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Abstract— This paper examines the accuracy of clustering
techniques for predicting hosting capacity. Hosting capacity
results for 214 study feeders were used to predict a range of
hosting capacities for an additional 7929 feeders using clustering
techniques. Several methods were explored to try to improve the
accuracy for predicting hosting capacity, including increasing
the number of clusters, selecting variables that are highly
correlated to hosting capacity for clustering, and weighting
highly correlated clustering variables. The average normalized
interquartile range (ANIQR) is used to compare the accuracy of
several clustering methods for predicting hosting capacity.

Index Terms—clustering methods, distributed power generation,
power distribution, principal component analysis

I.  INTRODUCTION

As photovoltaic (PV) energy penetration continues to
increase, utilities are becoming concerned about the impact
that these systems will have on the distribution system. The
analysis required to quantify the impact of PV systems on the
distribution system can be time consuming and costly.
Gathering the data and creating feeder models that accurately
predict the behavior of a distribution feeder is a difficult and
tedious process. Recently, data clustering techniques for
grouping distribution feeders with similar characteristics have
been proposed for simplifying PV interconnection studies [1],
[3-7]. However, the accuracy of these clustering methods to
predict hosting capacity on distribution feeders from a given
cluster has not been evaluated. This work explores the
accuracy of clustering techniques for predicting hosting
capacity and discusses possible limitations of these
techniques.

II.  BACKGROUND

A k-means clustering methodology was employed in [1]
with the objective of developing a more accurate screening
criteria for PV interconnection. Correlation maps on variables
of interest were used to select the set of variables used for
clustering, principal components analysis (PCA) was used to
transform the data along with unit variance scaling of the data
set to obtain equal weighting among the selected clustering
variables and the Cubic Clustering Criterion (CCC) [2] was
used to determine the number of clusters. Variables used for

clustering consisted of variables related to feeder topology,
feeder voltage control, feeder load data and customer data.
Over 8,000 feeders from three different utilities were
clustered. Clustering was performed separately on each
individual utility. Eleven variables were used for clustering
feeders from Utility 1 and Utility 3 and twelve variables were
used for clustering feeders from Ultility 2. Seven, ten and five
clusters were obtained for Utility 1, Utility 2 and Utility 3
respectively.

Classifying feeders based on the hierarchical algorithm
was first demonstrated in the PNNL Taxonomy Final Report
[3]. Hierarchical clustering using Ward’s method was used to
cluster 13,007 low voltage (LV) feeders in [4]. Three
statistical parameters including Semi-Partial R? Pseudo-F
statistic and a Pseudo-T? Test were used to determine the
optimal number of clusters for the data set. Seven variables
were used for clustering including variables related to feeder
topology, feeder load data and customer data. In the end nine
clusters were selected to represent the 280 HV feeders and ten
clusters were selected to represent the 13,007 LV feeders. In
[5] a clustering algorithm was developed and used to cluster
1295 Arizona Public Service (APS) distribution feeders.
Techniques used include, using a k-mediods algorithm for
clustering, using the error ellipse method for outlier
identification and removal and using the Calinski Index to
select the optimal number of clusters. Sixteen variables were
used for clustering and consisted of variables related to feeder
topology, feeder voltage control, feeder load data and
customer data. Nine clusters were used to cluster the 1295
feeders.

Four clustering approaches including hierchical, k-
mediods++, improved k-means++ and Gaussian Mixture
Model are employed and compared in [6]. The 232 feeders
were partitioned into two data sets, one with PV and one
without PV. Clustering was performed on both data sets
individually. Four indices were used to determine the optimal
number of clusters for each data set. The four indices include
Variance Ratio Criterion (VRC), Similarity Matrix Indicator
(SMI), Global Silhouette Coefficient (GS) and Average
Silhouette Coefficient (AvgSC). Nineteen variables were used
for clustering and consisted of elements related to customer



data, feeder topology, feeder load data and PV data. Eleven
clusters in total were obtained to represent the 232 distribution
feeders.

Several other clustering approaches have been proposed
[7]. However, the accuracy of these clustering methods for
predicting PV hosting capacity has not been explored. This
paper utilizes results, including hosting capacity, for 214
feeders that have been thoroughly analyzed and attempts to
determine a hosting capacity range for more than 7,900
additional feeders by utilizing clustering techniques. Metrics
for quantifying the accuracy of the clustering techniques for
predicting hosting capacity are developed.

III. METHODOLOGY

A. Clustering Algorithm (k-means)

For this project, a k-means clustering approach was used.
Variables used for clustering were selected based on the
impact they might have on differentiating feeder types and on
DG hosting capacity. Because the optimum number of clusters
is more accurtely achieved when the chosen variables are
independent of each other, the intial variables were analyzed
using a correlation map and pairs of highly correlated
variables were examined more closely to determine if it was
beneficial to remove one of the variables before clustering. K-
means clustering algorithms can be very sensitive to outliers
[2] and therefore, feeders that were considered outliers were
removed from the data set. The sensitivity of K-means to
outliers is shown in Fig. 1 where the choice of the number of
outliers significantly changes the solution for the optimal
number of clusters from 8 to 11 clusters.
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Fig. 1. Cluster solution dependence on outlier selection.

The most difficult problem in cluster analysis is how to
determine the optimal number of clusters. A quality metric for
determining the optimum number of clusters is based on the
CCC. The optimum number of clusters can be derived from a
CCC value based on minimizing the within-cluster sum of
squares. Although not a mathematical law and more of a rule
of thumb that has been validated in the statistical community,
the optimal number of clusters can be determined by plotting
the CCC value against the number of clusters and finding a
local maximum after the CCC rises above 2 and before it
drops below 2. Fig. 1 shows three solutions of 8, 9 and 11
optimal clusters using this rule. It is important to note that you
are not necessarily looking for the highest CCC value as this
will be achieved when a cluster is created for each individual
element which is not representative of optimal clustering.
Statistical analysis was performed using the SAS JMP

software tool to calculate the CCC value for each cluster
number.

B. Analyzed Study Feeders

In order to characterize the accuracy of clustering feeders
to determine hosting capacity, 214 feeders have been selected
and analyzed for their hosting capacity. The distribution
systems are from various utilities around the United States.
The majority of feeders also included a year of substation
SCADA measurements from the utility. The power systems
models include the full details about voltage regulator settings,
capacitor switching controls, and up to 6000 buses per
distribution system.

Fig. 2 shows characteristics of the total set of 8143 feeders
as well as the 214 study feeders. About 67% of all feeders and
65% of the study feeders are 12 kV feeders. Almost 88% of all
feeders have no regulators as compared to 80% of the study
feeders. Overall there are no major differences between the
characteristics of the collection of 8143 feeders and the 214
study feeders.
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Fig. 2.  Feeder characteristics for full set of feeders (Blue) and 214

study feeders (Red)
C. Feeder PV Hosting Capacity Analysis

Each of the study feeders is analyzed using a detailed
hosting capacity analysis. The methodology in [8-9] is used to
investigate a large number of potential PV scenarios
(combinations of PV size and location) in OpenDSS [10]. On
average, there are around 40,000 PV scenarios analyzed per
feeder.

For each PV scenario, a series of simulations is performed
to determine if that particular scenario would cause issues on
the distribution system. The simulations include a range of
load values that occur during daytime hours throughout the
year, a range of feeder states as far as regulation equipment
taps and switching capacitor states, and simulation of extreme
PV output ramps. Steady-state voltage violations are
determined using ANSI C84.1, thermal violations are defined
by the component’s amp rating, and temporary voltage
violations are determined using the ITIC (CBEMA) curve.

Using the detailed simulation results, the feeder hosting
capacity is defined as the maximum PV size that can be placed
anywhere on the feeder without causing issues.



IV. VALIDATION/ACCURACY/ANALYSIS OF PREVIOUS
CLUSTERING ALGORITHM

A. Clustering All California Feeders and Study Feeders

The data set used for clustering consisted of a total of
8,143 feeders with feeder characteristics for 7,929 California
feeders and 214 feeders analyzed to determine the hosting
capacity of the feeder. The clustering was performed using 8
feeder characteristic variables with a double weighting on
feeder primary voltage. The other feeder variables were: Total
3-Phase miles, Total 1 & 2 Phase miles, Residential Customer
%, Regulator #, Capacitor # and feeder peak load. These
variables are typically easy for utilities to determine and were
available for each of the 8,143 feeders.

B. Clustering Results

The clustering of a total of 8,143 feeders resulted in a
solution of 8 clusters as shown by the colored regions in the
biplot of Fig. 3 with study feeders shown by different markers.
The study feeders are widely distributed across the clusters
with the largest concentration in cluster 7, a 12KV cluster.
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Fig. 3.  Biplot of the 8 cluster solution for 8,143 feeders with
study feeders shown by markers

The range of hosting capacities for each cluster is shown
using boxplots in Fig. 4. Boxplots are useful for identifying
outliers and for comparing distributions. The blue box is the
interquartile range (IQR) and it represents the values between
the 75th percentile and the 25th percentile covering the middle
50% of the data. The median for the cluster is shown by the
red line and outliers are shown by the red “+” markers. The
whiskers extend out to capture all values that are less than
third quartile +1.5 IQR and greater than first quartile -1.5 IQR.
Any data not included between the whiskers is plotted as an
outlier.

The number of study feeder in each cluster is shown in the
upper portion of the figure. Clusters with four or more feeders
were plotted and analyzed. The minimum number of study
feeders per cluster was set at four to ensure sufficient data to
define a meaningful range of hosting capacities per cluster.
The most populated cluster is cluster 7 with 114 study feeders.
It is a 12-13.8 kV cluster with a range of hosting capacities
from 0.2 to 4.3 MW excluding outliers. The box height is 1.5

MW which is the range of hosting capacity values for 50% of
the study feeders in the cluster. The cluster with the greatest
range of hosting capacities is cluster 2 with 37 study feeders.
It is a 19.8kV to 34.5kV cluster with a range of hosting
capacities from 0.3 to 10.2 MW excluding outliers. The box
height is 4.6 MW which is the range of hosting capacity
values for 50% of the study feeders in the cluster.

The normalized box height of each cluster is calculated by
dividing the IQR by the median hosting capacity of the
cluster. The variation across the whole set of clusters can be
measured by taking the average of all the normalized cluster
box heights for clusters with 4 or more feeders.

ANIQR = %Z?((P75 — P25) = P50) (1)
Where n equals the cluster number and P equals the percentile.
The box heights or IQR represents the central variation in the
cluster hosting capacity distribution. The normalized IQR
removes the bias of large hosting capacity feeders and taking
the average ensures that we are improving the overall cluster
solution. The ANIQR for this set of clusters was 109%,
meaning that the average variation in hosting capacity for each
cluster was 109% of the mean hosting capacity of that cluster.
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Fig. 4. Boxplot of hosting capacity variation per cluster for 8
cluster solution for 8,143 feeders using 8 c luster variables.

C. Clustering Accuracy to Predict Hosting Capacity

Ideally the clustering would provide a tight range of
hosting capacities for each cluster, but the results show that
the range of hosting capacities varies widely depending on the
cluster with some box plots showing a narrow range and
others a very broad range. The variation in hosting capacity
within the cluster is not dependent on the location within the
cluster. The source of the hosting capacity variation in Fig. 2
was investigated by looking at the hosting capacity violation
type per feeder in each cluster. Fig. 5 uses the marker shape to
denote the type of issue that first violated on each study
feeders which determined the hosting capacity of the feeder.
Cluster 6 for example, has 12 kV feeders that all have hosting
capacity limitations caused by over-voltage conditions. The
relative size of the marker indicates the relative feeder peak
load of each feeder. The large variation in the violation types
within each cluster illustrates the difficulty of capturing the
key characteristics that drive the hosting capacity value with
clustering.
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Fig. 5. Hosting capacity violation type shown by marker shape

for each feeder in the clusters.
V.  VARIATIONS IN CLUSTERING METHODOLOGY
A. Dependence of Accuracy on Number of Clusters

One possible solution to improve the accuracy of hosting
capacity per cluster is to increase the number of clusters. Fig.
6 shows a 16 cluster solution and Fig. 7 shows a 32 cluster
solution using the same variables as the 8 cluster solution
discussed earlier. Clusters with four or more feeders were
plotted and analyzed.
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Fig. 6. Boxplot of hosting capacity variation per cluster for 16
cluster solution for 8,143 feeders using § cluster variables.
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Fig. 7. Boxplot of hosting capacity variation per cluster for 32
cluster solution for 8,143 feeders using 8§ cluster variables.

The ANIQR did not change materially: the 16 cluster solution
had an ANIQR of 102% showing a slight improvement from

the 109% for the 8 cluster solution and the 32 cluster solution
had an ANIQR of 129% showing degradation. The box height
for the most populated cluster did not change for the 16 cluster
solution and decreased to 1.2 MW for the 32 cluster solution.
The conclusion is that increasing the number of clusters does
not particularly change the overall accuracy of the clustering
solution.

B. Correlation of Clustering Variables to Hosting Capacity

Another possible solution to improve the accuracy of
hosting capacity per cluster is to increase the weighting of key
clustering variables based on their correlation factor (CF) with
hosting capacity. Table I shows the correlation coefficients
between the clustering variables used earlier and the hosting
capacities of the 214 feeders. Using the correlation
coefficients the relative weighting factors shown in the table
were implemented.

TABLE I: SEVEN CFs & WEIGHTING FACTORS

Variable F(; 2:;:'32‘;77) ‘Weighting
Primary Voltage (kV) 0.60 4X
Total 3-Phase Conductor (miles) 0.33 2X
Total 1 & 2 Phase Conductor (miles) 0.10 1X
Residential Customers (%) 0.33 1X
Number of Regulators 0.28 1X
Number of Capacitors 0.19 1X
Feeder Peak Load (kW) 0.31 2X

Table IT below shows ANIQR for each of the three cluster
solutions. A significant improvement occurred in both the 8
and 32 cluster solutions, but the 16 cluster solution got worse.

TABLE II: ANIQR FOR CLUSTERING SOLUTIONS

Cluster Solution with Weightings ANIQR
8 94%
16 106%
32 77%

Although the weighting of the initial variables did improve the
ANIQR in two cases the range in hosting capacity variation is
still very high even in the best case at 77%.

The persistence of a wide variation in hosting capacities in
each cluster indicates that the clustering variables chosen may
not be correlated enough with hosting capacity to exactly
predict it and perhaps adding more highly correlated variables
will reduce the variation in each cluster and more accurately
predict the hosting capacity.

C. Addition of New Clustering Variables

There are currently a fairly limited number of variables of
feeder characteristics available for clustering. In the future,
new feeder characteristic variables could become available,
and should be studied to determine which are the most
important for predicting hosting capacity. This could include
things like calculating the X/R ratio at key buses on the
circuit. The set of feeder characteristics for the 214 study
feeders is much more comprehensive set than is available for
clustering of the 7,929 California feeders. The data set
includes many important characteristics such as feeder
impedance values, short circuit current capability, X/R ratios



of various buses, etc. that were not in the California feeder
characteristic data set. Table III shows the ranked order of
correlation factors for the study feeder characteristics and the
hosting capacity of the study feeders

TABLE III.CFs & WEIGHTING FACTORS FOR 214 FDRs

Correlation sy
Variable Factor ng;gcl:;lrng
(CF))
Feeder Voltage (kV) 0.69 2X
Minimum Short-Circuit Current 0.67 1X
Impedance (3-phase buses at feeder
voltage) Min X/R 0.66 1X
Service Transformers Median Size (kVA) 0.52 1X
Density (kW/sq-km) 0.48 1X
Min X/R to VREG 0.45 1X
3 phase conductor rating- Lowest 0.44 1X
Max R to VREG 0.42 1X
Impedance (3-phase buses at feeder
voltage) Max R 0.41 1X
3 phase conductor rating- Weighted 0.39 1X
Average
Daytime Peak (MW) 0.36 1X
Avg X/R to VREG 0.33 1X
Percent Residential Customers 0.31 1X

A clustering analysis was performed only on the 214 feeder
studies. Fig. 8 shows the boxplot for the most optimal
clustering for the 16 cluster solution. The ANIQR for the 16
cluster solution was 76%, the lowest value found. Although
this is slight improvement, the average variation in hosting
capacity of 76% is still very high and demonstrates that the
clustering method has limited accuracy, even when the new
highly-correlated feeder characteristics are utilized. There are
too many interconnected pieces to group feeders into precise

ranges of hosting capacity. For example,
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Fig. 8. Boxplot of hosting capacity variation per cluster for 16

cluster solution for 214 study feeders using 14 cluster variables.

line rating or capacitors might not matter if the voltage set
point is very high, but for a lower regulator set point, the new
hosting capacity variable determination is driven by
capacitors or line rating. Clustering is a simple method that,
by its nature, is unable to capture the interaction between the
different variables. Not only is clustering for PV hosting
capacity prediction imprecise due to interrelation of variables,
but there are so many unique features of feeders that are
difficult to capture. For example, one of the study feeders
had a voltage limit on hosting capacity that was driven by a

service transformer with a tap setting above nominal resulting
in higher voltages than normal. These types of feeder
characteristics and operational characteristics of utility
feeders will remain difficult to quantify.

VI. CONCLUSIONS

The accuracy of clustering as a method to group
distribution feeders into specific ranges of PV hosting capacity
has been shown to be relatively inaccurate. Clustering is still
useful as it provides good separation between clusters in many
cases, but it has its limitations. The best clustering solutions
for the various methods explored did not predict the hosting
capacity accurately and the best solution had an average
hosting capacity variation of 76%. Clustering will never
perfectly group feeders such that all unique characteristics
match with a single PV hosting capacity for the feeder, but it
can provide a rough estimate of the hosting capacity for
similar types of feeders.
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