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Timeline of Significant SFP Studies
(NUREG-2161)

Spent Fuel Pool
Study (SFPS)

National Academy of Sciences
Study (2003 - 2005) \

Early SFP Consequence
Studies (e.g., NUREG/CR-
0649) and High-Density
Racking Review Ciriteria
Development (late 70s)

NUREG-1738 Study Post-Fukushima
for Decommissioning Activities
(1999 — 2001) (2011 — 2016)

Resolution of Generic Issue 82,
“Beyond Design Basis Accidents
in Spent Fuel Pools”
(late-80s)

Ref: NUREG 2161
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An Infinite period is considered to occur when all fission products have reached saturation levels.



EARLY STAGES OF REACTOR ACCIDENTS
Boiloff, Heatup, and Clad Oxidation



Stages of Reactor Accidents

* Accident initiation and discharge of coolant to

TAF.
* Stages:

1. boildown of coolant and fuel heatup
2. clad balloon and rupture
3. clad oxidation and temp. transient

4. clad melting and fuel liquefaction

5. candling and accumulation of core debris
6. relocation of debris from core region

7. debris interactions with vessel
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Steam Oxidation of Zircaloy Cladding

Outer Cladding

Residual
oxygen saturated
metal

Inner
Cladding




Oxidation Kinetics

e Zr Oxidation rate measured experimentally
through weight gain measurements on small
coupons held at constant temperature in an
oxidizing furnace

— tests show that (weight gain)? = K x time where K is a function of
temperature

W, = \/Ae(—B/RT)t

— W, is mass of Zr oxidized per unit area exposed to steam at
absolute temperature T for time t

— A,B are empirically determined constants
— Ris universal gas constant



Steam Oxidation Kinetics Parameters

Parabolic Rate Constant = Ae8/RT

Authors A 2]
g?/cm?s  J/mole
Baker-Just 33.6 190372
Prater 268 219835
Courtright
Leistikow 4.26 174288
Cathcart 2.94 167121
Pawel
Urbanik 0.3 139800

Heidrick

Parabolic Rate Constant (g%/cm®-s)

1e-4 T T T v ¥ T v

-
?
a

1e-6

1e-8

Baker-Just
Prater-Courtright

—=—= | eistikow
1e-1 === Cathcart-Pawel
=== Urbanik-Heidrick

5 6 7 8 9 10 11 12 13
10,000/T(K)



ANL Air Oxidation Experiments

* Principal investigators, K. Natesan and W. Soppet
— NUREG/CR-6846, “Air Oxidation Kinetics for Zr-
Based Alloys”
e Initial tests (low temperature)
— Thermogravimetic test apparatus (TGA) used to
measure specimen weight change
* Bare samples
e Steam pre-oxidized (25-30 um oxide layer thickness)
— Oxidation in dry air or steam
* Weight gain recorded as a function of sqrt(time)
— All-purpose Correlation from range of data
(Zircaloy-4)
* Bare (i.e., no initial oxide layer) samples in air
e Bare samples in steam
e Steam pre-oxidized in air

15th MELCOR Users’ Workshop, September
2014
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ANL Air Oxidation Experiments

« Consistently observed in all ANL oxidation

tests

= Whether bare or pre-oxidized
= Not a function of oxide thickness
= Correlate breakaway timing with sample temperatures

Low temperate data (Zr-4,steam pre-oxidized)
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SNL Lifetime Breakaway Model

Lifetime rule similar to Larson-

Miller creep

— Used to capture the time-at-
temperature characteristics
of breakaway

Local damage is tracked for all
Zircaloy components

LF = |dt’
[
where,

(1) =10"20x

PLOX =-12.528 '10g10 T +42.038

Parameters come from
experimental curve fit

Failure occurs when damage
function reaches 1
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Breakaway effect in Air Oxidation
* Comparison calculations with and without breakaway kinetics

Peak Cladding Temperature for Heater Design Test #1

2300 | —Data(pcT) - A AR
= New Oxidation Model
= Pre-breakaway Kinetics Only

Temperature (K)

Heater Power Failure \
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SFP Nodalization (1)
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Figure 40 MELCOR nodalization of the whole pool high density model
Ref: NUREG 2161



SFP/Building Nodalization
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Low Density Racking

@ Last offload (88 total)
B Last two offloads (568 total)
[0 Empty cells (3163 total)
3819 total
I A
E E Ring1 0O Ring2 ]
1 O Ring3 [ Ring4
B Ring5 [ Ring6
[0 Ring 7
Ref: NUREG 2161




High Density Racking
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@ 88 (newly discharged)

M 315 (last offload+31 from previous)
N 2456 (previous offloads)
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Radiant Heat Exchange Between
Classes of Fuel Assemblies
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Ref: NUREG 2161



SFP Water Level (m)

Pool Response to Loss of Heat
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Assumed pool leak
due to seismic event

Low density racking
provides loose
thermal coupling
between assemblies

Uncovered fuel is
heated but no Zr-fire
results
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SFP Water Level (m)

Ring 1 Cladding Temperature [K]
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High Density
Racking

Tighter thermal
coupling produces
larger thermal
response

Oxidation energy
produces higher fuel
temperatures and
cladding failures

Hydrogen generation
from steaming period

Fission product

releases Ref: NUREG 2161
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Radiation Field from Uncovered Fuel
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Potential Temperatures on Refueling
Floor
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SFP Mitigation Using Sprays
NEI 06-12 TSG 4.1

¢ Indication of Damage to SFP
; 1
\Resultlng from Large Leak Y

SFP Area Yes

SFP Leaka%e

Accessible?

Makeup Using All
Available Means

Local Spray
Possible

Excessive

Makeup Using Internal
Strategy, If Available

Local Spray
Possible

v

Deploy External Spray

Makeup Using External
Strategy, If Necessary

FP Level 5til
Dropping

Deploy

Deploy

External Spray Spray Locally

Y

Y

Deploy
Spray Locally

-

Motes:

1. A large leak is one that
exceeds available, normal
makeup or one in which the
effectiveness of normal makeup
cannot be determined.

2. Accessibility can be affected
by damage conditions or local
dose rates.

Refer to Leakage
Control Strategies

3. Excessive leakage is an SFP
leak rate estimated to be
greater than 500 gpm, or high
dose rates indicate excessive

loss of inventory.

Ref: NUREG 2161




Hydrogen Behavior on Refueling Floor
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Spent Fuel Pool Accidents

Protracted loss of heat sink generally not an issue until
many days

Zr-fire risk a function of fuel loading strategies

— High density, low density, salt & pepper

Environmental conditions are harsh

— Thermal and radiation

Spray and reflood mitigation measures can further
reduce Zr-fire potential

Zr-fire can propagate among assemblies and result in
environmental release of fission products

Ref: NUREG 2161



