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Abstract  —  Many methods have been proposed to detect arc 

faults within photovoltaic systems. However, because of the 
dearth of data surrounding arcs that actually occur in 
commercial or residential PV systems, a sound method is 

necessary to systematically check for the effectiveness of 
algorithms claiming the ability to detect PV arc faults. This 
method should include data representing actual background PV 

system noise and seek to quantify the limits of the detection 
capability for the algorithms of interest. 

Index Terms — arc discharges, detection algorithms, 
photovoltaic systems. 

I. INTRODUCTION 

Changes in the National Electrical Code® (2011) and the 

UL 1699B safety standard call for the ubiquitous use of arc 

fault detectors in photovoltaic arrays [1]. Without these 

devices, solar arrays remain vulnerable to the risk of fire 

hazard, which can hamper the widespread adoption of 

renewable energy resources. 

Research applicable to photovoltaic arc fault detection tends 

to focus around experimental case studies of arcing scenarios. 

These scenarios include parallel and series arcs [1, 2], and arcs 

fabricated through diverse mechanisms, e.g., pull-apart 

method, steel-wool, etc. Many have proposed methods for 

detecting such arcs including those involving Fourier 

frequency band analysis, time-domain amplitude monitoring, 

and even analysis of electric field strength dynamics through 

electromagnetic sensors [3, 4].  

What many of these attempts lack is a method to test the 

robustness of their proposed detection schemes. The data 

incorporated for detection benchmarking may be produced by 

carefully controlled experiment, but is it effective in 

representing a host of real-world PV systems?  

Every solar array tied to the grid contains an electric-noise-

producing solar inverter, and each brand or model of inverter 

carries its own background noise waveforms. The diversity 

and the potency of this background noise require that arc-

detection methods must be able to distinguish between it and 

the erratic behavior associated with the actual occurrence of 

an arc fault. Because of this need, the authors propose a 

technique of embedding known arc signatures within a large 

dataset of inverter noise recordings in order to test the efficacy 

of the various detection methodologies. Once a digital library 

has been created, inverter noise and arc signals can be 

combined at different ratios and replayed for specified 

durations in order to test the robustness of digital detection 

algorithms. We introduce the relevant ASNR parameter for 

signal synthesis. 

This proposal operates under the assumption that regardless 

of the source of the signals, e.g., voltage or current 

measurements from cables or sensors that are used to observe 

the surrounding circuitry or environment of an arc, it is 

feasible to sample these signals and implement a digital 

algorithm for detection. 

II. CONSTRUCTING A DATASET 

The authors collected and compiled a data bank of inverter 

current noise signatures, each in length approximately 1/20th 

of a second. Though a good step in the right direction, these 

noise clips fall short of a desirable time duration for testing. 

An effective arc detection algorithm must not only unfailingly 

detect the presence of an arc but also must not nuisance trip or 

give false positives during signal input that contains only 

background noise. In order to thoroughly test both equally 

significant capacities, we desire a signal 1-10 seconds in 

duration. 

A. Approach 

An approach to solve the inadequate signal length problem 

which seems straightforward is to take an FFT of a given 

signal to obtain the frequency spectrum and then use an 

inverse FFT to recreate an extended time-domain waveform. 

However, this approach does not come without its challenges.  

The traditional inverse DTFT is defined as follows [5]: 

     
 

  
∫             

 

  
 (1)  

where 

       ∑           
     (2)  

(1) is often termed the synthesis equation with the DTFT in 

(2) below it comparatively referred to as the analysis equation. 

These two equations form a reversible set of point-to-point 

calculations with a frequency resolution equal to the sampling 

rate divided by the signal length, N. In other words, the 

differential, dω, in (1) is limited to increments of the 

frequency resolution for finite, discrete-time computations.  

Consequently, while the efficient IFFT algorithm can 

reproduce exactly the original time-domain signal associated 

with the spectral result of the FFT, it cannot exceed the 
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resolution of the FFT result which is determined only by the 

sampling rate and number of samples in the original signal. 

Our implementation is similar to IFFT, but differs according 

to the following formula: 

     ∑        (  
   

 
     )

    

 
     (3) 

where X[m] and φ[m] are the magnitude and phase of the 

FFT result at increments of the frequency resolution. Note that 

we use NFFT/2 because we build our reconstructed signal 

from the half-spectrum of the symmetric FFT result. We also 

scale our FFT result to compensate for the 1/2π term present 

in the synthesis equation during reconstruction. 

B. Signal Extension Challenges 

When working in conjunction with the FFT, our method as 

well as the IFFT encounters additional complications in the 

specific task of time-domain signal extension. The FFT 

requires that its parameter of both signal and spectral length, 

NFFT, must be a power of two in order to maximize the 

efficiency of computations. If       is not a positive integer, 

then the original signal is zero-padded in order to make it 

conform to this power-of-two length requirement. While such 

zero-padding has no adverse effect on the accuracy of the 

spectral result of the FFT, it does pose a problem in recreating 

the time-domain signal. Specifically, when the signal is 

reconstructed for a time interval exceeding the original signal 

length, N, the zero-padded segment will re-emerge as part of 

the recreated signal.  

Fig. 1 illustrates this behavior. A 1MHz inverter noise 

signal containing 52,429 points is zero-padded to the next 

power of two: 65,536 (2
16

) points. The mean or DC offset is 

then subtracted for analytical convenience. After extending the 

signal to an approximate ¼ second duration using FFT and 

subsequent IFFT-based reconstruction, multiple intervals of 

zero-valued signal appear. 

The number of blank intervals that appear in a time-

extended signal is predictable by the ratio of the final time-

domain signal length to the length of the finite FFT spectral 

result. Specifically, for any real scalar multiple, k, the number 

of complete intervals, bk, embedded within the extended 

signal is given by 

   ⌊
   

    
 ⌋  (4)  

In the example of Fig. 1, k = 5.5, and the corresponding 

number of intervals is 4 as expected. 

Another problem with using an IFFT-based method of time-

domain signal extension is that reconstruction past the original 

signal length—when n > N-1 in (3)—relies on periodic 

extension. For any particular frequency component, rather 

than creating a smooth extension of that component for n > N-
1, periodic extension means restarting the component at n = N 

with the same magnitude and phase attributes that it had at n 

= 0. This “replay” effect is carried out on all frequency 

Fig. 1. The original inverter noise waveform (red) is extended to a 

time interval 5.5 times its original length (blue) using IFFT-based 

reconstruction. 
 

components in the spectrum. Consequently, the frequency 

content of the reconstructed signal will not be consistent at 

integer multiples of the signal length. Inconsistent frequency 

content could easily be a source of error for arc detection 

algorithms. 

C. Proposed Signal Extension Solutions 

The zero-valued segments in the reconstructed signal can be 

minimized by eliminating the zero-padding of the original 

signal. In other words, we must choose a base signal of length 

N such that       is a positive integer. In the case of the 

1MHz inverter noise signal, we could select a subset of 

contiguous points from the original sampled signal in length 

corresponding to the next largest power of two less than N, but 

that also involves a reduction in the resolution of our 

reconstruction result by a factor of two.  

Instead, using a background noise signal of equivalent time 

duration from the same inverter that is sampled at a rate of 

5MHz, we start with 262144 (2
18

) points. Now that no zero-

padding is required before performing the FFT on the 5MHz 

signal, the signal produced from reconstruction has no readily 

observable breaks or blank intervals (see Fig. 2). 

To ensure the quality of the reconstruction method, the 

spectrum of the original signal and the reconstructed signal 

can be scrutinized with frequency analysis tools. Fig. 3 shows 

the result of a discrete time Fourier transform that reveals no 

differences between the original and reconstructed signal. 

However, there are still issues with the nature of periodic 

extension. Due to sampling, the number of frequency 

components in the reconstructed signal is limited to NFFT. 

But even with a finite frequency resolution, no matter how 



 

Fig. 2. The original inverter noise waveform (red) is extended to a 

full one-second duration (blue) using IFFT reconstruction. The 

original signal length is now a power of 2. 

Fig. 3. The original 5MHz inverter noise spectrum (red) appears 

the same as the spectrum of the extended one-second duration 

waveform (blue) as shown in the range from 0 to 100kHz. 

Fig. 4. Wavelet decomposition in the range of 4.88~9.77kHz 

(orange) highlights otherwise imperceptible changes in the frequency 

content of the reconstructed signal (blue). 

 

the window is selected, it is in most cases impossible to satisfy 

the requirement that all frequency components have an integer 

number of periods within the FFT window. A wavelet 

decomposition analysis shown in Fig. 4 illustrates the effect of 

non-compliance with this requirement. 

While the reconstructed 5MHz time-domain signal appears 

naturally continuous at multiples of the original signal length, 

the wavelet decomposition which keenly analyzes time-

localized frequency content shows spikes at these points. Fig. 

4 displays content relevant to the 4.88~9.77kHz band, but in 

fact the spike in frequency content is visible in nearly all sub-

bands generated by wavelet transform at the multiples of the 

signal length, N. This spike in frequency content indicates an 

abrupt change in the time domain signal. Though it may be 

hard to visually discern in the time-domain with the high-

frequency content present in the inverter noise, this may be 

connected with the onset of discontinuous periodic extension.  

A complete solution to this problem only exists when the 

signal contains a least common multiple (LCM) of periods for 

all frequency components within the signal length, N. If the 

LCM > N, no appropriately sized window can be selected.  

Therefore, testing conducted to determine the accuracy of 

arc detection methods relying on time-localized frequency 

content must be cognizant of and/or compensate for test 

signals extended through an IFFT-based method. 

D. Growing the Dataset through Signal Extension 



 

In summary, the process of time-domain signal extension 

has been demonstrated using an FFT and IFFT-based 

reconstruction technique. While the demonstration aimed to 

produce an extended 1-second test signal for a single inverter, 

this process may be repeated for any inverter noise signal of 

interest provided that imposing the power of two length and 

windowing requirements, i.e., reducing  the signal length if 

necessary, does not diminish the frequency resolution or 

signal quality beyond levels needed for testing. 

Building on this or other extension methods, a library of 

inverter noise signals should be assembled, extended, and 

replayed for sufficient durations for testing within practical 

limits of computational time and available memory. 

III. COMBINING NOISE WITH ARC 

After extending the length of the test signal to the desired 

duration, the background noise data needs to be combined 

with arcing information to approximate real-world input for 

arc fault detectors in PV systems. For the authors’ work, this 

is considered an approximation in part because of arcing data 

obtained through use of an arc fault generator, rather than 

finding and recording elusive “naturally occurring” arcs 

discovered within installed residential or commercial PV 

systems. More information regarding the production of the arc 

data can be found in [6]. 

Rather than combining the inverter noise data and synthetic 

arc signal using simple amplitude superposition, we can 

combine the signals at specific relative power magnitudes. 

Knowing the relative strength of one signal versus the other 

allows one to explore the limits and therefore the range of 

detectability. We define a concise arc-signal-to-noise ratio as 

follows: 

     
    

      
  (5)   

An example of the composite arc signal plus inverter noise is 

illustrated in Fig. 5. A flow chart retracing the steps of the data 

combination process is depicted in Fig. 6. 

With perhaps minor modifications to sampling rates, the 

composite synthetic waveform may be fed directly as an input 

into any digital arc fault detecting algorithm. A functional 

algorithm should be able to distinguish between the inverter 

noise and the superimposed arc, assuming that the detection 

method is based on time or frequency domain analysis. More 

robust methods will be capable of detecting the arc at lower 

ASNRs—ASNRs less than or equal to 0.01, for example, 

rather than the more obvious cases at ASNR levels greater 

than or equal to unity. 

IV. FUTURE WORK 

After the collection and digital processing of the inverter 

noise and arc fault signatures have been completed, these 

digital signals can be converted to the analog domain in order 

to test real world systems. A digital-to-analog converter that 

generates voltage and current waveforms followed by a power 

amplifier operating at true PV array power levels should be 

able to recreate waveforms from any of the stored test signals 

in the digital library. These high-power signals form the basis 

of a hardware test bench to evaluate the true capability of arc 

fault detection algorithms. If the microcontroller which houses 

a detection algorithm performs well in triggering arc 

 
Fig. 5. The waveform with arc (red) is superimposed on the 

inverter noise waveform (blue) at ASNR = 1, 0.1 and 0.01 to produce 

the composite synthetic waveforms (green, magenta, and yellow). 



 

fault circuit interrupters for the test bench, employing it for 

use in actual PV systems is the logical next-step and also the 

end goal of this work. 

In Fig. 7 we see the envisioned setup of the hardware test 

bench. A laptop or desktop computer is used to process and  

prepare the test signal from the inverter noise library at the 

desired ASNR. After converting the test signal to the analog 

domain, the signal undergoes preliminary amplification to 

prepare it for subsequent coupling with a high DC-power solar 

array simulator. This signal is then fed to the device under test 

(DUT) which triggers the arc fault circuit interrupter (AFCI) 

upon detection of an arc. 

This described system has the advantage that each of the 

steps and/or components within the system are modular and 

inexpensive in comparison with hardware testing that involves 

redirecting operations at a solar farm or installation of new PV 

arrays for testing purposes. 

It also allows for repeatability in testing. Those who would 

conduct the tests do not need to rely on chance for appropriate 

weather and atmospheric conditions. The PV simulator output 

coupled with the high-frequency components from the 

conditioned test signal provide all necessary controls. The DC 

voltage and current can be specified as well as the power level 

of the inverter noise and embedded arc signal. Selecting and 

synthesizing new test signals from the inverter noise library 

allows the DUT to pass through multiple trials which each 

represent different possible PV installations without requiring 

reassembly or change of venue.  

V. CONCLUSION 

A method to ascertain the quality of arc fault detection 

algorithms has been discussed. Taking inverter noise 

measurements from actual PV systems provides essential data 

for use in the preparation of test signals. Extending test signals 

to sufficient length ensures verification of detection and gives 

alerts of false positives. FFT analysis followed by IFFT-based 

reconstruction provides one means of reaching the test signal 

length requirement, although choosing an appropriate window 

to satisfy a perfect reconstruction for all frequency 

components may be difficult.  

 

 
 

Fig. 6. Diagram following the data from the collection phase 

through processing until the composite arc and inverter noise 

waveform is ready for use in testing. 

Fig. 7. A test signal produced by the computer passes through conditioning and amplification into a coupling circuit which combines high 

power DC with the high frequency test signal at the appropriate magnitude. The resulting signal serves as direct input for the DUT. 



 

Defining an arc-signal-to-noise ratio further allows for 

specific quantification of arc detecting capability.  

Future work involves implementing the digitally 

synthesized signals in the analog domain. A hardware test 

bench built on the inverter noise library according to the 

system described in Fig. 7 is capable of performing repeatable, 

controlled experiments on the devices that execute arc 

detection algorithms. 

Following these proposed methods, industry and regulatory 

entities can utilize inverter noise field data in combination 

with synthetic arcing information to evaluate the quality of arc 

fault detectors. Ensuring accurate and robust detection 

algorithms in turn improves the reliability and safety of PV 

systems. 
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