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Abstract. We formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling
method for problems with point defects. Near the defect core the method employes a potential-based
atmostic model, which enables accurate simulation of the defect. Away from the core, where site
energies become nearly independent of the lattice position, the method switches to a more efficient
continuum model. The two models are merged by minimizing the mismatch of their states on an
overlap region, subject to the atomistic and continuum force balance equations acting independently
in their domains. We prove that the optimization problem is well-posed and establish error estimates.

1991 Mathematics Subject Classification. 65N99,65G99,73510.

INTRODUCTION

Atomistic-to-continuum (AtC) coupling methods combine the accuracy of potential-based atomistic models
of solids with the efficiency of coarse-grained continuum elasticity models by using the former only in small
regions where the deformation of the material is highly variable such as near a crack tip or dislocation. The
past two decades have seen an abundance of interest in AtC methods both in the engineering community to
enable predictive simulations of crystalline materials and in the mathematical community to understand the
errors introduced by AtC approximations. Of prime importance is the use of AtC methods to model material
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defects such dislocations and interacting point defects, which play roles in determining the elastic and plastic
response of a material [34].

A prototypical AtC method consists of dividing a computational domain into atomistic and continuum
regions. A discrete system involving non-local interactions between atoms models the atomistic region whereas
a conventional continuum model such as a hyperelastic continuum mechanics, represents the material in the
continuum region. AtC methods differ chiefly in how they couple the distinct models with each roughly being
able to be categorized as either force or energy-based [21]. Energy based couplings define a hybrid energy
functional as a combination of atomistic and continuum energy functionals, and this hybrid energy functional
is then minimized over a class of admissible deformations. Force based couplings instead derive atomistic and
continuum forces from the separate energies and then equilibrate them. We refer to [19,21] for a review of many
existing AtC methods.

The primary challenge in developing energy-based methods has been the existence of “ghost forces” [19,24]
near the interface between the atomistic and continuum regions. These ghost forces may lead to uncontrollable
errors in predicted strains, and to date, no method has been implemented that completely eliminates these errors
for general many-body potentials and general interface geometry in two and three dimensions. Many force-based
methods do not suffer from the perils of ghost forces; however, for two and three dimensions establishing the
stability of these methods in the absence of an energy functional remains a difficult task.

Owing to the practical potential of AtC methods, their error analysis has recently attracted a significant
attention from mathematicians and engineers. In one dimension, this analysis is well-developed, see e.g., [19]
for a thorough review. In two and three dimensions, analytic results have been obtained for quasinonlocal
(QNL) type methods [8,26,27,29, 32, 38], and blended methods [12-14,18,43]. Sharp error estimates for the
energy-based method of [37] have only been established in two dimensions assuming pair interactions with an
additional a priori assumption on the magnitude of the true atomistic solution in [32]. The analyses of the
QNL method of [38] and its subsequent extensions [8,32] are valid for arbitrary interactions but are limited to
two dimensions and by allowing only planar interfaces [8] or corners [32] between the atomistic and continuum
domains. The work [18] has presented a force-based AtC method and established sharp error estimates in three
dimension, but it is not applicable to defects. Most recently, [14] has presented a complete analysis valid in two
and three dimensions of the blended quasicontinuum energy (BQCE) [12,20] and blended quasicontinuum force
(BQCF) [13,15] methods valid for finite-range interactions with no geometrical restrictions on the interface
between atomistic and continuum regions. A recent modification of a BQCE method was also proposed and
analyzed in [33].

The purpose of the present paper is to analyze an optimization-based AtC, introduced in [22,23], which
couches the coupling of the two models into a constrained minimization problem. Specifically, a suitable
measure of the mismatch between the atomistic and continuum states, the “mismatch energy,” is minimized over
a common overlap region, subject to the atomistic and continuum force balance equations holding in atomistic
and continuum subdomains. This differs substantially from energy AtC based methods such as [1,12,24,36,38]
which minimize a hybrid combination of atomistic and continuum energies, approximating the original atomistic
energy. Also, unlike the force-based, non-energy methods [7,13,18], we do not directly equilibrate forces but
instead employ the force balance equations as constraints in a minimization problem.

Our approach is related to non-standard optimization-based domain decomposition methods for Partial
Differential Equationa (PDEs); see e.g., [6, 10,16, 17] and the references therein. In [23], we analyzed an
optimization-based AtC formulation for a linear system with next-nearest neighbor interactions using the L2
norm of the difference between the states as a cost functional, and in [22] we formulated the approach for many
dimensions with nonlinear interactions and studied it numerically for a 1D chain of atoms interacting through
a Lennard-Jones potential.

A useful setting for studying the errors of various AtC methods, and the setting we utilize in the present
work, is a single defect embedded in an infinite lattice. A comprehensive analysis of several AtC methods has
been carried out in one dimension in [19]. In addition to the continuum error and coupling error, this setting
introduces a third error resulting from truncating the infinite domain to a finite domain in order to obtain a
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computable quantity. We provide a comprehensive analysis of the optimization-based AtC method in R? for
d > 2 in the context of a point! defect located at the origin of an infinite lattice and establish bounds on the
error of the method in terms of two parameters: the “diameter” of the defect core, Reore, and the size of the
continuum region, R..

Our results are comparable to the results for BQCF method in [14] in that the coupling error of our method
is dominated by the continuum error and truncation error. In contrast, the leading order error term established
in [14] for the BQCE method is precisely the coupling error, which can be minimized but never altogether
removed [12,14]. Our analytical results have been numerically confirmed in [22] in one dimension; however, the
analysis presented here is not directly applicable in that scenario because the continuum region is a disconnected
set in one dimension after a neighborhood of the defect core at the origin is removed.

This paper is organized as follows. We begin by describing the atomistic defect problem in an infinite domain
and formulate the associated AtC method in Section 1. In Section 2, we prove that the AtC problem has a
solution and subsequently estimate a broken norm error. These results rely on an essential norm equivalence
property established in Section 3. The norm equivalence result generalizes a 1D linear result established in [23]
and draws upon ideas from heterogeneous domain decomposition methods developed in [10].

0.1. Notation

For the convenience of the readers below we summarize the key notation used throughout the paper.

e ¢ - an element of Z? or ¢Z? for € > 0.

| -| - meaning depends on context: || is #2 norm of a vector, matrix, or higher order tensor, |T| is area
or volume of element 7T in a finite element partition, || is order of a multiindex.

|- lle2(a) - €% norm over a set A. If f : A — R is a vector valued function, || f[lez(a) = (X aca If(@)]?)
B.(y) = {x € R¢||y — x| < r} - Ball of radius r in R?

U - closure of a domain U.

U® - interior of a domain U.

conv(z,y) - convex hull of z and y.

(RHR - direct product with |R| terms.

G - a d X d matrix.

T - transpose of a matrix.

® - tensor product.

V7 - jth Frechet derivative of a function defined on R<.

0¢ - multiindex notation for derivatives.

LPU)={f:U =R [, |f(z)]Pdz < oo}

Whe(U) = {f : U — R [,,10° f(z)|P dz < oo V]a| < k}

WEP(U) = {f: U = RIf e WHP(V)VV cC U}

H*(U) =W*2(U), H}(U) = {f € H*(U)|Trace(f) = 0ondU }.

CH(0) = {f U B a5 1))+ K 0P f<|>f<>'}
TFY

* - used to denote convolution

fU f dx - average value of f over U.

T - a finite element discretization of triangles in 2D or tetrahedra in 3D.

PL(T) - set of affine functions over a triangle or tetrahedron, 7.

PL(T) - set of piecewise affine functions with respect to the discretization 7.

Qs5(€ + (0,1)9) - set of biquintic functions over the square & + (0,1)¢ for d = 2 or triquintic functions
over the cube & + (0,1)? for d = 3.

1/2.

1 Aside from additional technicalities needed to account for differences in a suitable reference configuration and the decay of the
elastic deformation fields of a dislocation, our analysis can also include dislocations.
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1. PROBLEM FORMULATION

We consider a point defect such as a vacancy, interstitial, or impurity located at the origin on the infinite
lattice, Z¢. To formulate the AtC method, we will introduce a finite atomistic domain €, surrounding the
defect, and a finite continuum domain, )., which overlaps with €2, in €,. Restriction of the atomistic energy to
Q. and application of the Cauchy-Born strain energy on €. yield notions of restricted atomistic and continuum
energies. Minimizing the H'-(semi)norm of the mismatch between the atomistic and continuum states in €2,
subject to the Euler-Lagrange equations of these energies in 2, and 2., respectively, completes the formulation
of the AtC method.

1.1. Atomistic Model

In this paper, we will model atoms located on the integer lattice Z¢. We assume the atoms interact via a
classical interatomic potential, and the displacement of atoms from their reference configuration will be denoted
by u : Z¢ — RY. We require that atomistic energy can be written as a sum of site energies, V¢, associated to each
lattice site & € Z<. This site energy is not unique, and there is great freedom in defining it, see e.g [40]. From
the axiom of material frame indifference, V¢ is allowed to depend only upon interatomic distances. Furthermore,
we assume a finite cut-off radius in the reference configuration, rc,¢, so that Ve depends only on a subset of the
position of atoms in B, (¢). The set of atoms interacting with an arbitrary ¢ € Z¢ is given by & + R where

RC{peZ:0<|p| <reu}

Note that we measure distance in the reference configuration rather than the deformed configuration. An
example interaction range is displayed in Figure 1.

FIGURE 1. A possible interaction range with 7y = 2 in R2.

It is convenient to write differences between atoms’ displacements using finite difference operators, D,u for

p € R, defined by
Dpu(§) = u(§ + p) — u(§).
The collection of finite differences for p € R yields a stencil in (R%)®

Du(€) = (Dyu(6)) ,cr-

, which we denote by

Thus, formally, the site energy at ¢ is a mapping (RY)® +— R, which we denote by V¢(Du). The atomistic
energy is then given by
E*(u) == > Ve(Du). (1.1)
ez
We refer to [9] for a discussion of how to define Vg for various point defects such as vacancies or impurities and
the case of dislocations.
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Remark 1.1. By allowing V' to depend upon the lattice site, £, we can include both point and line defects in
the analysis. For simplicity, we state our results for the case of point defects.

Admissible states of the atomic configuration correspond to local minima of (1.1). To define the relevant
displacement spaces of lattice functions, we introduce a continuous representation of a discrete displacement
via interpolation. To that end, let 7, be a partition of Z¢ into simplices such that (i) ¢ is a node of T, if and
only if ¢ € Z¢ and (ii) for each p € Z% and each 7 € T,, p + 7 € Ta; see Figure 2.

FIGURE 2. An atomistic triangulation of Z2.

Let P'(7.) be the standard finite element space of C° piecewise linear functions with respect to 7,. The
nodal interpolant, Tu € P*(T,), of a lattice function u is defined by setting

Tu(é) = u(§) VeEezd
Using this interpolant, we define the admissible space of displacements as
Uu:.= {u:Zd—HRd:VIuELQ(Rd)}, (1.2)

and endow it with a semi-norm, ||V Iul|p2ga).
The kernel of the semi-norm is the space of constant functions, R, and elements of the associated quotient
space, U := U/R? are equivalence classes

u = {UEU:ECERd,’U*u:C}.
In order to define the interpolation operator on equivalence classes, we define the space

WhARY) = {f € Wi2(RY) : Vf € P(RY)}

oc
and its quotient space modulo constant functions,
Wh2(RY) .= W2 (RT) /R

Since the interpolation operator preserves constants Iu := {Ju:wu € u} is a well-defined equivalence class.
Consequently, the mapping I : U — W2(R?) is well-defined and |VIu|z2ga) induces a norm on U. Because
E?(u) is invariant under shifts by constants, it is also well-defined on U. As a result, we can state the atomistic
problem as

u™ = argmin £%(u), (1.3)
ueU
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where arg min represents the set of local minimizers and the superscript “oo” is used throughout to indicate
the ezact solution displacement field defined on Z?. Note that minimization over equivalence classes effectively
enforces a boundary condition? u(¢) ~ const for & — co.

We formulate and study our AtC method for approximating (1.3) under several hypotheses on the site energy
Ve. First, we assume that the defect core is concentrated at the origin, i.e., outside of this core V¢ is independent
of &. Succinctly,

Assumption A. There exists M >0 and V : (RY)R — R such that for all |¢| > M, Ve(Du) =V (Du).

Second, since £2(u) may be infinite at the reference configuration, u = 0, we should instead consider energy
differences from the homogeneous lattice, Z%. In lieu of this, without loss of generality, we ask that

Assumption B. The site energy vanishes at the reference configuration, i.e., V(0) = 0.
Finally, we will make the following assumption concerning the regularity of V.

Assumption C. The site potential Ve is C* on all of (RHR. Furthermore, for k € {1,2,3,4}, there exists Mj,
such that

0°Ve(p)| < My VE€Zl, pe RDR, |a| < k. (1.4)

Assumption C allows us to avoid technicalities associated with handling potentials that are singular at
the origin, such as the Lennard-Jones potential®. This assumption also implies that £ is four times Frechet
differentiable on the space of displacements

Uy = {u € U : supp(VIu)is compact}, (1.5)

from which it is easy to deduce the regularity of the atomistic energy.

Theorem 1.2. The atomistic energy £* can be extended by continuity to U and is four times Frechet differen-
tiable on U.

We omit the proof, which is a minor modification of the proof of Theorem 2.3 of [9].
The Euler-Lagrange equation corresponding to the local minimization problem (1.3) is

(0 (u™),v)y = 0 Yv €U,. (1.6)

We make the following assumption regarding the local minima of (1.6).

Assumption D. There exists a local minimum, u® € U, of E*(u) and a real number v, > 0 such that
%HVI’UHQH(W) < (028 (u™®)v,v) VYou € Uy. (1.7)

For point and line defects, solutions of (1.6) decay algebraically in their elastic far fields [9]. We quantify the
rates of decay using a smooth nodal interpolant of a lattice function, v, which we denote by Iv € I/Vlifo (R%).
Its existence follows from [14, Lemma 2.1], which we state below. We refer to [14] for the proof.

2This technique is also useful in establishing well-posedness results for linear elliptic systems on all of R¢ [30].
3A more realistic assumption would be to assume smoothness in region of displacements in an energy well, which unduly
complicates the analysis.
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Lemma 1.3. There ezists a unique operator I: U— C21(RY) such that for all € € 79, Tv € Qs(£ + (0,1)%),
Iv(&) = v(&), and for all multiindices |a| < 2, 0*Iv(§) = D2™v(&) where D™ is defined by

D™ %(€) := (&),
n 1
D™ ly(g) = 5(”(5 +ei) —v(§ —ei)),
D™ 2u(€) == v(€ + e5) — 20(8) +v(§ — e1),
Dyo(€) = Dy D).
Furthermore, N .
IV Tull L2t 0)0) S 1D ullpzeqqo1,00y0) Sfor J= 1,2,3* (1.8)

where

Diu() = (D, Dy, - ..Dpju(g))(phpz’ij)ew .

The uniqueness assertion of Lemma 1.3 and~ the condition~that 0T v(€) = DMy(€) for all € € Z2 imply that
for any constant vector field, u(¢) = ¢ € RY, Tu = ¢. Thus [ is well defined as an operator from U to U with

Tu= {fu tu € u} From (1.8) and a straightforward calculation it follows that

||Vfu||L2(Rd) S IVIu||pzga). (1.9)

The following theorem provides a sharp estimate on the algebraic decay of the minimizers for point defects
only.

Theorem 1.4 (Regularity of a point defect). The local minimum, u®, of (1.3) satisfies

|ViTu®(€)| < 1|77 forj=1,2,3. (1.10)
Proof. Theorem 3.1 and Lemma 3.5 of [9] imply

|DIu®(€)] < [¢]'7" for j=1,2,3.

O

The first step towards an AtC formulation for (1.3) is to approximate this problem by truncating the support
of the admissible functions to a regular polygon or polyhedron € of diameter N. The resulting displacement
space

Ug = {u €U : supp(VIu) C Q} (1.11)
is finite-dimensional and comprises all functions that are constant outside of (2. Restriction of the optimization
problem (1.3) to (1.11) yields a finite dimensional atomistic problem

uq = argmin E*(u). (1.12)
Uq

The corresponding Euler-Lagrange equation: seek ug € Ug such that
(0E*(ug),v) =0 Yo elUq, (1.13)

41n this context, the modified Vinogradov notation A < B means there is a constant C' such that A < CB where C' may depend
on the dimension d. After introducing the relevant approximation parameters for the AtC method, we will explicitly state what
the constant C is allowed to depend upon.
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is a finite-dimensional approximation of (1.6). The truncated problem (1.13) provides an accurate and compu-
tationally feasible approximation for a single point defect [9]. However, its numerical solution quickly becomes
intractable as the number of defects increases.

Thus, the next step in the AtC formulation is to replace (1.13) with a local hyperelastic model in parts of the
domain that are sufficiently far away from the defect core; at a minimum, we require Ve = V' in these regions.
In such regions, the hyperelastic model is derived from the Cauchy-Born rule [3], which defines a strain energy
per unit volume according to

W(G) :=V((Gp)per) for G R4, (1.14)

Integration of the strain energy yields a continuum energy

£°(u) = / W (Vu()) dz, (1.15)
Rd

which is defined for a suitable class of functions such as W12(R4). We use the Cauchy-Born rule far from the
defect core because in the absence of defects it provides a second-order accurate approximation for smoothly
decaying elastic fields [2,42]. The advantage of (1.15) over (1.1) is that local minima of the former energy can
efficiently be approximated by the finite element method.

1.2. AtC Approximation

AtC methods use the more accurate but expensive atomistic model only in a small region surrounding the
defect core and switch to a more computationally efficient continuum model in the bulk of the domain where
the lattice and site energy are homogeneous. The challenge is to couple the models in a stable and accurate
manner without creating spurious numerical artifacts.

To describe our AtC approach we consider a configuration comprising a finite domain €, a defect core
Qeore C €2, and atomistic and continuum subdomains 2,, . C Q. Let

1

denote the outer radius of £ (t = a, ¢, core), and let T¢ore, 7'a, and 7 be the radii of the largest circle inscribed
in Qeore, a, and Q respectively.®

We first select € so that (i) it contains all £ for which Ve # V; (ii) its boundary, 08y, is Lipschitz, and (iii)
09 is a union of edges from 7,. Then we choose integers Reore > 1 and 1, > 1 and set Q¢ore = Reore$20 and
Q. = VaQcore With the requirement that (¢, —1)rcore > 47cut. Finally, we choose € so that R./Reore = RE, . for
some integer x > 1. The continuum domain is then defined by Q. := Q\Qcore, and we also define the “annular”
overlap region Q, := Q,\Qcore. The requirement that (¢, — 1)rcore = 47cus can now be interpreted as requiring
the overlap “width” to be twice the size of the interaction range of the site potential. See Figure 3 for an
illustration in two dimensions.

The atomic lattices associated with the new domains are
Li:=7Z%NQ, where t=a,c,o,core, (1.17)

and their atomistic interiors are
Lo={(eLly:E—peLly VYpeR}. (1.18)
The atomistic interiors of the interiors are £5° = (£¢)° while the atomistic boundary of £ is

aaﬁt = Lt\ﬁgo. (119)

5We define rc as the inner radii of Q since Q. itself will later be constructed to have a hole at the defect core and hence not
have an inscribed circle.
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FIGURE 3. An example AtC configuration in two dimensions. The set Q5° is shown as open
circles. The boxes show 9,L, for the case R = {+ey,+es}.

See Figure 3 for an illustration of 22° (open circles) and 9,L, (closed boxes) for the case R = {+e;, tes}.

Remark 1.5. Throughout the paper we state results involving a parameter R} .. such that if Reore > Rioye, then
a solution to a specific problem defined on the domains constructed above will be guaranteed to exist. Because
R. > Rcore, this will automatically ensure that Re > R} .. as well. These results always assume AtC domain
configurations constructed according to the above guidelines. Furthermore, when stating inequalities, we will use
modified Vinogradov notation, A < B in lieu of A < C - B, where C > 0 is a constant. This constant may only
depend upon o, d, R} e, Tcut, Ya, and an additional constant, B, introduced in Section 1.2.2 as the minimum

angle of a finite element mesh.

1.2.1. Restricted Atomistic Problem

The basis for defining an atomistic problem restricted to 1, are the Euler-Lagrange equations (1.13). By
requiring ug € Ugq, we are effectively imposing Dirichlet boundary conditions (in the sense of equivalence
classes) for the variational problem by requiring the function to be constant outside 2. Accordingly, we will
define a restricted atomistic problem by also specifying Dirichlet boundary conditions on 0,L,.

The admissible displacement space for this problem is U* := U?/ R4 where

U* = {u*: L, > R} (1.20)

The elements of U? are equivalence classes, u?, of lattice functions on £, differing by a constant ¢ € R%. We
again use I to denote the piecewise linear interpolant of a lattice function on £, and endow U* with the norm

[VIu®||12(q,). We then define a restricted atomistic energy functional on U® via

Exu) = Y Ve(Dul(9)). (1.21)

geLee
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We seek to minimize ga(ua) over U? subject to Dirichlet boundary conditions on 9,L,. The set of all possible
boundary values is the quotient space A® := A*/R9 where

A= {Xa 1 0aLa — R} (1.22)
Elements of A* are denoted again by A, (without boldface). Thus, the restricted atomistic problem reads

u® = argmin E4(w?) subject to w® =X, on 8,L,. (1.23)
ua

We refer to A\, as a wvirtual atomistic controls. They are virtual because J,L, is an artificial rather than a
physical boundary. They are controls because by varying A\, we can vary, i.e. “control,” the solutions of (1.23).
The Euler-Lagrange equation for (1.23) is: seek u® € U* such that

(682 (u?),v®) = 0 Yoo € U3,

, (1.24)
u* =X\, on 0,L,,
where the space of atomistic test functions, U§ := UZ/R?, is the quotient space of
Uy ={u*eU*:Ice R w?ly,c, =c}. (1.25)

After extending v® € UJ by a constant to a function defined on all of R, [9, (2.5) in Lemma 2.1] implies

> sup [D*? S (IVIv* |32,y Vo© € UG, (1.26)
geLge PE

The following result is then a direct consequence of Assumption C and (1.26).

Theorem 1.6. The restricted energy functional £ is four times Frechet differentiable on U?*, and each derivative
is uniformly bounded in the parameter Reore. In particular, §2£® is Lipschitz continuous on U* with Lipschitz
bound independent of Reore-

Given the exact solution u®, we will later require solving (1.24) where we take A\, = u*|s, ... To do that,
first set u3® := u™|,,, and next note that elements of U can be extended by a constant to functions defined
on all of Z4, and this extension will belong to Uy. By identifying v* € U as an element of U, we have

<(55~a(u;°),va> = (E*(u™),v*) =0. (1.27)

The final equality holds since 4> solves the Euler Lagrange equations (1.6). Similarly, Assumption D implies
Yall VIV || 12(00) = Vall VIV?| 2(Ray < (6EX(u®)v®, v*) = <62c§a(u°°)va,va> (1.28)

Hence the solution to (1.24) for A\, = u™|s, 2, is precisely u® := u™|,,. To avoid unnecessary notation, we

will often drop the subscript and just write u®° as the solution to this problem.

1.2.2. Restricted Continuum

We define the continuum subproblem analogously by using the Euler-Lagrange equations corresponding to
minimizing the Cauchy-Born energy (1.15). In addition to the atomistic mesh, 7,, that covers €, and €.,
we introduce a partition, Ty, of Q. into finite elements. This is required to define the admissible continuum
displacement space. Let N, be the nodes of T,. We assume that (i) an atomistc position £ € , is a node of



TITLE WILL BE SET BY THE PUBLISHER 11

Tn if and only if € € L5 N Q, (ii) nodes in N}, are also nodes of 7,, and (iii) the elements T' € Ty, satisfy a
minimum angle condition for some fixed § > 0. Further define

hr :=Diam(T), and h(z):= sup  hr.
{TeTh:xeT}

For example, if x is a vertex of a triangle, then h(x) is the largest diameter of the triangles which share this
vertex. Error estimates require an additional assumption on this function.

Assumption E. The mesh size function satisfies h(z) < (|x]/Reore)” for some (d+2)/2 > v > 1.

We will also need the inner and outer continuum boundaries defined as
1_\core = anore and Fc = 8Qc\rcore7

respectively.
Our analysis uses two families of interpolants. The first family comprises the standard piecewise linear
interpolants I, and I defined on the finite element mesh 7; and the atomistic mesh 7, on Q., i.e.,

Iyu € PHTr), IThu(C) = u(C) V¢ € N

(1.29)
Iu € PYT,), ITu(§) =u(é) VEeL.

The second family comprises Scott-Zhang (quasi-)interpolants [4,35] Sa, Sa.n, and S, defined on Q. with the
atomistic discretization, 7,, a domain Qa with a discretization 7;” = €, 7T, for some ¢, > 0; and a domain QC
with discretization 7~}Ln = €, Th, respectively. We recall that for a given domain U, a mesh partition 7 and a
function f € HY(U), the Scott-Zhang interpolant Sf has the following four properties [4, Chapter 4]:

P.1: (Projection) Sf = f for all f € PY(T).

P.2: (Preservation of Homogeneous Boundary Conditions) If f is constant on U, then so is Sf.

P.3: (Stability of semi-norm) [|VSf||z2) S [V fllz2(w) - the implied constant depending upon the shape

regularity constant, or minimum angle of the mesh T .
P.4: (Interpolation Error for S) [[Sf — fllz2v) S maxper Diam(T)||V f||L2v-

The space of admissible continuum displacements is U, := Us /R?, where
Uy == {u° € C°Q) : ulp € P(T) VT € Tp, IK € R, u® = K onT.}. (1.30)

The norm on this space is ||Vu||12(q,). Similar to the definition of Uq, we require the elements of U}, to be
constant on the outer continuum boundary I'c, which enables their extension to infinity by a constant. We do
not place such a requirement on the inner continuum boundary because ['co is an artificial boundary. There
we will employ wvirtual continuum boundary controls belonging to the space A := A¢/R? where

A= {Ac : Ny NTeore — R} (1.31)

Since I'core Tepresents a curve, we can define the piecewise linear interpolant of A\, € A with respect to N, NT core
by IA:(€) = A(€) for all € € Nj NTeore. Again, if A is constant, the ). is as well so that this operator is
well defined on A°. Henceforth, we will always identify elements of A° with their piecewise linear interpolant
on I'core without explicitly using I.

The restricted continuum energy functional on U}, is then

£°(uc) = / W(Vus(2) de = 3 W(Vus(2) [T]. (1.32)
Q. TETh
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Given A, € A¢, we consider the following restricted continuum problem

u® = arg min gc(wc) such that u°=MX. on Tcore. (1.33)
233

An appropriate space of test functions for (1.33) is Uj, ; := L{;;O/]Rd, where

Uy o ={u ety : IK e R" ulp,,. = K}. (1.34)

core

Thus, the Euler-Lagrange equation for (1.33) is given by: seek u® € Uj, such that

(6E°(uc),v%) = 0 Yot € Uj, o,

1.35
u’= X on Iore. ( )

The following lemma is an analogue of Lemma 1.6.

Lemma 1.7. The restricted continuum energy functional EC is four times continuously Frechet differentiable
on U5, with derivatives bounded uniformly in the parameter R.. Moreover, §2E€ is Lipschitz continuous with
Lipschitz bound independent of R..

1.2.3. Continuum Error

This section estimates the error between the restricted continuum and atomistic solutions. We refer to this
error as the continuum error. We will first define an operator taking functions in U to functions in Uj,. This
will yield a representation of u® in Uj, which we can input into the variational equation (1.35) to obtain the
consistency error.

To this end, let 7 be a smooth bump function equal to 1 on Bj/4(0) and vanishing off of B1(0). Given R > 0
and an annulus Ag := Bgr\Bs,4r, we follow [9,14] to define an operator Tg : U — Ugq according to

Tru(z) = n(z/R)(Tu — fas Iudx) (1.36)
Above, f,; fdx = I—é‘ | f dx is the average value of f. We then set

Hhu:Ih ((TTL’UJHQL) (137)

We will use I, in (1.35) to obtain the consistency error. The following lemma estimates the error of this
operator over {).. We note that the proof below is standard and is similar to, e.g., [30, Lemma 2.1]. Moreover,
Teore S Reore S Teore and 7c S Re S 7 so that estimates in terms of Reore and R, can be phrased in terms of

~

Teore and 7. and vice versa.

Lemma 1.8.

IVIRu™ = VIu™| 20 S Reart” '+ ReY? (1.38)
Proof. We first estimate the error by
VI, T, u™ — VINUOOHLz(QC) < |V T, u™ — VTTC’U,OOHLz(QC) +||VT, u™ — ViuooHLQ(QC) (1.39)

We can easily estimate the second term:

VT u™ = VIu®||L2q,)
< %Vn(x/rc)(fuoo — fAT- Tu®™ d:c) + n(x/re) — I]Vfu(’o

S | 2.y
(1.40)

1 ~ ~ -
< EHVT}(@‘/TC)(IUOO — JCATC Tu> dx)HLz(ATC) + [(n(x/rc) — 1)VIu°°HL2(Rd\53TC/4)

S IVIuX 2, + V@2 @as,, 0 S IV 2@as,,, -
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In the second to last inequality, we have used the Poincare inequality. Employing the decay rates in Theorem 1.4,
we obtain

VT u™ — VIu®| 20, S Ro Y2 (1.41)

Similarly, the first term of (1.39) can be estimated by first using standard finite element approximation
results for smooth functions, the definition of T, , the fact that h/r. < 1, and the Poincare inequality.

||VIhTTC’UIOO — VTTCUOO||L2(QC) 5 ||hV2TTC’U,OOHL2(QC)
< RV (n(a/re) (Tu™ — fa Tu™ dx))

~

(PR
1 ~ - -

= 7’|(h/7’c)v277(x/rc)(lu°° - fArc Tu> dm)HH(ATC) + [VIu*Vn(z/re)lL2(a,.)
C

. (1.42)
+[hn(x/re) VIu®|| L2 (00

A

7., 00 1 T, 00 T, 00
IVIu™|12(a,,) + 7||hVIU IL2a,,) + 1BV Tu™| 2 (q,)
S IVIu™®||r2a,, ) + 1AV Tu™®| 12 (q,)-
A straightforward application of the regularity estimates in Theorem 1.4 and the conditions on h(x) in Assump-
tion E give
IVI T u™ = VT, w0, S Re™2+ Ry, (1.43)

Combining (1.41) and (1.43) and keeping only the leading order terms yields (1.38). O

The following Lemma provides information about the stability of the Hessian of & at Mu™.

Lemma 1.9. There exists R}, > 0 and v. > 0 such that for all Reore > R},e (and all continuum partitions

core —

Th, satisfying the assumptions in this section),
Vel Vo° 72,y < (S2E(IMpu™)ve, v®) Vo© €U .

Proof. For u € U define
Eom(u) =Y V(Du).

gezd

From [9, Proposition 2.6] and Assumption D, we deduce that
(0%Ehom (0)v,v) > 7a| VIV 725y Yo € Uy, (1.44)
while [31, Lemma 5.2] implies
(FE°(0),0) > 7l VolZa, Vo€ HY(RY).
Furthermore, extending v € U, ; by a constant to all of R? yields

(626 (I u™)v®, v°) (62 (T u™)ve, v°) — (52E°(0)v°, v°) + (62E£°(0)v°, v°)

f’<525~C(Hhu°°)'vC,vC> — (02E°(0)v°, v°) | + (62E°(0)v°, v°) (1.45)
—[IVILu™ 2@ - V0720, + 72l VO IlL2q,)-

VIV
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The final bound is a consequence of the Lipschitz continuity of W. Next,

[VILu®| e < VT u™| L)
IV [n(z/re)(Tu— £, Tudz)]|L=c.)

||V(n(x/rc))(fu - JCATC Iu dz) + n(m/rC)V(fu - JCATC Iu dz)| Lo (o)

< |Vn(a/re)) (Tu - fa.. Tudz)||p(a,,) + In(z/re)V (Tu — fa.. T dz)|| g (0
1., - -

S —lu—fy Twde)|=a, + [IVIe] Lo,
C

S VIl g a,,) + VIul| =0,

< VI (ay)-

Using this result in (1.45) together with (1.10) yields
(B2 (Mpu™)v,v%) 2 (=)IVIu®| e (@) +7)IVVC 220 2 (=(Reore) ™ + %) [VV° [ 220, ).

Choosing R?, .. such that —(R}

core core

)~% 4+ 4, > 7./2 completes the proof with v, := 7,/2. O

For the proof of existence of a solution to the restricted continuum problem, we rely on the following quan-
titative version of the inverse function theorem [19,25].

Theorem 1.10 (Inverse Function Theorem). Let X and Y be Banach spaces with f : X =Y a continuously
differentiable function on an open set U containing xo. Let yo = f(xzo) with ||yolly < n. Furthermore, suppose
that & f (xq) is invertible such that |6 f (x0) " | zv,x) < 0, Bane(x0) C U, 8f is Lipschitz continuous on Bay,(20)
with Lipschitz constant L, and 2Lno? < 1. Then there exists a unique continuously differentiable function
g : By(y0) = Bans (o) such that

9(yo) =zo and  f(g9(y)) =y Vy € By(yo)-
In particular, there exists T = g(0) € X such that f(Z) =0 and
l9(yo) — 9(0)l|x = llzo — Z[x < 20,

Theorem 1.11 (Continuum Error). Let AS° := u®|p There exists R,

core ore > 0 such that for all Reore > R,
the variational problem

core’

(6E°(u),v%) =0 Ve Uj o subject to u= A" on Teoe, (1.46)
has a solution u®™ such that
[Vu" = VIu™| 20 S Regtt?™ ' + RSY? (1.47)
Furthermore, there exists .. such that

<525~C(ucon)'vc,vc> > véHVvCHiz(QC). (1.48)

Proof. The proof uses ideas from [14,3%}. We employ Theorem 1.10 by linearizing f = 55‘3(-) about z¢p = Il u™.
Let R, .. be as in Lemma 1.9. Then §2£¢(I1;,u>)~! exists and is bounded by 7! for all Rere > R Moreover,

core — core”
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62E¢ is Lipschitz continous by Lemma 1.7. It remains to estimate the residual

~CI‘[ oo c
sup <(55( X4 ),’U>.

veeus, goezo  |[V0]lLz.)

(1.49)

This task requires an atomistic version of the stress. Following [31], let {(z) be the nodal basis function at 0
on the atomistic partition Ty, i.e., ((0) = 1 and (&) = 0 for 0 # ¢ € Z9. This allows us to write the interpolant
as [v(z) = 3 g0 v(§)((x — §). Further define the “quasi-interpolant,” v*, by

o (@) = (Tv ) @),

and note that v* € W, [28,31]. Letting x¢,,(z) :=
defined by

C(€ + tp — ) dt, the atomistic stress, S*(u, ), is then

Cf— =

/sa w,z) : VIv = (6% (u /Z > XepVeo(Du) @ p: VIv. (1.50)
R4 £€Z peER
See [14, 31] for further details.

We now estimate the residual (1.49). Fix an element v° € U, o, and assume it has been extended to all of
R?. Let w® = S,v°® where S, is the Scott-Zhang interpolant onto 7,. Note that Jw® = I.S,v° = S,v° for these
choices.

We now subtract 0 = (§€*(u>), w™*) from the numerator of (1.49):

(6E° ([ u™), v°

= (6E°(ITHu™®), v°) — (6E* (™), w"™)
= (0E (I u™) — 0E(Tu™),ve) + (JE(Tu™), v° — Sav°¢) + ((6E°(Tu™), Sav®) — (€2 (u™), w™))
=: F1+ B> + Ej3.

In the above, we have used the notation (§€¢(IT,u™), w) := [ W’(VII,u*>) : Vw for an arbitrary w € H(Q.).
Qe
E; can be easily estimated:

(6E°(MLu™) — 6E°(Tu>), v°) [VITu™ — VIu™| 20, || VO L2 ()

(R—d/2 Yy RS d/z)HVUCHL?(QC) by Lemma 1.8.

core

IZANRZA

We estimate E5 by integrating by parts

(0E°(Tu™),v° — Suv°) = /W’ VIu™®): V(v° — S,v°)
Qe
= / diviV' (VIu™) - (v° — Sav°)
Qe
< [ divW (VIu™) || 2, - [0° = Savll22(0.)
S IV Iu™ | 2oy |
S Rt MV L2 ),

core

(QC)’

where we have used the chain rule, bounded the second derivatives of Tu® by ||V2Iu|| £2(Q.), utilized the
interpolation estimate (4) for S,, and applied the decay rates of Theorem 1.4.
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We estimate E3 by observing

E; = /W’(Vfuoo) : VS,v¢ — /Sa(uoo,x) : VIw®
Qe Qe
— /(W’(Vfuoo) — S*(u™,z)) : VS,v°.
Qe
< |[W/(VIu®) — S*(u™, )| 2(0.) |V Sav|| 12 (00)

< IW/(VIu™) = S*(u™, )| 1200 [1v° ] 2200,

where in the last step we used the stability of the Scott-Zhang interpolant. One may then modify the arguments
in [31, Lemma 4.5, Equations (4.22)—(4.24)] to prove that®

By S (IVP 1|20, + V2 Tu™(|Zs ) I1° ] 2200,

and using the regularity theorem, Theorem 1.4, shows E3 < R;)%272||UCHL2(QC).
Combining the bounds on all F; yields the residual estimate

sup (6&°(ITpu>), v°)

S Rl + RS2, (1.51)
veeus vezo |0 22(q.)

The stability result of Lemma 1.9 in conjunction with (1.51) and the inverse function theorem implies the
existence of u®" satisfying (1.46) and

[Vu — VILu™ |20, S Reeld?™ '+ R; V2. (1.52)

core

Observe that
[Vu — VIu™| 1200,) < VU™ = VILLu™|| 120 + | VILu™ — VIu®|| 120 + [ VIu™® — VIu®| 120,
Hence, combining (1.52) and Lemma 1.8 yields

[Vuc™ = VIu® |20, S Regll> ™t + Ry + | VIu™® — VIu™|| 12 (q.).-

~ core

Since I is in H2 and Ju™ = IT u>°, standard finite element approximation theory and the decay estimates in
Theorem 1.4 give

IVFu = VIu | a0, = [ VIu™ = VITu®| a0, S [V Tu™| g, < Retl>

core

The last inequalities imply the desired estimate (1.47).
To prove the inequality (1.48), note that

<52<§(uC°n)vc7'u°> <(625(ucon) - 525(Hhu°°))vc7vc> + <(52<§(Hhu°°)vc,'vc>
= [Vue = VI u™|| 20 IVV° 720, + 7l V°lIE2q,)

(Ye = R + R;d/Q)”VUC”Qm(QCy

VOV

6The difference is that our choice of Ju is not the same as the smooth interpolant used there.
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1.3. The AtC Coupled Problem

We couple the restricted atomistic and continuum subproblems by minimizing the H' semi-norm of the
difference between their solutions, i.e. our AtC formulation seeks an optimal solution (u®,u®) € U* x Uf,
(A, Ac) € A% x A° of the constrained optimization problem:

. Tu® — e y
{ua’g’l)g’)\c} |VIu* —Vu||2q,) subject to
6 (ur),v®) =0 VYor e U SE(uS),v°) =0 Vot el (1.53)
(382 (u), ) o e o (e om0
u* =Ny ond,L, u®=0 onl'y and u®=A. onl¢ore q,

Alternatively, we may pose the AtC problem on quotient spaces:

{ua,gcl,if\la,xc} [VIu* — Vuc||2q,) subject to
(6€%(u?),v™) =0 Vo* e Ul (0E°(u®),v°) =0 Vo© €U, (1.54)
u* =X, ond,L, ’ u® =X onl¢ore

It is easy to see that (1.53) and (1.54) are equivalent in the sense that every minimizer (u®,u¢) of the former
generates an equivalence class (u®, u®) that is a minimizer of the latter and vice versa. Indeed, if (u®,u®) solves
(1.53) then for all (v?,v°) € U* x Uy,

IVIu® — V’u,anz(Qo) = |VIu® — VUC||L2(QO) < [|VIv* — V'UCHLz(QO) =||VIv® — V’UcHLz(QO).

Thus, (u?,u°) is a minimizer of (1.54). The reverse statement follows by the same argument.
Notwithstanding the equivalence of the two problems, (1.54) is more convenient for the analysis and so we

will study the existence of AtC solutions (u2*®, u*°) in quotient spaces. Our main result is as follows.

a ) C

Theorem 1.12 (Existence and Error Estimate). Let ul® := u™|z, and u® := u>°|z_ . There exists R, such

that for all Reore > RY. ., the minimization problem (1.54) has a solution (u2*®, u*°) and

IV (Tus™ = Tug®) |72, + IV (ud = Tu®) [[fagq,) S Rel® ™'+ R (1.55)

~

We prove this result in the remainder of the paper.

2. ERROR ANALYSIS

To carry out the analysis of the AtC problem we switch to an equivalent reduced space formulation of (1.54)
and apply the inverse function theorem.

2.1. Reduced space formulation of the AtC problem

Given A\, € A? and A, € A, there exist solutions of atomistic and continuum restricted problems (1.23)
and (1.33) which we use to define mappings U? : A* — U?, and U° : A° — U}, respectively in Theorems 2.3
and 2.4. Using these mappings, we can eliminate the states from (1.54) and obtain an equivalent unconstrained
minimization problem in terms of the virtual controls only:

(AMe A%) = argmin  J(Aa, Ae), (2.1)
(AaAe) EA X A®

where J is defined as 1
J (Mas Ae) = 5|\v.rUa(Aa) — VU (A1 72(0)- (2.2)
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The Euler-Lagrange equation of (2.1) is given by
(6J(Aas Ac), (Has i) = 0,V (fta, p1c) € A* X A, (2.3)
and the first variation of J is
(6.7 (has M), (fas 1)) = (V (IU(Aa) = US(A)) . V (I0U(A)[a] = SU O ) oy - (24)
In terms of the reduced problem, the AtC error (1.55) assumes the form
IV (TU*(A) = Tu)) (L2, + IV (UCOE) = Tud) (112 q,)- (2.5)

Analysis of (2.5) requires several problem-dependent norms. Solutions of linearized problems on 2, and .
define these norms. Let U?(A\)[] : A% — U? be the solution to the linearized problem”

(B2EH(U™(N))SU™(N®) [a), v™) = 0 Vo € U,

(2.6)
SU(A) [pa] = tta onduLa,
and 0U°(A°)[-] : A® — UC be the solution to a similar continuum linearized problem
(82E¢(u™™) U (A [ue], v°) = 0 Vo € Uy, @7
5UC(AEO)[I’LC] = I’LC on FCOFE' '
It is easy to see that
[tallan == [[VISU*(AZ)[palllz2 ) and pellac := [IVOU(AZ)[pelll L2 (00).
define norms norms on A%, and A€, respectively, while their sum
(s ) oe = Mlpallae + llzcllAe (2.8)
is a norm on A* x A°. In Section 3 we shall prove
(s ) llop := IV (TEU(AZ) [pa] = OU(AZ)[1te]) Il 2 (2, (2.9)
is a norm equivalent to 2.8. We state this result below for further reference within this section.
Theorem 2.1 (Norm Equivalence). There exists R% ., > 0 such that for all Reore > Ry e,
- llop < 1+ llerr S 11 llop- (2.10)

2.2. The Inverse Function Theorem framework

We consider the first order optimality condition (2.3) for (2.1), and apply the inverse function theorem,
Theorem 1.10, with f = §J and X = A® x A° equipped with the | - ||op norm. To apply the theorem, we must
prove there exist L,n, o such that

sup 12T Nas Al < Ly [I8TAZ, A <, and [[(82T (A, M) 7| < o

a )’ C a C
(Xa,Ac) near (AL ,A°)

"We show subsequently that U? is differentiable, and §U(A3°)[] is the Gateaux derivative of U? at A%°.
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Each of these results requires differentiability of the functional J, which in turn requires differentiability
of the functions U? and U°. We prove the necessary differentiability results and boundedness of the third
derivative of J in Section 2.2.1. The second result is a consistency error estimate and is proven in Section 2.2.2
while the final estimate is a stability result proven in Section 2.2.3.

2.2.1. Regularity
We use the following version of the implicit function theorem to obtain regularity results for U?* and U°. It

can be obtained by adapting the proof of the implicit function theorem in [11] to Banach spaces and by tracking
the constants involved.

Theorem 2.2 (Implicit Function Theorem). Let X, Y, and Z be Banach spaces with U C X x Y an open
set. Let f: X xY — Z be continuously differentiable with (zg,yo) € U satisfying f(xo,y0) = 0. Suppose
that 6, f(xo,y0) : Y — Z is a bounded, invertible linear transformation with ||(6, f(zo,y0)) || =: 6. Also set

¢ = |6z f (x0, yo)|| and
o:=max{l+6¢,0}.

If there exists ) such that
(1) BQnJ((:L'anO)) -y
(2) ||5f($1ay1) - 5f(5€27y2)|\ < 27]1(,2 ”(xlayl) - (3327y2)|| fOT’ all (‘Tlayl)v (x27y2) € BQnJ((‘TanO))f

then there is a unique continuously differentiable function g : By, (xo) — Bane(yo) such that g(zo) = yo and
f(z,9(x)) =0 for all x € By(zo). The derivative of g is

dg(w) = = [0y f (2, 9(2) 7] 0o f (2, g(x))] -

Moreover, if f is C*, then g is C*, and derivatives of g can be bounded in terms of derivatives of f and
5yf($0»g(x0))71'
Theorem 2.3 (Regularity of U?). Under Assumptions C and D, there exists R, . > 0 such that for all

core

Reore > R there exists a mapping U® : A* — U™ such that U*(\,) solves (1.23) and which is C* on an

core’
open ball V' centered at A\° in A*. The radius of V is independent of Rcore, and the derivatives of U? are also

bounded uniformly in Reore > R

core”*

Proof. We apply Theorem 2.2 with X = A*, Y =U}, Z = U])", U =X xY, and
F Qo v®) = €% (h (Mas 0%)),
where h is an auxiliary function X x Y — U® defined by (recall SU*(A\3°)[u?] solves (2.6))
h(Aa, v*) = 0" +u’ + U (A7) [Aa — A

Because h is affine, f is C¥ provided that £* is C**1 on U*. Hence, Theorem 1.6 implies f is C3. For the point
(z0,Yo0), we take the point (AS°,0) so that h(xg,yo) = uS®. The chain rule shows

Sy f(zo,y0) = 6°E* (h(0,30)) 0 yh (0, %0) -
In conjunction with dyh (xo, yo) [v*] = v?, it follows that &, f(z0,y0) : Y — Z is given by
(0y f(x0, yo)v*, w?) = (628% (u®) v®, w?).

Since both v* and w?* are elements of U5 they can be extended by a constant to all of Z¢ while keeping the
norm of their gradient the same. Then using Assumption D, we find

{8y (z0, yo)v*,v%) = (§2E° (u) v®, 0%) = (6% (u™) v*,v") > Yl VIV*| L2 ey = %l VIV*|72(q,).
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This shows 8, f(zo,yo) is coercive, and consequently that d, f(zo,yo) " exists with norm bounded by 6 := ~,.
Using again the chain rule, we obtain

0uf (0, y0) = 62E* (h (20, 0)) © 6zh (0, 90) = 0

so that ¢ = ||6. f(z0,y0)[| = 0.

Next, observe that h is Lipschitz on its entire domain with Lipschitz constant 1, and 62E% is Lipschitz with
some Lipschitz constant M, as guaranteed by Theorem 1.6. As a result, § f is Lipschitz with Lipschitz constant
M. Now we may choose 77 small enough so that 5-— < M, which means both conditions (1) and (2) in the
statement of implicit function theorem are fulfilled. This allows us to deduce the existence of an implicit function

g : By(AY®) — Baye(0), which we use to define a mapping U? via

U*(Aa) = h(Xa, 9(Aa)) = g(Aa) + 0™ + 6U(AT) [Aa — A

Since f is C3, the implicit function theorem ensures g is also C3. Thus U?® is C3. The radius of V is 1, which
is clearly independent of Reoye, and the uniform bounds on the derivatives of U? follow by noting derivatives
of f correspond to derivatives of the restricted atomistic energy (which is uniformly bounded by Theorem 1.6)
and using the final remark in the statement of the implicit function theorem. O

We note that the Gateaux derivative, dU?(\y)[1ta), of U? at A, in the direction of u, solves the problem

(82E9(U(0))0U* (M) [1ta], v*) = 0 Vo € U,

(2.11)
6Ua(/\a)[,ua}:,uda on  0,L,,

thus justifying our usage of notation in the proof.
With only minor modifications, the proof of Theorem 2.3 can be adapted to establish the regularity of U*.

Theorem 2.4 (Regularity of U®). There exists R, > 0 such that for all Reore > RY..c, there exists a mapping

U°: A° — U° such that U°()\.) solves 1.33 and which is C* on an open ball V centered at \>° in A°. The
derivatives of U€ are bounded uniformly in Reore, and the radius of V' is independent of Reore-

Combining the above results we obtain an upper bound on Hessian of the atomistic mapping
1820 (A [Has vallus < Nliallas - [[vallas, (2.12)
and a similar bound for the Hessian of the continuum mapping

||52UC(>‘<?O)[M07 VCH

ue S lluellac - [[vellae- (2.13)

The proof of Theorem 1.12 relies on a stability result that enables the application of the inverse function
theorem. This stability result requires the following auxiliary lemma.

Lemma 2.5. There exists R% .

such that for all Reore > R

— core

and all p,, vy € A? and all pe,v. € A°,
v (I§2Ua()‘:o)[ﬂa,Va] - 52UC(/\COO)[NcaVc]) L2 S IMttas pe)llop - | (Vas ve)lop- (2.14)
Proof. The triangle inequality implies

IV (182U (A2 [a, va] — 82U (AE) e, vel) L2,y < IVISU (A [, valll L2, HIVE U (AE) [, velll 202,
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We then utilize (2.12)—(2.13) to bound the right hand side and apply the norm equivalence theorem, Theorem 2.1,
to obtain

v (ICSQU&()‘EO)[N% va] = 82U (A) e, VCD |

S lrallas - lvallas + llucllac - flvellac
< (lpallas + [lpcllac) (lvallas + flvel
<

”(/‘av/i(:)”Op ’ H(NaaNC)HOP'

Ac) (2.15)

We proceed to establish regularity of the reduced space functional J.

Theorem 2.6 (Regularity of J). Let V* and V¢ be the neighborhoods of A® and A\° in A, and A on which
U? and U° are C3. Then J is C3 on V2 x V¢ and its /™ derivatives can be bounded by derivatives of U and
U*° of order at most £.

Proof. Theorems 2.3-2.4 guarantee that U?® and U¢ are C2 on V2 and V°. Moreover, the interpolant I is a
linear operator so A* — IU*(A\?) will also be C3 on V2. The assertion of the theorem then follows from the fact
that J = ||[VIU?*(\y) —VU(A) ”%2(90) is a composition of a quadratic form and the C? functions ITU?(\*) and
Uc(X°). O

2.2.2. Consistency

The consistency error measures by how much u° fails to satisfy the approximate problem, which in this case
is the reduced space formulation (2.1). Thus, we seek an upper bound for

16TAZ A lop = o (VUUAZ) = U(A)), VIOUAT) [pal = 0UAE)[e])) 12(q,)| - (2.16)

> 0 such that for all Reore > R we have

core’

Theorem 2.7 (Consistency Error). There exists R

core

16N, A ) lop S Reotl?™* + RZ2. (2.17)

Proof. Applying the Cauchy-Schwarz inequality to (2.16) yeields

16T (A2 A ) llop
< s IVI00) = U0 eIV U0l 60O ey (215)
Hastc)llop=

IV IUA) = U A L2 @0)-

Note that AS°® and A2° are traces of the exact atomistic solution and so,
IVUIU*(AZ) = U(AD) 29, = VIu = Vu|L2q,)

is the simply the continuum error made by replacing the atomistic model with the continuum model on 2.
Thus, (2.17) follows directly from (1.47) in Theorem 1.11. O

2.2.3. Stability

In this section we prove that the bilinear form (52.J(A%°, \°) -, ) is coercive.

a C

such that for each Reore > R

core

Theorem 2.8. There exists R*

core

(02 TOZ ) (e 1) (s 1)) = 51 (ttas 1) 1255 ¥ (s prc) € A® X A°. (2.19)
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Proof. The Hessian of J is given by

(02T (A2 AE) (s p1e) (as 1)) = IV (L8U*(AZ) [pa] — SU(AZ) [11e]) 172,

a /oo C (00 a ()00 C ()00 (2'20)
+ (VU OY) = USAX)), V (18U () [ttas a] = U ) tes i) pagay
Using the definition of || - ||op, this is equivalent to
<52J(>‘goa A7) (as e )y (fay pie)) =
2 a(y oo C ()00 27 7a/)00 27 7C/\ 00 (221)
(s pe)llop + (V (TUAT) = US(AZ)), V (I6°U* (A2 [as pa] = 67U (NS tes ic])) 2y -
Lemma 2.5 implies the existence of R:g)}re and Cltap, such that for all Regre > R;’)lre,

IV (F2U () s ] — 20N s 1)) 1 12(600) < Coa 1t 1) 2. (2.22)

We then have that

(VUIUZ) = U(AE)), V (18U (AT [tas pta] = U (A [btes 1)) 12y,
> —[VUIUXZ) = U (A) Iz, - IV (T80 (A2 [, pa] = U (NE) e, te]) 22
> —Caan||V (IU(AT) = U(A)) lL2() - 1 (has ) l13p-

This implies

(02T (A2, M) (as p1c), (as ) = (s 1) 12, = Cstan |V (TUH(N) = U AZ)) 2200 - (1 1) 13
= (1= CaanllVUUOXZ) = U (AE)) llz2()) | (1tas 0) I35

where ||V (IU*(A) = U(A°)) |20, is the continuum error. By Theorem 1.11, there exists R:%, such that
for all Reore > RE2,,

(1~ Camn IV (IU* (A) = U*(0)) [l 22()) > 1/2
Taking R},,. = max {R*’l Ré‘g)%e} completes the proof. (]

core core’
2.2.4. Error Estimate

Having proven regularity of J, a consistency estimate, and a stability result, we are now in a position to
prove our main error result, Theorem 1.12. This will be a consequence of following theorem providing important
information about the AtC formulation.

Theorem 2.9. There exists R}, .. > 0 such that for all Reore > R,

core — core’
solution (N2, \2) such that

the reduced space problem (2.1) has a

I A) = AN lop S Reard™ + RS2 (2.23)
Proof. We apply the inverse function theorem, Theorem 1.10, with f = dJ, X = A* x A° endowed with the
norm | - [lop, ¥ = (A® x A)" endowed with the dual norm | - |lops, and zg = (A3°,A°). Let R, . be the

maximum of the R} . guaranteed to exist in Theorems 2.3, 2.4, 2.7 and, 2.8. Noting that || f(x0)| op~ is the
consistency error defined in Section 2.2.2, Theorem 2.7, implies the bound

I1f(zo)[lops S B2 + RV =i

Observe also that 0 f(xg) = §2J(A\°, A°) and the existence of a coercivity constant, o := 1/2, from Section 2.2.3
implies ||6f(zo) || <o~ ! =2.
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Furthermore, Theorems 2.3 and 2.4 provide constants 7, and 7. such that U?* and U® are C3 on B, (A\)
and B, (A\X) respectively. By Theorem 2.6, 6°J is bounded by derivatives of U?* and U® of order at most 3.
Furthermore, Theorems 2.3 and 2.4 state that derivatives of U® and U€ are uniformly bounded in Rcore. We
may therefore conclude that the third derivative of J is also uniformly bounded in Reor. This implies § f = §2.J
is Lipschitz on B, (A) x B, (A2°) with a Lipschitz constant that we denote by L.

The bound 2Ln(2)? < 1 holds since the consistency error  may be made small for R? . large enough.
Analogously, Ba, (A%, ) C By, (A°) x By, (M) for small enough 1. Theorem 1.10, can now be invoked to

a ? C

deduce the existence of a minimizer, (A2*°, \a'¢) € By, (A%, A°) of J, satisfying the stated bounds (2.23). O
We now provide a proof of Theorem 1.12, which is our main result.

Proof of Theorem 1.12. Let R} . be the maximum of the R}, from Theorem 2.9 and Theorem 2.1 so there

exists (A2 \2%) satisfying (2.23). Furthermore, (U?(A\2€), U¢(A\2*¢)) solve the minimization problem (1.54).
Hence,

IV (T = Tui™®) |72, + IV (70 — u™) 720,

= VI (v = U*(\")) |20, + IV (Tu> = U(X")) (120,

= [V (U*(A2) = U*(A) L2, + IV (7w = U(AF) + US(AF) = U*(A)) (1120

<IVI (U2 =U*(A) 200 + IV 1w =U(A)) L2 + IV (U AE) U (X)) 120

(2.24)

The second term above is the continuum error. To handle the remaining terms we recall that U® and U*¢ are
Lipschitz on B,, (A°) and B, (A°) by virtue of dU? and dU° being uniformly bounded on these sets. Then,
using norm-equivalence (2.10), Theorem 1.11 and Theorem 2.9 yields

IV (7™ = Tu3™) 720, + IV (Tu™ = ug) |72,
S A = A NAe + IV (Tu™ = UO)) [0 + A = A2 (2.25)

= O AZ) = 2N & + IV Tu™ = U AE) 1720, S Reore” + R

a 17 err ~

Taking square roots completes the proof. 1

3. NORM EQUIVALENCE

The main result of this section is the norm equivalence result stated in Theorem 2.1. We recall that the finite
element mesh 7j, is subject to a minimum angle condition for some 3 > 0.

Theorem 3.1. There exists C, R%,.. > 0 such that for all domains Q,, Qe and meshes Ty, constructed according

to the guidelines of Section 1.2 (in particular 1 Reore = Ra) with Reore > R there holds

core’

| (ks ttc)[lerr < C”(Na»NC)HOP V(pa, pe) € A" x A (3.1)

Equivalently, for all (w®, w®) € U™ x U}, such that

(8284 (uP)w*,v*) = 0 Vo cUf and (3.2)
(828 (uMwC,v) = 0 Votce U, o (3.3)

we have
IV Iw™ 220, + [V 30y < CIV (Tw® = w) [aggy (3.4)
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Equivalence of (3.1) and (3.4) follows directly from definitions of || - [lerr, || * lop, U?, and U°. Our assumptions
imply that Reore and R, are of the same order and grow at the same rate while R./Rcore getting large implies
R, grows at a faster rate than R, and R¢ore-

In Section 3.1 we show that proving Theorem 3.1 reduces to proving the following result.

Theorem 3.2. There exists R:,.. > 0 such that for all domains Q,,Q. and meshes T}, constructed according

to the guidelines of Section 1.2 (in particular 1, Reore = Ra) with Reore > R

— core’

(VIw?*, Vw©)
sup

<1, (3.5)
w? we#0 ||V(Iwa)||L2(Qo) ||va||L2(QO)

for all (w®, w®) € U™ x U5, such that

(8282 (uS)w?, v*) =0 Voo e U3,
(82E¢(ueMws, v°) =0 Yot € Uj, o

We prove Theorem 3.2 in Section 3.2 by using extension results from Theorems A.1-A.2. The latter allow
us to bound solutions to the atomistic and continuum subproblems in terms of the solution on , only.

3.1. Reduction

In this section we prove Theorem 3.2. The first step in showing that Theorem 3.2 implies Theorem 3.1 is
to bound solutions of the atomistic and continuum problem in terms of their values over the overlap region.
The proof of this as well as the proof of Theorem 3.1 will be a proof by contradiction involving scaled versions
of (3.2) and (3.3). We distinguish objects in the scaled domain by using a tilde accent, i.e. L., = €,Lq.

In each proof, we will consider sequences R;?, — oo and R, , — oo with R /R, — co. Given w2 and w¢,
we will then set €, = 1/Rcore,n, and scale by €, to obtain functions w¢(e,z) = wt(z) and w2 (epx) = w2 (x).
Thus, each w? is defined on Q, = €nflan. Note also that the domains Qeore := €nflcore,n and 2, have fixed
radii of 1 and v, respectively. The domains in the sequence {1} have fixed inner boundaries but their outer
boundaries tend to infinity. Since each wy, is constant on the outer boundary of ) ,, we may extend each of
them outside of this region to infinity to obtain functions defined on QC = R”\Qcore.

The functions w2 and WS now satisfy scaled versions of (3.2) and (3.3) in which the displacement spaces are
parametrized by n in the obvious manner: iti,itg’n, 4 hons and I:l,cl’o’n. For clarity, we introduce several new
notations. We use V¢ , to denote the partial derivative of V¢ with respect to finite difference D,u and V¢ ,; to
denote second derivatives. We further define scaled finite differences and finite difference stencils for & € [ﬁayn
and p € R by
£+ Enp) - a(f)

€n

Denpa(g) = a( and Dﬁnﬁ(g) = (Den,pﬁ(g))peR .

The norm (1.26) scales to
1De, @5 ooy = D sup |De, 0, (3.6)
€n a,n feioo PER
for which there continues to hold
||Den"~’||1zgn (ZS,"") 5 ||VIn"~J||L2(Qa,n)-
The function w3 satisfies the following scaled variational equation:

S > Vepr(enDe, @S, (6)) - De, pih, De, 0% = 0 Vo €U,
geLys, PTER

= Y VenDe,@5,(6): De, @l : De, del = 0 V&* € U, (3.7)
geLge,
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It will be convenient to express (3.7) as an integral for #* for which D, #* vanishes on £, ,\£2°, and on a

a,n

neighborhood of the origin. This requires an additional tool. The cell, ¢, based on £ € L, is
e 1= {xeRd:OSmi—@ <6n,i=1,...,d}.

Let I,, be a piecewise constant interpolation operator defined by

I, f(x):= f(¢) wherex € .

Then for such a ©* and for n large enough such that D, ©v®* vanishes on a neighborhood of the origin,

> VienDe, @3, (€): Do, wh : De, del = > V! (enDe, @55,(€)): De, W, = De, ™ vol(se N )
geLes, geLes,
= Y V(enDe, @, ()): De,wf : De, & vol(sg M Q)
E€Lan

/ I:nV”(enDenﬁgf’n): wDe w2 : I,D., v*dx

Qa,n

Observe that we have replaced V¢’ with V" in the integral since D, ¥* is assumed to vanish where V' # V.
Similarly, w¢ satisfies an analogous scaled version f (3.9):

/ Z or (€ VULTR) V5, Vo) de = [ W (e, Vae™) : Vg, : Vs dz = 0 Vo° € U5, 5,,. (3.9)
pPTER Qe,n

Further define the fourth order tensor, C = W"(0) and note that

(C:G):F:= Y V,(0)Gp-Fr=(V"(0): (FR)): (GR).

PTER

We bound solutions of the atomistic and continuum problem in terms of their values over the overlap region.

Lemma 3.3. Suppose that w?* and w° are such that equations (3.2) and (3.3) hold. Then, there exists R} ., > 0
such that

||VIwaHL2(Qa) 5 ||VIwa||L2(QO) and (310)

Vw20 S IVw|lL2(0,)- (3.11)

for all domains Q,,Q. and continuum meshes Ty, constructed according to the guidelines of Section 1.2 (in
particular ¥a Reore = Ra) with Reore > R

— core”’

Proof. Assume that (3.10)—(3.11) do not hold. Then, there exists a sequence R%T, — oo, with corresponding

core
sequences Reoren > Rigne, Ren, Qan, Qeny Thon, we and w?, such that Regre,n — 00, Ren — 00, Ren/Reoren =
. ;
Roven — 00 with
VI, w2, |Vwy |12,

)

3.12
A Vs oo (3.12)

o,n) o, n)
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After scaling the lattice, the domains, and the functions by €, := z—— we find from (3.12) that

HVInﬁ’ZHLZ(Qa) (3.13)
IVLwg | 12,

Extend I, wj[g to R? using the extension operator R from Theorem A.2. Then we have
IV (R(Inyi 1o, ) 2@,y < CQ) VI La s, )
Moreover, R(I,wylq ) = I,w;, on DaL.,. Let S, be the Scott-Zhang interpolant operator from H'(Q,) to
{u € C(Q) :ul € Pi(r) Vre 7;”} .

Then S, R(1,w}|g ) defines an atomistic function in U7, which is equal to W}, on 982, since R(I,wj g ) is

n’
piecewise linear on €, and due to the projection property of San- This implies that 2}, := San R(Inwj g )lg —
wl € l:lgn and that 22 solves the problem

(€0 (a3,)Zn, 05) = (52 (u) San R(InWh|g, g, ©5) VO € UG ..

Thus, taking 92 = 22, using (1.28), and the stability of the Scott-Zhang interpolant (see P.3 or [4, Theorem

4.8.16]), we see that "
IVEE s S IV Sun RU2 6 ) 6,20 S IV RISl ) o < CO) IV L3 e
This and the definition of 2z imply
IV SRkl o, — V@2l 2, S COIVL@5 20,
which further leads to
IV L@}l e g, S COQNIVIwH 2(q,) + IVRIW, g, )2,y < 20Q)IVI@3l L2,

a contradiction to (3.13). This establishes (3.10). . .
A similar argument utilizing the Scott-Zhang interpolant on  with mesh 7y, ,, yields (3.11). (]

Proof of Theorem 3.1. According to Lemma 3.3 if w® and w® satisfy equations (3.2) and (3.3) then
||V(Iwa)||2L2(Qa) + HV’LUCH%?(QC) S ||V(Iwa)||2L2(Qo) + HV"UCH%Q(QO)'
Consequently, to prove (3.4) in Theorem 3.1 it suffices to show that
IV{Iw*) |72, + VW[ 220, S IVIw* = w)[72(q,)-
This result is a direct consequence of Theorem 3.2 since

IV{Iw* —we)|[ 20,y = IVIw*|Z2(q,) + IV |[72(q,) = 2 (VIw*, V) 2
> ||VlwaH2Lz(Qo) + ||Vwc||%2(90) — 2¢||VIw®|| L2 (0, IVWC|| L2(q,) for some 0 < ¢ < 1 by Theorem 3.2

2 ||vjwaH%2(Qo) + ||Vwc||%2(90) - C||Vlwa||%2(no) - CvaCH%Z(QO)

(1= ) (IVTw* 320, + IV0* [32a,)
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For clarity we break the proof Theorem 3.2 into several intermediate steps.

3.2. Proof of Theorem 3.2
The proof is by contradiction. To this end we start with the following

*

Conjecture 1. For all R,
to the guidelines of Section 1.2 with Reore > R,

— core

> 0, there exist domains Q,,Q and a continuum mesh T, constructed according
and R¢/Rcore = RE... and

ore

(VIw?, Vw°)
sup - =1, 3.14
welo TV (Tw) [ o V07 22 e (3:.14)

where w® and w° satisfy

(828 (u)w*, v*) =0 Yo € U3,
(52£C(ucon)w°,vc) =0 Yo el
Conjecture 1 implies the existence of sequences R}, — 00, Reore,n — 00, Ren — 00, Ren/Reoren — 00, &
corresponding sequence of grids 7, with a minimum angle at least 3, and associated sequences wyg,, w2, such
that
(VIiw?, Vw?)
IV(Iwa)||z2 o) VWS [ 22(0,)
We will show (3.15) yields a contradiction in four steps. In the first step, we will scale the lattice by
€n = 1/Reore,n to define sequences of functions w2 having a common domain of definition and @w¢ having a
common domain of definition. This will allow us to extract weak limits of these sequences. The second step will
show these limits satisfy the homogeneous Cauchy-Born equation. In the third step, we show weak convergence
combined with satisfying atomistic and finite element equations implies the limit and inner product commute.
This will yield a contradiction in the final, fourth step of the proof.

— 1. (3.15)

Step 1:

Recall that we use the tilde accent for objects on the scaled domains. Let I,, be the piecewise interpolant
onto the lattice £,,, and normalize w2 and w¢, to functions w? and w¢ such that

IV(Ihwy)l 2,y =1, and  [[Vwgllpg,) = 1. (3.16)
Due to this property and our hypothesis (3.15), we have that

(VIn’a)Z,V’J)Z)Lg(QO) — 1. (317)

Moreover, VI, w2 is a bounded sequence in LQ(Qa) since
ijnﬁ’z”m((za) = ”vjnﬁ’n||L2(Qa)/HVIn"I’nHL2(QO) S ”vjnﬁ’n||L2(QO)/HVITL"I’?L||L2(QO) =1,

after using the scaled version of Lemma 3.3. Similarly, V¢ is bounded in L?(€.). Meanwhile, w? and w, will
still satisfy the variational equalities (3.7) and (3.9) by linearity.

For each n, we let I,w? be the element in the equivalence class of w2 with mean value O over Qq. The
resulting sequence is bounded in H! (Qa) and so it has a weakly convergent subsequence, which we denote again
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by I,@%. Let w§ € H'() be the weak limit. By the compactness of the embedding HY(Q.) C L*(Q,) it
follows that I,,w2 — w§ in L?(£2,). Similarly, the functions w¢ form a bounded sequence on the Hilbert space,

H'(Q) = {u € HL (Q0) : Vu € L2(Q )} \R<. (3.18)

Thus, we can extract a weakly convergent subsequence, still denoted by wg, with limit w§ € H 1(QC), ie
@S — @S in H'(). This implies Vg — V@ in L*(Q.).

We call a continuum mesh fully resolved if T' € 7~7m with T°N QO’EX # () implies T € 7~;n and vice-versa. For
the remainder of the proof we shall assume that the finite element mesh is fully resolved beyond the overlap
region €,. We recall that Q, », = ¥aQcore,n; Q, = Qa.n, and Q, = Q.. Define QO@X b,

1 1
Rcore,n Rcore,n

Qo,ex = €n (2wanore,n\Qcore,n) .

The purpose of Qmex is to have a domain of definition common to all continuum elements which extends slightly
beyond €.

Let wy, and wg be equivalence class elements having zero mean over Qo’ex. Then wy, is bounded in H 1(§~2078X)
and converges weakly to some w® € H' (€ cy). But since the restriction operator from L?(€) to L?({, ex) 18
continuous with respect to the strong topology and hence the weak topology, we must have Vw = Vwo on Qo ex
so the two functions differ a.e by a constant on QO ex. Oince both w§ and w® have mean value 0 over QO ex, the
two functions are in fact equal on Qo,ex. Thus wy, converges weakly to wg in H! (Qo’ex). The strong convergence
W — w§ in LZ(QOﬁX) follows from the compactness of the embedding Hl(flo,ex) — L2 (Qo,ex).

In summary, we have established the following result.

Lemma 3.4. There exist sequences w2 € H'(Q,) and @t € L2, (Q) and with V@S, € L*(Q.) which satisfy the
variational equalities (3.7) and (3.9) such that
Lwd = wy in H'(Qu), L — @y in L*(Qa), (3.19)
Vit = Va§ in LX), @t — @f in HYQoex), @5 — @5 i L*(Qoex) (3.20)
Step 2:

Theorem 3.5. The functions w§ and w§ satisfy the linear homogeneous Cauchy-Born elasticity equations
[ (C:Va@§): Vo=0 Yoe H} Q) (3.21)
Qa

ﬁ (C:Va@g): Vo=0 Yoe Hi(Q). (3.22)
Q

We break the proof into several lemmas. We start with the atomistic case (3.21) where special care must be
exercised near the defect at the origin.

Lemma 3.6. Let N be any neighborhood of the origin with N C Q. and set Q' = Qa\N Then w§ satisfies
[ (C:Vw§): Vo=0 Yoe Hj(). (3.23)

The key result in proving Lemma 3.6 is the auxiliary Lemma 3.7.

Lemma 3.7. Let Q be a bounded quasiconvezx region of R? satisfying the assumptions of Theorem A.1 with
M cC Q. Set L1 = N Ly, and suppose vy, is piecewise linear with respect to L,, and vy, — vo in HY(Q).
Forr € R, I,D., v, — V, vy in L?().
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Proof of Lemma 3.7. We prove the Lemma for vg = 0 and then reduce the general case vy # 0 to this setting.
Case 1 (vg =0). Take ¢ € C§°(Q1), and note since v, — 0 in H!, v,, — 0 strongly in L?. Then

limsup |(In Dz, rVn, ©) 12(0y)]

n—oo
= limsup /anEnrv,L(z)w(x)dx = limsup Z / I,D., v, (z)¢(x) dz
n—00 3, n—00 geﬂlggmgl
= limsup Z / De,rvn(§)(0(&) + Vo(&)Te ) dx|  for ¢, € conv(E, x). (3.24)
n—oo
EEQlQQQI
< limsup Z D.,,rvn(§)p(&)vol (se N Q) | + limsup Z / D, v (§)Vp(&) e,z dx| .
n—o00 fem n—oo 5691%091
T Ty
We first estimate T, by noting
L2y [ IDen@lVel©ralds
€601 M0,
1/2 1/2
<Y ([ 1Dem©Pde) ([ el o)
fe Cgﬁgl §5ﬂQl
Z / |De, »vn(€) |2da§ Z / IVo(&)Te.x) dx)
€c Ql(gmﬂl (gﬁQl
< ( Z | Dz, rvn(€)>vol (s¢ N Q) Z / V|7 e d:c)
£e 5691%091
9 1/2 ) 1/2
en( Y ID=, 0 (©) vol(cmn) < Y sup |-, vn(@)Pvol (€N ) ) S el Vonlliae)
£e geq, "R

To estimate T we shift the finite difference operator onto ¢(&)vol (¢¢ N €21) and recall that ¢ € C3° ().

T = Z De,rvn(§)@(§)vol (¢ N2) = Z 0 () D—c,,r((§)vol (¢ N 21))

£eQ e
= > 0n(&)(D—c,r(@(&))vol (¢ N ) + @& + enr) D_c, rvol (s N Q1))

£e
= Z 0 (§)D—c,,r (¢(§))vol (¢ M)

£e

1/2 1/2
< (X 1@Pvol ) ( 3 1D-crp(©)Pvol (e n6) )
£eQ £eQq

S vnll 2@ IV Ingl L2 y)- (3.25)

Consider a micro-simplex T' of £, with nodes N(T') belonging to cell ¢ and a a reference simplex T with
nodes N (T). If f is the pullback of a function f on T, then

1 Ewvnl 2y =TI - Jon(©)] < TV sup o (O] = |T1"? sup [0a(O) S Tl 2y = lonllzery
CEN(T) CeN(T)
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Summing over all elements gives
I Tnvnll 2y < onllL2(@),
and using this in (3.25) yields
T1 < vallz@ IVInel L2 @y)- (3.26)

Because v, converges weakly to 0 in H'(Q), v, converges strongly to 0 in L?(2). Moreover, because ¢ is
smooth, ||VI,¢l|r2(q,) converges to |Vl 12(q,). Employing (3.25) and (3.26) in (3.24) shows

lim sup | (I, De,,r0n, ) 12 ()| = 0.

n—oo

Case 2 (vg # 0). We reduce this case to the previous one. Let ng be a standard mollifier on a ball of radius
R, and define

vo.r(2) = (7 * v0)(z) = / na(® — y)oo(y)ds,

for z in QF := {x € Q : dist(z,09Q) > R}. From standard properties of mollifiers, it follows that

lim Vug g = Vg in  HE.(Q). (3.27)
R—0
Moreover, since vg g is smooth, for any fixed R,

lim Invor = vor  in HE.(Q) (R>0). (3.28)

Now fix Q9 such that €, CC Qy CC 2. For each integer m > 0, set a, := % and define R, by requiring

HV’UO,Ram — V’U()”HI(QQ) S am/2

By (3.28), for each integer m (or index av,, = 1), there exists an integer N, such that

”vjn'UO,Ram — VUO,R ||H1(Q2) § Ozm/Q Vn 2 Nam-

am

In particular,

|VIn, wvor

am »Erm

- v'UO,ROém HHl(Qz) < /2.

Thus

IVIN,, vo,R., —Vvollai(e,) < IVIN,,, vo,R.,, —V0,R.,,

sl sl

H1(Q2) + ”VUO,Ram _VUOHHl(Qz) < oy, — 0. (329)
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Next note that vg r is smooth so D, ,vor — V,vp g uniformly on compact subsets of 2 and hence in
H} (). Furthermore,

loc

||jnDsnT'UO,R - Dem‘UO,R”%?(QQ) = / ‘jnDen,T'UO,R - DenT'UO,R|2 dz

Qo
= Z |DeanO,R(£) - DEanO,R(m)Fdx
5692%092
=> |De,.+v0.1(€) = De,rvo.7(€) + De,r Vo () (Te.x) > dz for 7 o € conv(€, z).
£€QZC£QQZ
<A [ 1D Venn(©) de £ IV el 0
5692%092

Thus, as n — oo, we have that
|1 De,.rv0,r — Voo, rllL2(0) < [ InDeprvo,r — De,rvo,rll12(95) + [ Denrvo,r — Vivo,rllL2(0,) = 0. (3.30)
As before, we may assume
|1 Dz, +v0.R,.,, — VivoR,, l20) < @m/2 ¥V n> Na,.
In particular,

||jNam DENamTUO,Ram - vr'UO,Ram ||L2(QQ) < am/2,

Therefore
||jNam D.y, rv0,R,, — Vevollp2 .y <
_ (3.31)
N, Den,, rV0,Ra,, — Vrvo,Ra,, 22(02) + IVrvo,Ra,, — Vivollz2(0,) < am — 0.
Next let 9, = vn,  — VoR., - By assumption, vy, = converges weakly to Vuy. From (3.29), we see

VIy,, vo,R.,, converges strongly, whence weakly, to Vug on Q3. Consequently, VIy, o, converges weakly to
0 on Qg. From case (1), fNam Dey, rm —0in L?(). But fNQm Dey. rvoR,, — Vrvo by (3.31) implying
I Na,, De Nawyy, 7V0 V., vg. Since this érgument can be applied to any subseduence of angn,«vn, by the Urysohn
property [41], we have I,,D. v, — V,vg in L?(£). O

Proof of Lemma 3.6. First, notice that it is enough to test (3.23) with v € C(Qa \ V), i.e., for supp(v) CC Qa,
0 ¢ supp(v). Since v has compact support inside 2, \ N, D, ,0(§) vanishes on £, ,\ L35, for all n large enough
and p € R. We may therefore rewrite (3.7) with @? using the integral formulation introduced in (3.8)

0= /fn\/g’(enDenﬁzfn):anean : I,D.,vdz.

Qa

(3.32)

We have that Vw? — Vg on Q.. Taking € with supp CC 21 CC Q.. from Lemma 3.7 it follows that

L,D,, % — (V,w05) on Q forall7 € R. (3.33)
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Because v is smooth, (3.30) implies
I,D., v* = (V,v) forallr € R. (3.34)
According to Assumption D there exists a local minimum > of £% such that

IVIu™ ()| < |7 foré ¢ Qeore. (3.35)

After scaling the lattice by €, we get a sequence of global solutions up° (€) = u™(¢/ey,) for € € L,. Thus, for
x # 0 and large enough n there holds x ¢ €,Qcore = Qcore,n- As a result, since d > 1 it follows that

n

1 1 _ _
V(I (@) = — (VIau) (w/en)] S — [o/en] ™ = € o] =0 (3.:36)

uniformly as €, — 0. This also implies
lenlnDe, wl, (x)| — 0 uniformly as €, — 0 on Q,\N;

whence
1V (0D, 35, () = V" (0T Do 35, () = 0 uniformly as e, = 0 on 0\ .

€n a,n

Hence, taking the limit of (3.32), and using (3.33), (3.34), and the fact that the “dual pairing” (:) of a weakly
convergent and a strongly convergent sequence converges to the dual pairing of the limits, we obtain

0= lim LV"(enDe, u): I, D, w2
n—oo Qa

= lim LV"(enDe, u2°): I,D;, v : I,D., w2 dx
n o0 Qa

/ V”(O):VRwS:VRvdxz/ C:Vag : Vodz.
Q. Q.

d

Proo[ of Theorem 3.5. Our first task is to prove (3.21). By density, it suffices to prove the theorem for v €
C§° (). Let ng be the standard mollifier defined by ng(x) = gzn(z/R) Let

[ 1 |zl <2R
XY 0 i Jof > 2R,

be the indicator function of Bg, and set
vr(x) = (g * xr)(7)
so that it is a smooth bump function. Recall that pgr(z) is of class C* and satisfies

or(z) = for |z| <R,

1
0<¢gr(z) <1, and
< ¢r(z) < { or(x) =0 for |z|> 3R,
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Thus, v — prv is smooth and vanishes on Br(0). By Theorem 3.6,
0= / (C Vg : V(v — prv) = / C:V©§ : V(v — pgrv)
Q.\BRr(0
/ C:Vwj: Vv—/ C:Vuwj: V(@Rv):[ (C:V’LDSZVU—/ C: V) : V(pgrv).
Qa Bs3r(0)

This implies

[ C:Vw§: Vv = / C: V& : V(pgrv). (3.37)
Q. B3r(0)
Also note
[, €V Viom)] < 1€ Tiflsaounonl IV om)li2ounon (339
3R
Moreover,
IV (erv)ll2(Ban(0)) < l0RVVIL2(Bsr0)) + VYR 125, (0)) (3.39)
< NVl 2 (Bsr o)) + 10l L2(Bsr (o) I VORI L2(Bsr (0))-
Furthermore,
d d
dp o
IVenlamaon = 2 =R =2 [
=112 (B (0) =112(Bsg(0))
d d
- Z %Z:I; XRHLz(BSR Z %Z/’I; LI(BJR(O))HXRHL2(BSR(O)) by Youngs’s Inequality
d 9 d
= Z 3771? dm|) . ( |XR‘2dl‘) Z( / Rd+1 Bz QT/R ’dx) . ( / 1d$)
i=1 =1 Byr(0) Bsr(0)

B%R/ B3r(0)
d
> ( /\égﬁi(azﬂdaz)z( | dz) $ R2,
i=1 B5(0)

B3r(0)

Thus for d > 3, [|[Ver| r2(Bsr0)) — 0 and for d = 2, |[VoRrl|12(B4x(0)) i uniformly bounded in R. Since v is
fixed, |v||z2(Bsr(0)) — 0 as R — 0 and taking R — 0 in (3.38) and using (3.37) and (3.39) shows

‘/ C:V@S:V’U‘Zlim‘/ C: V& : V(pgv)
Qa R—0 0)

(3.40)
< gino IC - V§l L2(Bsr (0)) (VU L2 (Bar(0)) + 1Vl 22(Bsr(on IVeRI L2(Bsr(0)) = O

so long as d > 2, which proves (3.21). The d = 1 is special since the atomistic region becomes disconnected
when a neighborhood of the origin is deleted. To remedy this, additional constraints for each connected overlap
region are required so the above arguments need to be carried out twice.

Next, we establish the continuum analogue for Theorem 3.5: the function w§ satisfies

/ C:Vas:Vo=0 Yove H} Q). (3.41)
Qe
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We prove (3.41) for v € C3°(Q.); the general case follows by density. Interpolation of v on each finite element
grid T, = €,7Thn yields a sequence, v;, which converges to v in Hlloc(QC). For large enough n (once .,
contains the support of v), we have

0= [ W"(e,Vui™) : Vg, : Vui, do = / W (e, Va™) : Vs, : VoS dz.
o)

(3.42)
o supp(v)
Summarizing, v¢ converges to v strongly on H'(supp(v)) and w¢ — w§. Moreover
0= lim W (e, Vas™) : Vs, : Vot dx
n—oo
supp(v)
= li_}rn (W (e, Vas™) — W (e, VI,ul)) : Vg, : Voi dx
supp(v)
+ lim W (e, VI,ul) : Vs : Vv dx
n—00
supp(v) (343)
S nlg{.lo enl| V™ — anﬁ%on(Qu,n) |Vw%||L2(Qc,”) |VU5L||L2(QC,”)

+ lim / W" (e, VI, as) : Vs, : VoS, dz

n— o0
supp(v)

= lim W" (e, VI, uX) : Vs : Vv, dx

n— o0
supp(v)

Reasoning as in the atomistic case, W" (e, VI,u2°) converges uniformly to W/ (0). Thus, we have a duality
pairing of a strongly and weakly convergent sequence, which converges to the pairing of the limits:

0= lim W' (e, VI,a°) : Vs, : Vo, do = / W"(0) : Vg : Vudz
supp(v) supp(v)
O
Step 3:
With the convergence properties of Step 1 and limiting equations of Step 2, we shall prove
Theorem 3.8. Let w: and Vg, be as defined in Step 1. Then
(VIu??wVw;)Lg(QO) — (Vuig,v@ag)m(ﬁo) . (3.44)

Proof of Theorem 3.8. Split (), into an inner part, A;, and an outer part, A such that Q, = A; U Ay and A,
and As have disjoint interiors. Specifically, let |z] be the greatest integer less than x and set

Ay = (Wa/?J Qcore)\Qcore
A2 = QO\Al.

From (3.46) of Lemma 3.9 below, we see that

IV (w;, — ) ||L2(as) — O
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and (3.57) of Lemma 3.10 below gives,
IV (Inwy, = @5) [[L2(a,) = 0

Using these two results along with the weak convergence properties of Lemma 3.4—namely, w{, — w§ on A;
and wh — w§ on Ay—yields

(VI,wk, Vﬂ’ﬁ)m(@o) = (VLwy, Vuy) 2 a,) + (VInwy, VO3, ) 124,

= (Vwg, VWG) 1204,y + (VWG, VOG) 124,y = (VF, ng)m(@o) : (345)
O
In the preceding, we have made reference to the following lemma, which we now prove.
Lemma 3.9. Let w;, and w§ be as defined in Lemma 3.4. Then
IV (w;, — w5) |r2(a,) — 0. (3.46)
Proof. Recall that each element of the continuum sequence satisfies a variational equality of the form
/Q | W (e, V™) : Vg, : Vo de = 0 Vu© €U, (3.47)
According to Theorem 3.6 the function w§ satisfies a variational equality of the form
/W“(O) L@l vSdr =0 VoS € Hi (), (3.48)
9)

c

which corresponds to a linear elliptic system. From elliptic regularity, wg belongs to leoc(flc). Recalling that
mesh is fully resolved on ), ¢, it follows that

WS = I,w§ — w§ in HY(Asg). (3.49)
The goal is now to show
|V (5, —w5,) [ 22(a5) — 0, (3.50)

which will further imply (3.46).
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Let n be a smooth bump function with compact support in Qo’ex and equal to 1 on Ay. Thus n?(@¢ — w¢)
can be extended by 0 to get a sequence of functions well defined on all of Q.. Also set z, := W — w. We have

Qo ex Qo ex

/\Vzn\z dz < / IV (nz))? da < / W (e,us™) : V (nzy) : V (nzy) da
Asg O

/ W (€n@l™) : NV 2y 1 NV 25 + 2W (,0S") : NV 20t (2,V)') da

Qo,ex
+ / W (€n@l™) : (2o V') t (2oV') da
QO ex
' (3.51)
= / W (€n@™) : VO : n°Vz, + 2W" (€, a™) : VIS : (02, V') da
Qo,ex
— / W (€n@l™) : Vi : 1V, + 2W" (€, a™) : Vg, : (n2, V') da
Qo,ex
+ / W (en@l™) : (2, V') t (2oV)') da.
Qo 0x
Since I, (nzzn) € Z:lflyoyn has support in Qo,ex, using (3.47) we can write the second integral above as
/ W (e,a™) : VAl : °Vz, + 2W" (€, i) : V@ : nz,Vn' dz
Qo ,ex
= / W (e,a™) : VAl : °Vz, + 2W" (€, i) : V@ : nz,Vn' dx
Qo,ex
’ (3.52)
- / W (epuit™) : Vs, : VI, (7722'”) dx
Qo ex
- / W (epuit™) : Vs, : V (nzzn -1, (r]Zzn)) dz.
Qo,ex
Using this result in (3.51) produces
/|VZ”|2 dx < / W (en@S™) : VO : >V, + 2W" (€,85") : VIS & (n2,V'") da
A QO ex
: ’ (3.53)

— / W (€,as™) : Vi, : V (02, — Iy (n°20)) da + / W (e,us™) : (znVnT) : (znVnT) dz.

Qo,ex Qo,ex
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Hence,

/|Vzn\2 dz < / W" (e,ul™) : Vs : nVz, dx + ||nznV77T||L2(Supp(n))
Ag Qo,ex (354)

+ ||V (772 (Zn) — 1, (772’271)) ||L2(§~20,CX) + ||znvn—r|‘%2(supp(n))'

Since z,, converges weakly to 0 in H' and hence strongly in L2, both ||nz, V' l| L2 (supp()) and [ESH ||%2(Supp(n))
go to zero in (3.54). Moreover, V§, — V@w§ by construction and Vz, — 0 so reasoning as we did just after (3.43)

/ W (e ul™) : Vit : nVz, dx — 0. (3.55)
Qo,ex
Finally, to show
v (7723n -1, (7]2zn)) HLZ(Qo,ex) — 0, (3.56)

observe that n°z, — I, (7*2,) vanishes outside a neighborhood Njs CC Qo.ex Of supp(n). Then

19 (%0~ o (220)) B = [ 19 P2 I G2 o
N5

< Z /|V (2, — I, (nzzn))|2 dr < Z IT1?IV? (n*2) ||2LQ(T),
TETh,n T T€Thn
TNNs#D TNNs#D

where the last line follows from the Bramble-Hilbert lemma and scaling. Because z, is piecewise linear its
second derivatives vanish on all 7". Using the uniform boundedness of n and its derivatives then yields

2
172020 By = / V2 (12 20) [ d < / (22 da + / 1V (20) 2 d.
T T T

Choose N} such that |J re7,,, C Nj CC Qo ex. Then
TNNs#D

IV (2 = L (1%20)) ooy S jma [TP(0 D2 [zl + [Vzf* de)

TANs+£0 T€Th,n T
o7 TAN5£0

< e fenl” (llenll iz + V2l

TNNs#D

Now note that ||z, L2(ny) = [0}, — @5 || L2(vg) — 0 by construction of 1y, while ||V 2,[[12(n7) is bounded since
2z, is weakly convergent in H'(N}). It follows that if the maximum element size, which is of order €,, goes to
0, then we obtain (3.56). Inserting (3.55) and (3.56) in (3.54) yields (3.50), which in turn implies (3.46).

O

Our second task is to prove the atomistic version of Lemma 3.9 over A;.

Lemma 3.10. Let w2 and w§ be as defined in Lemma 3.4. Then

IV (Iywy, —wg) [|L2(a,) — 0. (3.57)
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Proof. Consider again a sequence w2 := I, w§, which converges to wj in Hlloc(fla). In particular, the sequence
converges strongly on A;. Take n to be a bump function adapted to A;, and recall that each w2 solves a problem

0= V{(enDe,u,(€)): De, i(€) : De,v™(§) Vo™ € UG, (3.58)
geLoe

As before, to prove (3.57) we will show that
IV (@5, — @y) (|22 (a,) = 0. (3.59)
We recall that the product rule for difference quotients involves a shift operator which we denote by T

Tenpv(g) = v(§ + €enp),
De, p(uv)(§) = (De,pu)v + (Tt pt) De, pv, (3.60)

Te,uDe,v = (Te, puDe, pv) ez -

Now set y,, := w3 — @ and note since n*y, € Uj,,, the product rule in (3.60) gives

0= > Vi(eaDe, a2, (€)): Do, @(€) : De, (n*(yn)) (€)

§€ng’n
= D VE(enDe, 530 (€): Do, (€) = De, () Te,n(€) (3.61)
§€L0,
+ > VienDe, 4, (€)): De, @5(€) : nynDe, n(S).

geLeo

a,n

Thus

/ Y Lyl? do < / VL, ()2 dz < (52€% (e Do, 52%,) Do, (1yn): Do, (1))
Aq O

Qa
= Z Vg"(ﬁnDe,ﬂi?n(f))ZDen(Wyn)iDen(Uyn)
geLes,
= > V(eaDe, @35,(€)): Te,nDe, (yn) : De, (nyn) + >, V' (enDe, @35,(8)):ynDe, (1) : De, (nyn)
geLes, geLes,

(3.62)
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Next, simply substitute the definition, y, = w2 — w2, into the first summand above to obtain

/ Vol de S Y VI(enDe, @0 (€): oy nDe, (62) : De. (11yn)

Ay geLee,
o Z ‘/Z/<677’D6" 11270” (5)) : Ten 77D€n (w:,) : Dﬁn (nyn)
£ELSs,
+ 3 Ve (enDe, @, (€)):ynDe, (n) : De, (yn)
5e£gfn
= > V(enDe, w5, (9): TeunDe, (5) : De, (nyn)
€eLgs,
= Y VienDe,@5,(€)): De, (€) s nynDe,m(€) using (3.61)
geLys, (3.63)
+ 3 Ve (enDe, @, (€)):ynDe, (n) : De, (yn)
£EL3S,
S D V(enDe, u5,(€)): De, i (&)  De, (nyn)Te,n(€)
565_3?"

+ ”nynDsnnHegn(égfn) + lynDe, (77)”(37l (£22)
Y V' (enDe, @25, (€)): De, 3 (€) = De, (yn)Te,n(€) + llym
geLes,

Z Vgﬁ(enDenﬁ;?n(g)) :De, wy, (€) : De,, (nyn)Te,m(§) + Hlnyn||L2(Supp(I_nD€nn)>7
geLes,

A

22 (supp(InDe, 77))

N

Since Iy, — 0 on compact subsets of Q. and because a compact subset of Qa—say X—can be chosen so that
supp(l,D.,n) C X for large enough n, the last term tends to 0. To show that the first term also goes to 0, we
use the integral formulation (3.8):

Z V//(enDenﬂ;?n(g)):Dean(O : De,, (nyn)Te,m(€)
geLys,

= [ LV (D €)1 Dey s To(De, (1) T )
Qa
/~ I_nVH(GnDen'a:?n(f)):I_nDean : I_n(Dfn (Yn)Te,nTe,n) dz
Qa (3.64)
+/ I_nVN(GnDen'aZ?n(f)): nDe, Wy, I_n(ynDen (mTe,n) dx

a

[ I_nVH(EnDEn'a:?n(f)) : I_nDenwi :
Qa

A
~i

n(De,, (Yn)Te,nTe,n) dx + Hl_nyn||L2(Supp(an€nn))

S /Q I_nV"(EnDenﬁfn(E))if_n(DeanTennTenn) : jn(Den (Yn)) dx + HInyn||L2(supp(an6nn))

The last term again goes to zero since Iy, — 0 in L? on compact subsets of Q., and supp (1, De, 1)
lies in such a subset for large enough n. To show that the remaining integral also tends to 0 we use that
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I,D., (0® —w?) = I,,D., y, converges weakly to 0 on supp(77) by Lemma 3.7, and that

anN(EnDen ﬁz,on (6))7
converges uniformly to W (0) on supp(7, 1), according to Lemma 3.6. Meanwhile, T, converges uniformly to 7,
and by replacing weak convergence with strong convergence in Lemma 3.7 and modifying the proof accordingly,
we see that I, D, w% converges strongly to Vw§ on supp(7},). The integral remaining in (3.64) is then a duality

pairing of a strongly convergent and a weakly convergent sequence, which converges to the pairing of the limits.
That is,

[ IinV”(enDenﬂgfn(f)) I, (D, w2T., nT..m) : In(De, (yn)) dx — [ C:nszg :0dx = 0. (3.65)

O

Step 4:

Proof of Theorem 3.2. We assume the existence of a sequence satisfying (3.15), which yields sequences of nor-
malized functions w? and @S possessing the properties of Lemma 3.4. Combining (3.45) with (3.17) shows

(Vmg,Vmg)LQ(QO) =1. (3.66)
Since w§ and w§ have seminorm equal to 1 over Q,, we see that
(Vag, Viog) 12 (a,) = IVOG L2 (0,) VGl 2 (5,
Hence Vg = aVa@§ on €2, for some real number « implying
1= (aV@&V@S)LQ(QO) = OéHV’lDSHiZ(QO) =a.

Thus V@g and Vi are equal on Q,. We can therefore define an H' function by

B w§  on
wo =

7C
wG  on

a
)
C

jeljel

which is a global solution to the linear homogeneous Cauchy-Born equation so that Vg = 0. We conclude that
(Vwd, Vmg)LQ(QO) = 0, which contradicts (3.66). O

4. CONCLUSION

APPENDIX A. EXTENSION THEOREMS

In this appendix, we recall Stein’s extension theorem [39] for domains with minimally smooth boundary and
a modified extension operator that preserves the H' seminorm due to Burenkov [5].

Theorem A.1 (Stein’s Extension Theorem). Let U be a connected, open set for which there exists an € > 0,
integers N, M > 0, and a sequence of open sets Uy, Us, ... satisfying

(1) For each x € OU, B.(z) C U; for some 1,
(2) The intersection of more than N of the sets U; is empty,
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(3) For each U;, there exists a Lipschitz continuous function ¢; and domains
Di = {(a',y) e R™" 1y > pi(a'), |pi()) — pi(ah)| < Moy — a5}

such that
U,nNU=U;ND,.
Then there exists a bounded linear extension operator E : HY(U) — HY(R?). The bound of the extension
depends upon the domain U through N, M, and e.

Theorem A.1 can be used to prove an extension theorem with preservation of seminorm due to Burenkov [5]:

Theorem A.2 (Extension with preservation of seminorm). Let U be a connected, bounded open set for which
there erxists a bounded linear extension operator E : H*(U) — H' (R™) and a bounded projection operator P
from HY(U) onto the constants with the property that for all f € HY(U),

If = Pfllezqwy S Ol wy-

Then the operator defined by
R=P+ E(Id-P)

s a linear extension operator with the property that
IVEf[L2wy < B[ (c(U) + D) IV Fll2()-

Remark A.3. We can set E to be Stein’s extension operator [39] and choose

1
Pu= m(U)!u(x) dz.

In this case ¢(U) is the Poincare constant for the domain U.
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