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Abstract— This paper examines the accuracy of clustering 
techniques for predicting hosting capacity. Hosting capacity 
results for 214 study feeders were used to predict a range of 
hosting capacities for an additional 7929 feeders using clustering 
techniques. Several methods were explored to try to improve the 
accuracy for predicting hosting capacity, including increasing 
the number of clusters, selecting variables that are highly 
correlated to hosting capacity for clustering, and weighting 
highly correlated clustering variables. The average normalized 
interquartile range (ANIQR) is used to compare the accuracy of 
several clustering methods for predicting hosting capacity.  

Index Terms—clustering methods, distributed power generation,
power distribution, principal component analysis

I. INTRODUCTION

As photovoltaic (PV) energy penetration continues to 
increase, utilities are becoming concerned about the impact 
that these systems will have on the distribution system. The 
analysis required to quantify the impact of PV systems on the 
distribution system can be time consuming and costly. 
Gathering the data and creating feeder models that accurately 
predict the behavior of a distribution feeder is a difficult and 
tedious process. Recently, data clustering techniques for 
grouping distribution feeders with similar characteristics have 
been proposed for simplifying PV interconnection studies [1], 
[3-7]. However, the accuracy of these clustering methods to 
predict hosting capacity on distribution feeders from a given 
cluster has not been evaluated. This work explores the 
accuracy of clustering techniques for predicting hosting 
capacity and discusses possible limitations of these 
techniques.

II. BACKGROUND

A k-means clustering methodology was employed in [1] 
with the objective of developing a more accurate screening 
criteria for PV interconnection. Correlation maps on variables 
of interest were used to select the set of variables used for 
clustering, principal components analysis (PCA) was used to 
transform the data along with unit variance scaling of the data 
set to obtain equal weighting among the selected clustering 
variables and the Cubic Clustering Criterion (CCC) [2] was 
used to determine the number of clusters. Variables used for 

clustering consisted of variables related to feeder topology, 
feeder voltage control, feeder load data and customer data. 
Over 8,000 feeders from three different utilities were 
clustered. Clustering was performed separately on each 
individual utility. Eleven variables were used for clustering 
feeders from Utility 1 and Utility 3 and twelve variables were 
used for clustering feeders from Utility 2. Seven, ten and five 
clusters were obtained for Utility 1, Utility 2 and Utility 3 
respectively.

Classifying feeders based on the hierarchical algorithm 
was first demonstrated in the PNNL Taxonomy Final Report 
[3]. Hierarchical clustering using Ward’s method was used to 
cluster 13,007 low voltage (LV) feeders in [4]. Three 
statistical parameters including Semi-Partial R², Pseudo-F 
statistic and a Pseudo-T² Test were used to determine the 
optimal number of clusters for the data set. Seven variables 
were used for clustering including variables related to feeder 
topology, feeder load data and customer data. In the end nine 
clusters were selected to represent the 280 HV feeders and ten 
clusters were selected to represent the 13,007 LV feeders. In 
[5] a clustering algorithm was developed and used to cluster 
1295 Arizona Public Service (APS) distribution feeders. 
Techniques used include, using a k-mediods algorithm for 
clustering, using the error ellipse method for outlier 
identification and removal and using the Calinski Index to 
select the optimal number of clusters. Sixteen variables were 
used for clustering and consisted of variables related to feeder 
topology, feeder voltage control, feeder load data and 
customer data. Nine clusters were used to cluster the 1295 
feeders. 

Four clustering approaches including hierchical, k-
mediods++, improved k-means++ and Gaussian Mixture 
Model are employed and compared in [6]. The 232 feeders 
were partitioned into two data sets, one with PV and one 
without PV. Clustering was performed on both data sets 
individually. Four indices were used to determine the optimal 
number of clusters for each data set. The four indices include 
Variance Ratio Criterion (VRC), Similarity Matrix Indicator 
(SMI), Global Silhouette Coefficient (GS) and Average 
Silhouette Coefficient (AvgSC). Nineteen variables were used 
for clustering and consisted of elements related to customer 
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data, feeder topology, feeder load data and PV data. Eleven 
clusters in total were obtained to represent the 232 distribution 
feeders.

Several other clustering approaches have been proposed
[7]. However, the accuracy of these clustering methods for 
predicting PV hosting capacity has not been explored. This 
paper utilizes results, including hosting capacity, for 214 
feeders that have been thoroughly analyzed and attempts to 
determine a hosting capacity range for more than 7,900 
additional feeders by utilizing clustering techniques. Metrics 
for quantifying the accuracy of the clustering techniques for 
predicting hosting capacity are developed. 

III. METHODOLOGY

A. Clustering Algorithm (k-means)

For this project, a k-means clustering approach was used. 
Variables used for clustering were selected based on the 
impact they might have on differentiating feeder types and on 
DG hosting capacity. Because the optimum number of clusters 
is more accurtely achieved when the chosen variables are 
independent of each other, the intial variables were analyzed 
using a correlation map and pairs of highly correlated 
variables were examined more closely to determine if it was 
beneficial to remove one of the variables before clustering. K-
means clustering algorithms can be very sensitive to outliers 
[2] and therefore, feeders that were considered outliers were 
removed from the data set. The sensitivity of K-means to 
outliers is shown in Fig. 1 where the choice of the number of 
outliers significantly changes the solution for the optimal 
number of clusters from 8 to 11 clusters.

Fig. 1. Cluster solution dependence on outlier selection.

The most difficult problem in cluster analysis is how to 
determine the optimal number of clusters. A quality metric for 
determining the optimum number of clusters is based on the 
CCC. The optimum number of clusters can be derived from a 
CCC value based on minimizing the within-cluster sum of 
squares. Although not a mathematical law and more of a rule 
of thumb that has been validated in the statistical community, 
the optimal number of clusters can be determined by plotting 
the CCC value against the number of clusters and finding a 
local maximum after the CCC rises above 2 and before it 
drops below 2. Fig. 1 shows three solutions of 8, 9 and 11 
optimal clusters using this rule. It is important to note that you 
are not necessarily looking for the highest CCC value as this 
will be achieved when a cluster is created for each individual 
element which is not representative of optimal clustering. 
Statistical analysis was performed using the SAS JMP 

software tool to calculate the CCC value for each cluster 
number.

B. Analyzed Study Feeders

In order to characterize the accuracy of clustering feeders 
to determine hosting capacity, 214 feeders have been selected 
and analyzed for their hosting capacity.  The distribution 
systems are from various utilities around the United States.  
The majority of feeders also included a year of substation 
SCADA measurements from the utility.  The power systems 
models include the full details about voltage regulator settings, 
capacitor switching controls, and up to 6000 buses per 
distribution system.

Fig. 2 shows characteristics of the total set of 8143 feeders 
as well as the 214 study feeders. About 67% of all feeders and 
65% of the study feeders are 12 kV feeders. Almost 88% of all
feeders have no regulators as compared to 80% of the study 
feeders. Overall there are no major differences between the 
characteristics of the collection of 8143 feeders and the 214 
study feeders.

Fig. 2. Feeder characteristics for full set of feeders (Blue) and 214 
study feeders (Red)

C. Feeder PV Hosting Capacity Analysis

Each of the study feeders is analyzed using a detailed 
hosting capacity analysis.  The methodology in [8-9] is used to 
investigate a large number of potential PV scenarios 
(combinations of PV size and location) in OpenDSS [10].  On 
average, there are around 40,000 PV scenarios analyzed per 
feeder.

For each PV scenario, a series of simulations is performed 
to determine if that particular scenario would cause issues on 
the distribution system.  The simulations include a range of 
load values that occur during daytime hours throughout the 
year, a range of feeder states as far as regulation equipment 
taps and switching capacitor states, and simulation of extreme 
PV output ramps.  Steady-state voltage violations are 
determined using ANSI C84.1, thermal violations are defined 
by the component’s amp rating, and temporary voltage 
violations are determined using the ITIC (CBEMA) curve.

Using the detailed simulation results, the feeder hosting 
capacity is defined as the maximum PV size that can be placed 
anywhere on the feeder without causing issues.



IV. VALIDATION/ACCURACY/ANALYSIS OF PREVIOUS 

CLUSTERING ALGORITHM

A. Clustering All California Feeders and Study Feeders

The data set used for clustering consisted of a total of 
8,143 feeders with feeder characteristics for 7,929 California 
feeders and 214 feeders analyzed to determine the hosting 
capacity of the feeder. The clustering was performed using 8 
feeder characteristic variables with a double weighting on 
feeder primary voltage. The other feeder variables were: Total 
3-Phase miles, Total 1 & 2 Phase miles, Residential Customer 
%, Regulator #, Capacitor # and feeder peak load. These 
variables are typically easy for utilities to determine and were 
available for each of the 8,143 feeders.

B. Clustering Results

The clustering of a total of 8,143 feeders resulted in a 
solution of 8 clusters as shown by the colored regions in the 
biplot of Fig. 3 with study feeders shown by different markers. 
The study feeders are widely distributed across the clusters 
with the largest concentration in cluster 7, a 12KV cluster.

Fig. 3. Biplot of the 8 cluster solution for 8,143 feeders with 
study feeders shown by markers

The range of hosting capacities for each cluster is shown 
using boxplots in Fig. 4. Boxplots are useful for identifying 
outliers and for comparing distributions. The blue box is the 
interquartile range (IQR) and it represents the values between 
the 75th percentile and the 25th percentile covering the middle 
50% of the data. The median for the cluster is shown by the 
red line and outliers are shown by the red “+” markers. The 
whiskers extend out to capture all values that are less than 
third quartile +1.5 IQR and greater than first quartile -1.5 IQR. 
Any data not included between the whiskers is plotted as an 
outlier.

The number of study feeder in each cluster is shown in the 
upper portion of the figure. Clusters with four or more feeders
were plotted and analyzed. The minimum number of study 
feeders per cluster was set at four to ensure sufficient data to 
define a meaningful range of hosting capacities per cluster.
The most populated cluster is cluster 7 with 114 study feeders. 
It is a 12-13.8 kV cluster with a range of hosting capacities 
from 0.2 to 4.3 MW excluding outliers. The box height is 1.5 

MW which is the range of hosting capacity values for 50% of 
the study feeders in the cluster. The cluster with the greatest 
range of hosting capacities is cluster 2 with 37 study feeders. 
It is a 19.8kV to 34.5kV cluster with a range of hosting 
capacities from 0.3 to 10.2 MW excluding outliers. The box 
height is 4.6 MW which is the range of hosting capacity 
values for 50% of the study feeders in the cluster.

The normalized box height of each cluster is calculated by 
dividing the IQR by the median hosting capacity of the 
cluster.  The variation across the whole set of clusters can be 
measured by taking the average of all the normalized cluster 
box heights for clusters with 4 or more feeders.                        

    	����� =
�

�
∑ ((�75 − �25) ÷ �50)�
�         (1) 

Where n equals the cluster number and P equals the percentile. 
The box heights or IQR represents the central variation in the 
cluster hosting capacity distribution. The normalized IQR
removes the bias of large hosting capacity feeders and taking 
the average ensures that we are improving the overall cluster 
solution. The ANIQR for this set of clusters was 109%, 
meaning that the average variation in hosting capacity for each 
cluster was 109% of the mean hosting capacity of that cluster.

Fig. 4. Boxplot of hosting capacity variation per cluster for 8
cluster solution for 8,143 feeders using 8 c luster variables.

C. Clustering Accuracy to Predict Hosting Capacity

Ideally the clustering would provide a tight range of 
hosting capacities for each cluster, but the results show that 
the range of hosting capacities varies widely depending on the 
cluster with some box plots showing a narrow range and 
others a very broad range. The variation in hosting capacity 
within the cluster is not dependent on the location within the 
cluster. The source of the hosting capacity variation in Fig. 2
was investigated by looking at the hosting capacity violation 
type per feeder in each cluster. Fig. 5 uses the marker shape to 
denote the type of issue that first violated on each study 
feeders which determined the hosting capacity of the feeder. 
Cluster 6 for example, has 12 kV feeders that all have hosting 
capacity limitations caused by over-voltage conditions. The 
relative size of the marker indicates the relative feeder peak 
load of each feeder. The large variation in the violation types 
within each cluster illustrates the difficulty of capturing the 
key characteristics that drive the hosting capacity value with 
clustering.
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Fig. 5. Hosting capacity violation type shown by marker shape 
for each feeder in the clusters.

V. VARIATIONS IN CLUSTERING METHODOLOGY

A. Dependence of Accuracy on Number of Clusters

One possible solution to improve the accuracy of hosting 
capacity per cluster is to increase the number of clusters. Fig. 
6 shows a 16 cluster solution and Fig. 7 shows a 32 cluster 
solution using the same variables as the 8 cluster solution 
discussed earlier. Clusters with four or more feeders were 
plotted and analyzed.

Fig. 6. Boxplot of hosting capacity variation per cluster for 16 
cluster solution for 8,143 feeders using 8 cluster variables.

Fig. 7. Boxplot of hosting capacity variation per cluster for 32 
cluster solution for 8,143 feeders using 8 cluster variables.

The ANIQR did not change materially: the 16 cluster solution 
had an ANIQR of 102% showing a slight improvement from 

the 109% for the 8 cluster solution and the 32 cluster solution 
had an ANIQR of 129% showing degradation. The box height 
for the most populated cluster did not change for the 16 cluster 
solution and decreased to 1.2 MW for the 32 cluster solution.
The conclusion is that increasing the number of clusters does 
not particularly change the overall accuracy of the clustering 
solution.

B. Correlation of Clustering Variables to Hosting Capacity

Another possible solution to improve the accuracy of 
hosting capacity per cluster is to increase the weighting of key 
clustering variables based on their correlation factor (CF) with 
hosting capacity. Table I shows the correlation coefficients 
between the clustering variables used earlier and the hosting 
capacities of the 214 feeders.  Using the correlation 
coefficients the relative weighting factors shown in the table 
were implemented.

TABLE I: SEVEN CFs & WEIGHTING FACTORS 

Variable
Correlation 

Factor (|CF|)
Weighting

Primary Voltage (kV) 0.60 4X

Total 3-Phase Conductor (miles) 0.33 2X

Total 1 & 2  Phase Conductor (miles) 0.10 1X

Residential Customers (%) 0.33 1X

Number of Regulators 0.28 1X

Number of Capacitors 0.19 1X

Feeder Peak Load (kW) 0.31 2X

Table II below shows ANIQR for each of the three cluster 
solutions. A significant improvement occurred in both the 8 
and 32 cluster solutions, but the 16 cluster solution got worse.

TABLE II: ANIQR FOR CLUSTERING SOLUTIONS
Cluster Solution with Weightings ANIQR

8 94%

16 106%

32 77%

Although the weighting of the initial variables did improve the 
ANIQR in two cases the range in hosting capacity variation is 
still very high even in the best case at 77%.

The persistence of a wide variation in hosting capacities in 
each cluster indicates that the clustering variables chosen may 
not be correlated enough with hosting capacity to exactly 
predict it and perhaps adding more highly correlated variables 
will reduce the variation in each cluster and more accurately 
predict the hosting capacity.

C. Addition of New Clustering Variables

There are currently a fairly limited number of variables of 
feeder characteristics available for clustering.  In the future, 
new feeder characteristic variables could become available, 
and should be studied to determine which are the most 
important for predicting hosting capacity.  This could include 
things like calculating the X/R ratio at key buses on the 
circuit. The set of feeder characteristics for the 214 study 
feeders is much more comprehensive set than is available for 
clustering of the 7,929 California feeders. The data set 
includes many important characteristics such as feeder 
impedance values, short circuit current capability, X/R ratios 
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of various buses, etc. that were not in the California feeder 
characteristic data set. Table III shows the ranked order of 
correlation factors for the study feeder characteristics and the 
hosting capacity of the study feeders

TABLE III.CFs & WEIGHTING FACTORS FOR 214 FDRs

Variable 
Correlation 

Factor 
(|CF|)

Weighting 
Factor

Feeder Voltage (kV) 0.69 2X
Minimum Short-Circuit Current 0.67 1X

Impedance (3-phase buses at feeder 
voltage)  Min X/R

0.66 1X

Service Transformers Median Size (kVA) 0.52 1X
Density (kW/sq-km) 0.48 1X
Min X/R to VREG 0.45 1X

3 phase conductor rating- Lowest 0.44 1X
Max R to VREG 0.42 1X

Impedance (3-phase buses at feeder 
voltage)  Max R

0.41 1X

3 phase conductor rating- Weighted 
Average

0.39 1X

Daytime Peak (MW) 0.36 1X
Avg X/R to VREG 0.33 1X

Percent Residential Customers 0.31 1X

A clustering analysis was performed only on the 214 feeder 
studies. Fig. 8 shows the boxplot for the most optimal 
clustering for the 16 cluster solution. The ANIQR for the 16 
cluster solution was 76%, the lowest value found. Although 
this is slight improvement, the average variation in hosting 
capacity of 76% is still very high and demonstrates that the 
clustering method has limited accuracy, even when the new 
highly-correlated feeder characteristics are utilized. There are 
too many interconnected pieces to group feeders into precise 
ranges of hosting capacity. For example, 

Fig. 8. Boxplot of hosting capacity variation per cluster for 16 
cluster solution for 214 study feeders using 14 cluster variables.

line rating or capacitors might not matter if the voltage set 
point is very high, but for a lower regulator set point, the new 
hosting capacity variable determination is driven by 
capacitors or line rating. Clustering is a simple method that, 
by its nature, is unable to capture the interaction between the 
different variables. Not only is clustering for PV hosting 
capacity prediction imprecise due to interrelation of variables, 
but there are so many unique features of feeders that are 
difficult to capture.  For example, one of the study feeders 
had a voltage limit on hosting capacity that was driven by a 

service transformer with a tap setting above nominal resulting 
in higher voltages than normal. These types of feeder 
characteristics and operational characteristics of utility 
feeders will remain difficult to quantify.

VI. CONCLUSIONS

The accuracy of clustering as a method to group 
distribution feeders into specific ranges of PV hosting capacity
has been shown to be relatively inaccurate. Clustering is still 
useful as it provides good separation between clusters in many 
cases, but it has its limitations. The best clustering solutions 
for the various methods explored did not predict the hosting 
capacity accurately and the best solution had an average 
hosting capacity variation of 76%. Clustering will never 
perfectly group feeders such that all unique characteristics 
match with a single PV hosting capacity for the feeder, but it 
can provide a rough estimate of the hosting capacity for 
similar types of feeders.
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