a direct consequence of Theorem 3.2 since

‖∇(Iwa −wc)‖2L2(Ωo) = ‖∇Iwa‖2L2(Ωo) + ‖∇wc‖2L2(Ωo) − 2 (∇Iwa,∇wc)L2(Ωo)

≥ ‖∇Iwa‖2L2(Ωo) + ‖∇wc‖2L2(Ωo) − 2c‖∇Iwa‖L2(Ωo)‖∇wc‖L2(Ωo) for some 0 < c < 1 by Theorem 3.2

≥ ‖∇Iwa‖2L2(Ωo) + ‖∇wc‖2L2(Ωo) − c‖∇Iw
a‖2L2(Ωo) − c‖∇w

c‖2L2(Ωo)

= (1− c)
(
‖∇Iwa‖2L2(Ωo) + ‖∇wc‖2L2(Ωo)

)
.
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�

For clarity we break the proof Theorem 3.2 into several intermediate steps.

3.2. Proof of Theorem 3.2

The proof is by contradiction. To this end we start with the following

Conjecture 1. For all R∗core > 0, there exist domains Ωa,Ωc and a continuum mesh Th constructed according
to the guidelines of Section 1.2 with Rcore ≥ R∗core and Rc/Rcore = Rκcore and

sup
wa,wc 6=0

(∇Iwa,∇wc)

‖∇(Iwa)‖L2(Ωo)‖∇wc‖L2(Ωo)
= 1, (3.14)

where wa and wc satisfy

〈δ2Ẽa(u∞a )wa,va〉 = 0 ∀va ∈ Ua
0,

〈δ2Ẽc(ucon)wc,vc〉 = 0 ∀vc ∈ Uc
h,0.

Conjecture 1 implies the existence of sequences R∗,ncore → ∞, Rcore,n → ∞, Rc,n → ∞, Rc,n/Rcore,n → ∞, a
corresponding sequence of grids Th,n with a minimum angle at least β, and associated sequences wc

n, wa
n, such

that
(∇Iwa

n,∇wc
n)

‖∇(Iwa
n)‖L2(Ωo)‖∇wc

n‖L2(Ωo)
→ 1. (3.15)

We will show (3.15) yields a contradiction in four steps. In the first step, we will scale the lattice by
εn = 1/Rcore,n to define sequences of functions w̃a

n having a common domain of definition and w̃c
n having a

common domain of definition. This will allow us to extract weak limits of these sequences. The second step will
show these limits satisfy the homogeneous Cauchy-Born equation. In the third step, we show weak convergence
combined with satisfying atomistic and finite element equations implies the limit and inner product commute.
This will yield a contradiction in the final, fourth step of the proof.

Step 1:

Recall that we use the tilde accent for objects on the scaled domains. Let In be the piecewise interpolant
onto the lattice L̃n, and normalize w̃a

n and w̃c
n to functions w̄a

n and w̄c
n such that

‖∇(Inw̄
a
n)‖L2(Ω̃o) = 1, and ‖∇w̄c

n‖L2(Ω̃o) = 1. (3.16)

Due to this property and our hypothesis (3.15), we have that

(∇Inw̄a
n,∇w̄c

n)L2(Ω̃o) → 1. (3.17)

Moreover, ∇Inw̄a
n is a bounded sequence in L2(Ω̃a) since

‖∇Inw̄a
n‖L2(Ω̃a) = ‖∇Inw̃a

n‖L2(Ω̃a)/‖∇Inw̃
a
n‖L2(Ω̃o) . ‖∇Inw̃

a
n‖L2(Ω̃o)/‖∇Inw̃

a
n‖L2(Ω̃o) = 1,

after using the scaled version of Lemma 3.3. Similarly, ∇w̄c
n is bounded in L2(Ω̃c). Meanwhile, w̄a

n and w̄c
n will

still satisfy the variational equalities (3.7) and (3.9) by linearity.

For each n, we let Inw̄
a
n be the element in the equivalence class of w̄a

n with mean value 0 over Ω̃a. The

resulting sequence is bounded in H1(Ω̃a) and so it has a weakly convergent subsequence, which we denote again
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by Inw̄
a
n. Let w̄a

0 ∈ H1(Ω̃a) be the weak limit. By the compactness of the embedding H1(Ω̃a) ⊂ L2(Ω̃a) it

follows that Inw̄
a
n → w̄a

0 in L2(Ω̃a). Similarly, the functions w̄c
n form a bounded sequence on the Hilbert space,

H1(Ω̃c) :=
{
uc ∈ H1

loc(Ω̃c) : ∇uc ∈ L2(Ω̃c)
}
\Rd. (3.18)

Thus, we can extract a weakly convergent subsequence, still denoted by w̄c
n, with limit w̄c

0 ∈ H1(Ω̃c), i.e,

w̄c
n ⇀ w̄c

0 in H1(Ω̃c). This implies ∇w̄c
0 ⇀ ∇w̄c

0 in L2(Ω̃c).

We call a continuum mesh fully resolved if T ∈ T̃h,n with T ◦ ∩ Ω̃o,ex 6= ∅ implies T ∈ T̃a,n and vice-versa. For
the remainder of the proof we shall assume that the finite element mesh is fully resolved beyond the overlap
region Ωo. We recall that Ωa,n = ψaΩcore,n, Ω̃a = 1

Rcore,n
Ωa,n, and Ω̃o := 1

Rcore,n
Ωo,n. Define Ω̃o,ex by

Ω̃o,ex := εn(2ψaΩcore,n\Ωcore,n).

The purpose of Ω̃o,ex is to have a domain of definition common to all continuum elements which extends slightly

beyond Ω̃o.
Let w̄c

n and w̄c
0 be equivalence class elements having zero mean over Ω̃o,ex. Then w̄c

n is bounded in H1(Ω̃o,ex)

and converges weakly to some w̄c ∈ H1(Ω̃o,ex). But since the restriction operator from L2(Ω̃c) to L2(Ω̃o,ex) is

continuous with respect to the strong topology and hence the weak topology, we must have ∇w̄ = ∇w̄c
0 on Ω̃o,ex

so the two functions differ a.e by a constant on Ω̃o,ex. Since both w̄c
0 and w̄c have mean value 0 over Ω̃o,ex, the

two functions are in fact equal on Ω̃o,ex. Thus w̄c
n converges weakly to w̄c

0 in H1(Ω̃o,ex). The strong convergence

w̄c
n → w̄c

0 in L2(Ω̃o,ex) follows from the compactness of the embedding H1(Ω̃o,ex) ↪→ L2(Ω̃o,ex).
In summary, we have established the following result.

Lemma 3.4. There exist sequences w̄a
n ∈ H1(Ω̃a) and w̄cn ∈ L2

loc(Ω̃c) and with ∇w̄c
n ∈ L2(Ω̃c) which satisfy the

variational equalities (3.7) and (3.9) such that

Inw̄
a
n ⇀ w̄a

0 in H1(Ω̃a), Inw̄
a
n → w̄a

0 in L2(Ω̃a), (3.19)

∇w̄c
n ⇀ ∇w̄c

0 in L2(Ω̃c), w̄c
n ⇀ w̄c

0 in H1(Ω̃o,ex), w̄c
n → w̄c

0 in L2(Ω̃o,ex). (3.20)

Step 2:

Theorem 3.5. The functions w̄a
0 and w̄c

0 satisfy the linear homogeneous Cauchy-Born elasticity equations∫
Ω̃a

(C : ∇w̄a
0) : ∇v = 0 ∀v ∈ H1

0 (Ω̃a) (3.21)∫
Ω̃c

(C : ∇w̄c
0) : ∇v = 0 ∀v ∈ H1

0 (Ω̃c). (3.22)

We break the proof into several lemmas. We start with the atomistic case (3.21) where special care must be
exercised near the defect at the origin.

Lemma 3.6. Let Ñ be any neighborhood of the origin with Ñ ⊂ Ω̃a and set Ω̃′ := Ω̃a\Ñ . Then w̄a
0 satisfies∫

Ω̃′
(C : ∇w̄a

0) : ∇v = 0 ∀v ∈ H1
0

(
Ω̃′
)
. (3.23)

The key result in proving Lemma 3.6 is the auxiliary Lemma 3.7.

Lemma 3.7. Let Ω be a bounded quasiconvex region of Rd satisfying the assumptions of Theorem A.1 with
Ω1 ⊂⊂ Ω. Set Ln,1 = Ω1 ∩ Ln, and suppose vn is piecewise linear with respect to Ln and vn ⇀ v0 in H1(Ω).
For r ∈ R, ĪnDεnrvn ⇀ ∇rv0 in L2(Ω1).
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Proof of Lemma 3.7. We prove the Lemma for v0 = 0 and then reduce the general case v0 6= 0 to this setting.
Case 1 (v0 = 0). Take ϕ ∈ C∞0 (Ω1), and note since vn ⇀ 0 in H1, vn → 0 strongly in L2. Then

lim sup
n→∞

∣∣(ĪnDεnrvn, ϕ)L2(Ω1)

∣∣
= lim sup

n→∞

∣∣∣∣ ∫
Ω1

ĪnDεnrvn(x)ϕ(x) dx

∣∣∣∣ = lim sup
n→∞

∣∣∣∣ ∑
ξ∈Ω1

∫
ςξ∩Ω1

ĪnDεnrvn(x)ϕ(x) dx

∣∣∣∣
= lim sup

n→∞

∣∣∣∣ ∑
ξ∈Ω1

∫
ςξ∩Ω1

Dεnrvn(ξ)(ϕ(ξ) +∇ϕ(ξ)τξ,x) dx

∣∣∣∣ for τξ,x ∈ conv(ξ, x).

≤ lim sup
n→∞

∣∣∣∣ ∑
ξ∈Ω1

Dεnrvn(ξ)ϕ(ξ)vol (ςξ ∩ Ω1)

∣∣∣∣︸ ︷︷ ︸
T1

+ lim sup
n→∞

∣∣∣∣ ∑
ξ∈Ω1

∫
ςξ∩Ω1

Dεnrvn(ξ)∇ϕ(ξ)τξ,x dx

∣∣∣∣
︸ ︷︷ ︸

T2

.

(3.24)

We first estimate T2 by noting

T2 ≤
∑
ξ∈Ω1

∫
ςξ∩Ω1

|Dεnrvn(ξ)||∇ϕ(ξ)τξ,x| dx

≤
∑
ξ∈Ω1

( ∫
ςξ∩Ω1

|Dεnrvn(ξ)|2 dx
)1/2( ∫

ςξ∩Ω1

|∇ϕ(ξ)τξ,x|2 dx
)1/2

≤
( ∑
ξ∈Ω1

∫
ςξ∩Ω1

|Dεnrvn(ξ)|2 dx
)1/2( ∑

ξ∈Ω1

∫
ςξ∩Ω1

|∇ϕ(ξ)τξ,x|2 dx
)1/2

≤
( ∑
ξ∈Ω1

|Dεnrvn(ξ)|2vol (ςξ ∩ Ω1)
)1/2( ∑

ξ∈Ω1

∫
ςξ∩Ω1

‖∇ϕ‖2L∞ε2n dx
)1/2

. εn
( ∑
ξ∈Ω1

|Dεnrvn(ξ)|2vol (ςξ ∩ Ω1)
)1/2

≤ εn
( ∑
ξ∈Ω1

sup
r∈R
|Dεnrvn(ξ)|2vol (ςξ ∩ Ω1)

)1/2

. εn‖∇vn‖L2(Ω).

To estimate T1 we shift the finite difference operator onto ϕ(ξ)vol (ςξ ∩ Ω1) and recall that ϕ ∈ C∞0 (Ω1).

T1 =
∑
ξ∈Ω1

Dεnrvn(ξ)ϕ(ξ)vol (ςξ ∩ Ω1) =
∑
ξ∈Ω1

vn(ξ)D−εnr(ϕ(ξ)vol (ςξ ∩ Ω1))

=
∑
ξ∈Ω1

vn(ξ)(D−εnr(ϕ(ξ))vol (ςξ ∩ Ω1) + ϕ(ξ + εnr)D−εnrvol (ςξ ∩ Ω1))

=
∑
ξ∈Ω1

vn(ξ)D−εnr(ϕ(ξ))vol (ςξ ∩ Ω1)

≤
( ∑
ξ∈Ω1

|vn(ξ)|2vol (ςξ ∩ Ω1)
)1/2( ∑

ξ∈Ω1

|D−εnrϕ(ξ)|2vol (ςξ ∩ Ω1)
)1/2

. ‖Īnvn‖L2(Ω1)‖∇Inϕ‖L2(Ω1). (3.25)

Consider a micro-simplex T of Ln with nodes N (T ) belonging to cell ςξ and a a reference simplex T̂ with

nodes N (T̂ ). If f̂ is the pullback of a function f on T , then

‖Īnvn‖L2(T ) = |T |1/2 · |vn(ξ)| ≤ |T |1/2 sup
ζ∈N (T )

|vn(ζ)| = |T |1/2 sup
ζ̂∈N (T̂ )

|v̂n(ζ̂)| . |T |1/2‖v̂n‖L2(T̂ ) = ‖vn‖L2(T )
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Summing over all elements gives

‖Īnvn‖L2(Ω1) ≤ ‖vn‖L2(Ω),

and using this in (3.25) yields

T1 . ‖vn‖L2(Ω)‖∇Inϕ‖L2(Ω1). (3.26)

Because vn converges weakly to 0 in H1(Ω), vn converges strongly to 0 in L2(Ω). Moreover, because ϕ is
smooth, ‖∇Inϕ‖L2(Ω1) converges to ‖∇ϕ‖L2(Ω1). Employing (3.25) and (3.26) in (3.24) shows

lim sup
n→∞

∣∣(ĪnDεnrvn, ϕ)L2(Ω1)

∣∣ = 0.

Case 2 (v0 6= 0). We reduce this case to the previous one. Let ηR be a standard mollifier on a ball of radius
R, and define

v0,R(x) := (ηR ∗ v0)(x) =

∫
Ω

ηR(x− y)v0(y)dy,

for x in ΩR := {x ∈ Ω : dist(x, ∂Ω) > R}. From standard properties of mollifiers, it follows that

lim
R→0
∇v0,R = ∇v0 in H1

loc(Ω). (3.27)

Moreover, since v0,R is smooth, for any fixed R,

lim
n→∞

Inv0,R → v0,R inH1
loc(Ω) (R > 0). (3.28)

Now fix Ω2 such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω. For each integer m > 0, set αm := 1
m and define Rαm by requiring

‖∇v0,Rαm
−∇v0‖H1(Ω2) ≤ αm/2.

By (3.28), for each integer m (or index αm = 1
m ), there exists an integer Nαm such that

‖∇Inv0,Rαm
−∇v0,Rαm

‖H1(Ω2) ≤ αm/2 ∀n ≥ Nαm .

In particular,

‖∇INαm v0,Rαm
−∇v0,Rαm

‖H1(Ω2) ≤ αm/2.

Thus

‖∇INαm v0,Rαm
−∇v0‖H1(Ω2) ≤ ‖∇INαm v0,Rαm

−∇v0,Rαm
‖H1(Ω2) +‖∇v0,Rαm

−∇v0‖H1(Ω2) ≤ αm → 0. (3.29)
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Next note that v0,R is smooth so Dεnrv0,R → ∇rv0,R uniformly on compact subsets of Ω and hence in
H1

loc(Ω). Furthermore,

‖ĪnDεnrv0,R −Dεnrv0,R‖2L2(Ω2) =

∫
Ω2

|ĪnDεnrv0,R −Dεnrv0,R|2 dx

=
∑
ξ∈Ω2

∫
ςξ∩Ω2

|Dεnrv0,R(ξ)−Dεnrv0,R(x)|2 dx

=
∑
ξ∈Ω2

∫
ςξ∩Ω2

|Dεnrv0,R(ξ)−Dεnrv0,R(ξ) +Dεnr∇v0,R(ξ)(τξ,x)|2 dx for τξ,x ∈ conv(ξ, x).

≤ ε2n
∑
ξ∈Ω2

∫
ςξ∩Ω2

|Dεnr∇v0,R(ξ)|2 dx . ε2n‖∇2v0,R‖2L2(Ω2) → 0.

Thus, as n→∞, we have that

‖ĪnDεnrv0,R −∇rv0,R‖L2(Ω2) ≤ ‖ĪnDεnrv0,R −Dεnrv0,R‖L2(Ω2) + ‖Dεnrv0,R −∇rv0,R‖L2(Ω2) → 0. (3.30)

As before, we may assume

‖ĪnDεnrv0,Rαm
−∇rv0,Rαm

‖L2(Ω2) ≤ αm/2 ∀ n ≥ Nαm .

In particular,

‖ĪNαmDεNαm r
v0,Rαm

−∇rv0,Rαm
‖L2(Ω2) ≤ αm/2.

Therefore

‖ĪNαmDεNαm r
v0,Rαm

−∇rv0‖L2(Ω2) ≤

‖ĪNαmDεNαm r
v0,Rαm

−∇rv0,Rαm
‖L2(Ω2) + ‖∇rv0,Rαm

−∇rv0‖L2(Ω2) ≤ αm → 0.
(3.31)

Next let v̂m := vNαm − v0,Rαm
. By assumption, vNαm converges weakly to ∇v0. From (3.29), we see

∇INαm v0,Rαm converges strongly, whence weakly, to ∇v0 on Ω2. Consequently, ∇INαm v̂m converges weakly to

0 on Ω2. From case (1), ĪNαmDεNαm r
v̂m ⇀ 0 in L2(Ω1). But ĪNαmDεNαm r

v0,Rαm
→ ∇rv0 by (3.31) implying

ĪNαmDεNαm r
v0 ⇀ ∇rv0. Since this argument can be applied to any subsequence of ĪnDεnrvn, by the Urysohn

property [41], we have ĪnDεnrvn ⇀ ∇rv0 in L2(Ω1). �

Proof of Lemma 3.6. First, notice that it is enough to test (3.23) with v ∈ C∞0 (Ω̃a \ Ñ), i.e., for supp(v) ⊂⊂ Ω̃a,

0 /∈ supp(v). Since v has compact support inside Ω̃a \ Ñ , Dεnρv(ξ) vanishes on L̃a,n\L̃◦◦a,n for all n large enough
and ρ ∈ R. We may therefore rewrite (3.7) with w̄a

n using the integral formulation introduced in (3.8)

0 =

∫
Ω̃a

ĪnV
′′
ξ (εnDεnũ

∞
a,n) : ĪnDεnw̄

a
n : ĪnDεnv dx. (3.32)

We have that ∇w̄a
n ⇀ ∇w̄a

0 on Ω̃a. Taking Ω1 with supp ⊂⊂ Ω1 ⊂⊂ Ω̃a, from Lemma 3.7 it follows that

ĪnDεnrw̄
a
n ⇀ (∇rw̄a

0) on Ω1 for all r ∈ R. (3.33)
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Because v is smooth, (3.30) implies

ĪnDεnrv
a → (∇rv) for all r ∈ R. (3.34)

According to Assumption D there exists a local minimum u∞ of Ea such that

|∇Iu∞(ξ)| . |ξ|−d for ξ /∈ Ωcore. (3.35)

After scaling the lattice by εn we get a sequence of global solutions ũ∞n (ξ) = u∞(ξ/εn) for ξ ∈ L̃n. Thus, for

x 6= 0 and large enough n there holds x /∈ εnΩcore = Ω̃core,n. As a result, since d > 1 it follows that

|∇(Inũ
∞
n (x))| = 1

εn
|(∇Inu∞n )(x/εn)| . 1

εn
|x/εn|−d = εd−1

n |x|−d → 0 (3.36)

uniformly as εn → 0. This also implies

|εnĪnDεnũ
∞
a,n(x)| → 0 uniformly as εn → 0 on Ω̃a\Ñ ;

whence

ĪnV
′′(εnDεnũ

∞
a,n(x)) = V ′′(εnĪnDεnũ

∞
a,n(x))→ 0 uniformly as εn → 0 on Ω̃a\Ñ .

Hence, taking the limit of (3.32), and using (3.33), (3.34), and the fact that the “dual pairing” (:) of a weakly
convergent and a strongly convergent sequence converges to the dual pairing of the limits, we obtain

0 = lim
n→∞

∫
Ω̃a

ĪnV
′′(εnDεnũ

∞
a ) : ĪnDεnw̄

a
n : ĪnDεnv dx

= lim
n→∞

∫
Ω̃a

ĪnV
′′(εnDεnũ

∞
a ) : ĪnDεnv : ĪnDεnw̄

a
n dx

=

∫
Ω̃a

V ′′(0) :∇Rw̄a
0 : ∇Rv dx =

∫
Ω̃a

C :∇w̄a
0 : ∇v dx.

�

Proof of Theorem 3.5. Our first task is to prove (3.21). By density, it suffices to prove the theorem for v ∈
C∞0 (Ω̃a). Let ηR be the standard mollifier defined by ηR(x) = 1

Rd
η(x/R) Let

χR =

{
1 if |x| < 2R

0 if |x| ≥ 2R,

be the indicator function of BR, and set

ϕR(x) := (ηR ∗ χR)(x)

so that it is a smooth bump function. Recall that ϕR(x) is of class C∞ and satisfies

0 ≤ ϕR(x) ≤ 1, and

{
ϕR(x) = 1 for |x| < R,

ϕR(x) = 0 for |x| ≥ 3R,
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Thus, v − ϕRv is smooth and vanishes on BR(0). By Theorem 3.6,

0 =

∫
Ω̃a\BR(0)

C : ∇w̄a
0 : ∇(v − ϕRv) =

∫
Ω̃a

C : ∇w̄a
0 : ∇(v − ϕRv)

=

∫
Ω̃a

C : ∇w̄a
0 : ∇v −

∫
Ω̃a

C : ∇w̄a
0 : ∇(ϕRv) =

∫
Ω̃a

C : ∇w̄a
0 : ∇v −

∫
B3R(0)

C : ∇w̄a
0 : ∇(ϕRv).

This implies ∫
Ω̃a

C : ∇w̄a
0 : ∇v =

∫
B3R(0)

C : ∇w̄a
0 : ∇(ϕRv). (3.37)

Also note ∣∣∣ ∫
B3R(0)

C : ∇w̄a
0 : ∇(ϕRv)

∣∣∣ ≤ ‖C : ∇w̄a
0‖L2(B3R(0))‖∇(ϕRv)‖L2(B3R(0)). (3.38)

Moreover,

‖∇(ϕRv)‖L2(B3R(0)) ≤ ‖ϕR∇v‖L2(B3R(0)) +
∥∥v∇ϕ>R∥∥L2(B3R(0))

≤ ‖∇v‖L2(B3R(0)) + ‖v‖L2(B3R(0))‖∇ϕR‖L2(B3R(0)).
(3.39)

Furthermore,

‖∇ϕR‖2L2(B3R(0)) =

d∑
i=1

∫
L2(B3R(0))

∣∣∂ϕR
∂xi

∣∣2 dx =

d∑
i=1

∫
L2(B3R(0))

∣∣∂ηR
∂xi
∗ χR

∣∣2 dx
=

d∑
i=1

∥∥∂ηR
∂xi
∗ χR

∥∥2

L2(B3R(0))
≤

d∑
i=1

∥∥∂ηR
∂xi

∥∥2

L1(B3R(0))
‖χR‖2L2(B3R(0)) by Youngs’s Inequality

=

d∑
i=1

( ∫
B3R(0)

∣∣∂ηR
∂xi

dx
∣∣)2

·
( ∫
B3R(0)

|χR|2 dx
)
≤

d∑
i=1

( ∫
B3R(0)

∣∣ 1
Rd+1

∂η
∂xi

(x/R)
∣∣ dx)2

·
( ∫
B3R(0)

1 dx
)

=

d∑
i=1

( ∫
B3(0)

∣∣ 1
R
∂η
∂xi

(x)
∣∣ dx)2

·
( ∫
B3R(0)

1dx
)
. Rd−2.

Thus for d ≥ 3, ‖∇ϕR‖L2(B3R(0)) → 0 and for d = 2, ‖∇ϕR‖L2(B3R(0)) is uniformly bounded in R. Since v is
fixed, ‖v‖L2(B3R(0)) → 0 as R→ 0 and taking R→ 0 in (3.38) and using (3.37) and (3.39) shows∣∣∣ ∫

Ω̃a

C : ∇w̄a
0 : ∇v

∣∣∣ = lim
R→0

∣∣∣ ∫
B3R(0)

C : ∇w̄a
0 : ∇(ϕRv)

∣∣∣
≤ lim

R→0
‖C : ∇w̄a

0‖L2(B3R(0))

(
‖∇v‖L2(B3R(0)) + ‖v‖L2(B3R(0))‖∇ϕR‖L2(B3R(0))

)
= 0

(3.40)

so long as d ≥ 2, which proves (3.21). The d = 1 is special since the atomistic region becomes disconnected
when a neighborhood of the origin is deleted. To remedy this, additional constraints for each connected overlap
region are required so the above arguments need to be carried out twice.

Next, we establish the continuum analogue for Theorem 3.5: the function w̄c
0 satisfies∫

Ω̃c

C : ∇w̄c
0 : ∇v = 0 ∀ v ∈ H1

0 (Ω̃c). (3.41)
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We prove (3.41) for v ∈ C∞0 (Ω̃c); the general case follows by density. Interpolation of v on each finite element

grid T̃h,n = εnTh,n yields a sequence, vc
n, which converges to v in H1

loc(Ω̃c). For large enough n (once Ω̃c,n

contains the support of v), we have

0 =

∫
Ω̃c,n

W ′′(εn∇ũcon
n ) : ∇w̄c

n : ∇vc
n dx =

∫
supp(v)

W ′′(εn∇ũcon
n ) : ∇w̄c

n : ∇vc
n dx. (3.42)

Summarizing, vc
n converges to v strongly on H1(supp(v)) and w̄c

n ⇀ w̄c
0. Moreover

0 = lim
n→∞

∫
supp(v)

W ′′(εn∇ũcon
n ) : ∇w̄c

n : ∇vc
n dx

= lim
n→∞

∫
supp(v)

(W ′′(εn∇ũcon
n )−W ′′(εn∇Inũ∞n )) : ∇w̄c

n : ∇vc
n dx

+ lim
n→∞

∫
supp(v)

W ′′(εn∇Inũ∞n ) : ∇w̄c
n : ∇vc

n dx

. lim
n→∞

εn‖∇ũcon
n −∇Inũ∞n ‖L2(Ω̃c,n)‖∇w̄

c
n‖L2(Ω̃c,n)‖∇v

c
n‖L2(Ω̃c,n)

+ lim
n→∞

∫
supp(v)

W ′′(εn∇Inũ∞n ) : ∇w̄c
n : ∇vc

n dx

= lim
n→∞

∫
supp(v)

W ′′(εn∇Inũ∞n ) : ∇w̄c
n : ∇vc

n dx

(3.43)

Reasoning as in the atomistic case, W ′′(εn∇Inũ∞n ) converges uniformly to W ′′(0). Thus, we have a duality
pairing of a strongly and weakly convergent sequence, which converges to the pairing of the limits:

0 = lim
n→∞

∫
supp(v)

W ′′(εn∇Inũ∞n ) : ∇w̄c
n : ∇vc

n dx =

∫
supp(v)

W ′′(0) : ∇w̄c
0 : ∇v dx

�

Step 3:

With the convergence properties of Step 1 and limiting equations of Step 2, we shall prove

Theorem 3.8. Let w̄a
n and ∇w̄c

n be as defined in Step 1. Then

(∇Iw̄a
n,∇w̄c

n)L2(Ω̃o) → (∇w̄a
0,∇w̄c

0)L2(Ω̃o) . (3.44)

Proof of Theorem 3.8. Split Ω̃o into an inner part, A1, and an outer part, A2 such that Ω̃o = A1 ∪ A2 and A1

and A2 have disjoint interiors. Specifically, let bxc be the greatest integer less than x and set

A1 := (bψa/2cΩ̃core)\Ω̃core

A2 := Ω̃o\A1.

From (3.46) of Lemma 3.9 below, we see that

‖∇ (w̄c
n − w̄c

0) ‖L2(A2) → 0.
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and (3.57) of Lemma 3.10 below gives,

‖∇ (Inw̄
a
n − w̄a

0) ‖L2(A1) → 0.

Using these two results along with the weak convergence properties of Lemma 3.4—namely, w̄c
n ⇀ w̄c

0 on A1

and w̄a
n ⇀ w̄a

0 on A2—yields

(∇Inw̄a
n,∇w̄c

n)L2(Ω̃o) = (∇Inw̄a
n,∇w̄c

n)L2(A1) + (∇Inw̄a
n,∇w̄c

n)L2(A2)

→ (∇w̄a
0,∇w̄c

0)L2(A1) + (∇w̄a
0,∇w̄c

0)L2(A2) = (∇w̄a
0,∇w̄c

0)L2(Ω̃o) .
(3.45)

�

In the preceding, we have made reference to the following lemma, which we now prove.

Lemma 3.9. Let w̄c
n and w̄c

0 be as defined in Lemma 3.4. Then

‖∇ (w̄c
n − w̄c

0) ‖L2(A2) → 0. (3.46)

Proof. Recall that each element of the continuum sequence satisfies a variational equality of the form

∫
Ω̃c,n

W ′′(εn∇ũcon
n ) : ∇w̄c

n : ∇vc
n dx = 0 ∀ vc ∈ Ũc

h,0,n. (3.47)

According to Theorem 3.6 the function w̄c
0 satisfies a variational equality of the form

∫
Ω̃c

W ′′(0) : w̄c
0 : vc

0 dx = 0 ∀ vc
0 ∈ H1

0 (Ω̃c), (3.48)

which corresponds to a linear elliptic system. From elliptic regularity, w̄c
0 belongs to H2

loc(Ω̃c). Recalling that

mesh is fully resolved on Ω̃o,ex, it follows that

ŵc
n := Inw̄

c
0 → w̄c

0 in H1(A2). (3.49)

The goal is now to show

‖∇ (ŵc
n − w̄c

n) ‖L2(A2) → 0, (3.50)

which will further imply (3.46).
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Let η be a smooth bump function with compact support in Ω̃o,ex and equal to 1 on A2. Thus η2(ŵc
n − w̄c

n)

can be extended by 0 to get a sequence of functions well defined on all of Ω̃c. Also set zn := ŵc
n − w̄c

n. We have

∫
A2

|∇zn|2 dx ≤
∫

Ω̃o,ex

|∇ (ηzn)|2 dx .
∫

Ω̃o,ex

W ′′(εnũ
con
n ) : ∇ (ηzn) : ∇ (ηzn) dx

=

∫
Ω̃o,ex

W ′′(εnũ
con
n ) : η∇zn : η∇zn + 2W ′′(εnũ

con
n ) : η∇zn :

(
zn∇η>

)
dx

+

∫
Ω̃o,ex

W ′′(εnũ
con
n ) :

(
zn∇η>

)
:
(
zn∇η>

)
dx

=

∫
Ω̃o,ex

W ′′(εnũ
con
n ) : ∇ŵc

n : η2∇zn + 2W ′′(εnũ
con
n ) : ∇ŵc

n :
(
ηzn∇η>

)
dx

−
∫

Ω̃o,ex

W ′′(εnũ
con
n ) : ∇w̄c

n : η2∇zn + 2W ′′(εnũ
con
n ) : ∇w̄c

n :
(
ηzn∇η>

)
dx

+

∫
Ω̃o,ex

W ′′(εnũ
con
n ) :

(
zn∇η>

)
:
(
zn∇η>

)
dx.

(3.51)

Since In
(
η2zn

)
∈ Ũc

h,0,n has support in Ω̃o,ex, using (3.47) we can write the second integral above as

∫
Ω̃o,ex

W ′′(εnũ
con
n ) : ∇w̄c

n : η2∇zn + 2W ′′(εnũ
con
n ) : ∇w̄c

n : ηzn∇η> dx

=

∫
Ω̃o,ex

W ′′(εnũ
con
n ) : ∇w̄c

n : η2∇zn + 2W ′′(εnũ
con
n ) : ∇w̄c

n : ηzn∇η> dx

−
∫

Ω̃o,ex

W ′′(εnũ
con
n ) : ∇w̄c

n : ∇In
(
η2zn

)
dx

=

∫
Ω̃o,ex

W ′′(εnũ
con
n ) : ∇w̄c

n : ∇
(
η2zn − In

(
η2zn

))
dx.

(3.52)

Using this result in (3.51) produces

∫
A2

|∇zn|2 dx .
∫

Ω̃o,ex

W ′′(εnũ
con
n ) : ∇ŵc

n : η2∇zn + 2W ′′(εnũ
con
n ) : ∇ŵc

n :
(
ηzn∇η>

)
dx

−
∫

Ω̃o,ex

W ′′(εnũ
con
n ) : ∇w̄c

n : ∇
(
η2zn − In

(
η2zn

))
dx+

∫
Ω̃o,ex

W ′′(εnũ
con
n ) :

(
zn∇η>

)
:
(
zn∇η>

)
dx.

(3.53)
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Hence, ∫
A2

|∇zn|2 dx .
∫

Ω̃o,ex

W ′′(εnũ
con
n ) : ∇ηŵc

n : η∇zn dx+ ‖ηzn∇η>‖L2(supp(η))

+ ‖∇
(
η2 (zn)− In

(
η2zn

))
‖L2(Ω̃o,ex) + ‖zn∇η>‖2L2(supp(η)).

(3.54)

Since zn converges weakly to 0 in H1 and hence strongly in L2, both ‖ηzn∇η>‖L2(supp(η)) and ‖zn∇η>‖2L2(supp(η))

go to zero in (3.54). Moreover, ∇ŵc
n → ∇w̄c0 by construction and∇zn ⇀ 0 so reasoning as we did just after (3.43)∫
Ω̃o,ex

W ′′(εnũ
con
n ) : ∇ηŵc

n : η∇zn dx→ 0. (3.55)

Finally, to show
‖∇
(
η2zn − In

(
η2zn

))
‖L2(Ω̃o,ex) → 0, (3.56)

observe that η2zn − In
(
η2zn

)
vanishes outside a neighborhood Nδ ⊂⊂ Ω̃o,ex of supp(η). Then

‖∇
(
η2zn − In

(
η2zn

))
‖2L2(Nδ)

=

∫
Nδ

∣∣∇ (η2zn − In
(
η2zn

))∣∣2 dx
≤

∑
T∈Th,n
T∩Nδ 6=∅

∫
T

∣∣∇ (η2zn − In
(
η2zn

))∣∣2 dx . ∑
T∈Th,n
T∩Nδ 6=∅

|T |2‖∇2
(
η2zn

)
‖2L2(T ),

where the last line follows from the Bramble-Hilbert lemma and scaling. Because zn is piecewise linear its
second derivatives vanish on all T . Using the uniform boundedness of η and its derivatives then yields

‖∇2(η2zn)‖2L2(T ) =

∫
T

∣∣∇2(η2zn)
∣∣2 dx . ∫

T

|zn|2 dx+

∫
T

|∇(zn)|2 dx.

Choose N ′δ such that
⋃

T∈Th,n
T∩Nδ 6=∅

⊂ N ′δ ⊂⊂ Ω̃o,ex. Then

‖∇
(
η2zn − In

(
η2zn

))
‖2L2(Nδ)

. max
T∈Th,n
T∩Nδ 6=∅

|T |2
( ∑
T∈Th,n
T∩Nδ 6=∅

∫
T

|zn|2 + |∇zn|2 dx
)

. max
T∈Th,n
T∩Nδ 6=∅

|εn|2
(
‖zn‖L2(N ′δ)

+ ‖∇zn‖L2(N ′δ)

)
.

Now note that ‖zn‖L2(N ′δ)
= ‖ŵc

n− w̄c
n‖L2(N ′δ)

→ 0 by construction of ŵc
n while ‖∇zn‖L2(N ′δ)

is bounded since

zn is weakly convergent in H1(N ′δ). It follows that if the maximum element size, which is of order εn, goes to
0, then we obtain (3.56). Inserting (3.55) and (3.56) in (3.54) yields (3.50), which in turn implies (3.46).

�

Our second task is to prove the atomistic version of Lemma 3.9 over A1.

Lemma 3.10. Let w̄a
n and w̄a

0 be as defined in Lemma 3.4. Then

‖∇ (Inw̄
a
n − w̄a

0) ‖L2(A1) → 0. (3.57)
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Proof. Consider again a sequence ŵa
n := Inw̄

a
0, which converges to w̄a

0 in H1
loc(Ω̃a). In particular, the sequence

converges strongly on A1. Take η to be a bump function adapted to A1, and recall that each w̄a
n solves a problem

0 =
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnw̄

a
n(ξ) : Dεnv

a(ξ) ∀va ∈ Ũa
0,n. (3.58)

As before, to prove (3.57) we will show that

‖∇In (ŵa
n − w̄a

n) ‖L2(A1) → 0. (3.59)

We recall that the product rule for difference quotients involves a shift operator which we denote by Tr:

Tεnρv(ξ) = v(ξ + εnρ),

Dεnρ(uv)(ξ) = (Dεnρu)v + (Tεnρu)Dεnρv,

TεnuDεnv = (TεnρuDεnρv)ρ∈R .

(3.60)

Now set yn := ŵa
n − w̄a

n and note since η2yn ∈ Ua
0,n, the product rule in (3.60) gives

0 =
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnw̄

a
n(ξ) : Dεn

(
η2(yn)

)
(ξ)

=
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnw̄

a
n(ξ) : Dεn(ηyn)Tεnη(ξ)

+
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnw̄

a
n(ξ) : ηynDεnη(ξ).

(3.61)

Thus

∫
A1

|∇Inyn|2 dx .
∫
Ω̃a

|∇In (ηyn)|2 dx . 〈δ2Ẽa(εnDεnũ
∞
a,n)Dεn(ηyn), Dεn(ηyn)〉

=
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεn(ηyn) : Dεn(ηyn)

=
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :TεnηDεn(yn) : Dεn(ηyn) +

∑
ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :ynDεn(η) : Dεn(ηyn)

(3.62)



TITLE WILL BE SET BY THE PUBLISHER 39

Next, simply substitute the definition, yn = ŵa
n − w̄a

n, into the first summand above to obtain∫
A1

|∇Inyn|2 dx .
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :TεnηDεn(ŵa

n) : Dεn(ηyn)

−
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :TεnηDεn(w̄a

n) : Dεn(ηyn)

+
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :ynDεn(η) : Dεn(ηyn)

=
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :TεnηDεn(ŵa

n) : Dεn(ηyn)

−
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnw̄

a
n(ξ) : ηynDεnη(ξ) using (3.61)

+
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :ynDεn(η) : Dεn(ηyn)

.
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnŵ

a
n(ξ) : Dεn(ηyn)Tεnη(ξ)

+ ‖ηynDεnη‖`2εn (L̃◦◦a,n) + ‖ynDεn(η)‖`2εn (L̃◦◦a,n)

.
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnŵ

a
n(ξ) : Dεn(ηyn)Tεnη(ξ) + ‖yn‖`2εn (supp(ĪnDεnη))

.
∑

ξ∈L̃◦◦a,n

V ′′ξ (εnDεnũ
∞
a,n(ξ)) :Dεnŵ

a
n(ξ) : Dεn(ηyn)Tεnη(ξ) + ‖Inyn‖L2(supp(ĪnDεnη)),

(3.63)

Since Inyn → 0 on compact subsets of Ω̃a and because a compact subset of Ω̃a—say X—can be chosen so that
supp(ĪnDεnη) ⊂ X for large enough n, the last term tends to 0. To show that the first term also goes to 0, we
use the integral formulation (3.8):∑

ξ∈L̃◦◦a,n

V ′′(εnDεnũ
∞
a,n(ξ)) :Dεnŵ

a
n(ξ) : Dεn(ηyn)Tεnη(ξ)

=

∫
Ω̃a

ĪnV
′′(εnDεnũ

∞
a,n(ξ)) : ĪnDεnŵ

a
n : Īn(Dεn (η(yn))Tεnη) dx

=

∫
Ω̃a

ĪnV
′′(εnDεnũ

∞
a,n(ξ)) : ĪnDεnŵ

a
n : Īn(Dεn(yn)TεnηTεnη) dx

+

∫
Ω̃a

ĪnV
′′(εnDεnũ

∞
a,n(ξ)) : ĪnDεnŵ

a
n : Īn(ynDεn(η)Tεnη) dx

.
∫

Ω̃a

ĪnV
′′(εnDεnũ

∞
a,n(ξ)) : ĪnDεnŵ

a
n : Īn(Dεn(yn)TεnηTεnη) dx+ ‖Īnyn‖L2(supp(ĪnDεnη))

.
∫

Ω̃a

ĪnV
′′(εnDεnũ

∞
a,n(ξ)) : Īn(Dεnŵ

a
nTεnηTεnη) : Īn(Dεn(yn)) dx+ ‖Inyn‖L2(supp(ĪnDεnη))

(3.64)

The last term again goes to zero since Inyn → 0 in L2 on compact subsets of Ω̃a, and supp(ĪnDεnη)
lies in such a subset for large enough n. To show that the remaining integral also tends to 0 we use that
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ĪnDεn (ŵa
n − w̄a

n) = ĪnDεnyn converges weakly to 0 on supp(Tη) by Lemma 3.7, and that

ĪnV
′′(εnDεnũ

∞
a,n(ξ)),

converges uniformly toW ′′(0) on supp(Tεnη), according to Lemma 3.6. Meanwhile, Tεη converges uniformly to η,
and by replacing weak convergence with strong convergence in Lemma 3.7 and modifying the proof accordingly,
we see that ĪnDεnŵ

a
n converges strongly to ∇w̄a

0 on supp(Tη). The integral remaining in (3.64) is then a duality
pairing of a strongly convergent and a weakly convergent sequence, which converges to the pairing of the limits.
That is,∫

Ω̃a

ĪnV
′′(εnDεnũ

∞
a,n(ξ)) : Īn(Dεnŵ

a
nTεnηTεnη) : Īn(Dεn(yn)) dx→

∫
Ω̃a

C :η2∇w̄a
0 : 0 dx = 0. (3.65)

�

Step 4:

Proof of Theorem 3.2. We assume the existence of a sequence satisfying (3.15), which yields sequences of nor-
malized functions w̄a

n and w̄c
n possessing the properties of Lemma 3.4. Combining (3.45) with (3.17) shows

(∇w̄a
0,∇w̄c

0)L2(Ω̃o) = 1. (3.66)

Since w̄a
0 and w̄c

0 have seminorm equal to 1 over Ω̃o, we see that

(∇w̄a
0,∇w̄c

0)L2(Ω̃o) = ‖∇w̄a
0‖L2(Ω̃o)‖∇w̄

c
0‖L2(Ω̃o)

Hence ∇w̄a
0 = α∇w̄c

0 on Ω̃o for some real number α implying

1 = (α∇w̄c
0,∇w̄c

0)L2(Ω̃o) = α‖∇w̄c
0‖2L2(Ω̃o)

= α.

Thus ∇w̄a
0 and ∇w̄c

0 are equal on Ω̃o. We can therefore define an H1 function by

w̄0 =

{
w̄a

0 on Ω̃a

w̄c
0 on Ω̃c

,

which is a global solution to the linear homogeneous Cauchy-Born equation so that ∇w̄0 = 0. We conclude that
(∇w̄a

0,∇w̄c
0)L2(Ω̃o) = 0, which contradicts (3.66). �

4. Conclusion

Appendix A. Extension Theorems

In this appendix, we recall Stein’s extension theorem [39] for domains with minimally smooth boundary and
a modified extension operator that preserves the H1 seminorm due to Burenkov [5].

Theorem A.1 (Stein’s Extension Theorem). Let U be a connected, open set for which there exists an ε > 0,
integers N,M > 0, and a sequence of open sets U1, U2, . . . satisfying

(1) For each x ∈ ∂U , Bε(x) ⊂ Ui for some i,
(2) The intersection of more than N of the sets Ui is empty,
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(3) For each Ui, there exists a Lipschitz continuous function ϕi and domains

Di =
{

(x′, y) ∈ Rn+1 : y > ϕi(x
′), |ϕi(x′1)− ϕi(x′2)| ≤M |x′1 − x′2|

}
such that

Ui ∩ U = Ui ∩Di.

Then there exists a bounded linear extension operator E : H1(U) → H1(Rd). The bound of the extension
depends upon the domain U through N,M , and ε.

Theorem A.1 can be used to prove an extension theorem with preservation of seminorm due to Burenkov [5]:

Theorem A.2 (Extension with preservation of seminorm). Let U be a connected, bounded open set for which
there exists a bounded linear extension operator E : H1(U) → H1 (Rn) and a bounded projection operator P
from H1(U) onto the constants with the property that for all f ∈ H1(U),

‖f − Pf‖L2(U) . c(U)‖f‖H1(U).

Then the operator defined by

R = P + E(Id− P )

is a linear extension operator with the property that

‖∇Rf‖L2(U) ≤ ‖E‖ (c(U) + 1) ‖∇f‖L2(U).

Remark A.3. We can set E to be Stein’s extension operator [39] and choose

Pu =
1

m(U)

∫
U

u(x) dx.

In this case c(U) is the Poincare constant for the domain U .
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