SAND2015- 7161PE

Sandia

Exceptional service in the national interest National
Laboratories

Severe Accident Phenomena

TSG Skill Set
Hydrogen

DEPARTMENT OF VAT =)
ENERGY ﬂ' VA' m‘ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
National Nuclear Security Administratior Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP




ZR CLADDING REACTION WITH STEAM
AND HYDROGEN GENERATION



Sandia
'I'l National

Laboratories

Cladding Oxidation by Steam

* Oxidation of the Zircaloy cladding becomes significant when
peak fuel temperature reaches about 1000°C

The exothermic reaction is:

Zr + 2H,0 = ZrO, + 2H, + heat
 AH_. =6.5MJ/kg, (TNT = 4.6 MJ/kg)
* Reaction rate increases rapidly with temperature

* Oxidation is a positive feedback reaction
* Exothermic oxidation increases clad temperature
* Increasing clad temperature increases oxidation rate

e Oxidation limited by steam availability and by melting and
relocation of Zr

 Significant quantities of hydrogen produced (650-900 kg from
Fukushima Unit 1 uncertainty analysis)
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Oxidation Kinetics

= Parabolic kinetics
= If limited by oxidant diffusion through ZrO,,

W, = \/ AeB/RTy
= W, is mass of Zr oxidized per unit area exposed to steam
at absolute temperature T for time t
= A, B are empirically determined constants
= Ris universal gas constant
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Aside: Stainless Steel also Oxidizes in
Steam
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Zr Oxidation Energy

2.8x103 Btu/lb,, (-6.5 MJ/kg,,, Exothermic)

6 to 19 times decay power level in covered
portion of core when steam limited

Heat transfer from uncovered core to residual
water would increase oxidation rate further

Experimental confirmation
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Example

Five minute exposure of Zr to 2192°F (1200°C)
steam

3,830 Ib,,, Zr oxidized out of 26,940 Ib,,, Zr in core
(14.2%). Limit is 1% overall and 17% locally!

170 Ib (76.9 kg) of hydrogen released
10.7x10° Btu (11.3 GJ) of energy released
Idealistic

= Core temperature not uniform
= Energy release would increase Zr temperature
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Mass transport of
steam may limit
rates at higher
temps.
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Temperature (°F)

Mass of Zr oxidized in 5 minutes exposure of
5400 square meters Zircaloy




Materials interactions diagrams = Santa
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CLAD OXIDATION AND HYDROGEN
GENERATION OBSERVED IN PHEBUS
EXPERIMENTS
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Scaling of PHEBUS Experimental Facility

Model scale = 1:5000

Primary
coolant
system




The Experimental Facility
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Temperatures at Two Elevations in the
Fuel Bundle Used in Test FPT -1
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Hydrogen Production Test FPT-1
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Examples of Fuel Degradation Observed in PHEBUS-FP Tests @ﬁgtﬁgﬁal
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Oxidation Transient Drives Fuel Damage LUf

B View from above of test section.

In FPT1, the deformation of the
rods is characteristic.

Detail of the lower part of the test
section. The rods under the molten

larity.

FPT1

3D reconstruction

The views on this page do not
respect the scale relative to the
test section. This is a represen-
tation mode which allows a bet-

ter perception of the details of

the rod deformation.

pool have kept a good position regu-

Tomography on
FPT-1 bundle after
fuel damage
transient

Zr oxidation drives
severe damage

Also drives thermal
release of fission
products




LATE HYDROGEN GENERATION
FROM QUENCHING OR EX-VESSEL
CONCRETE ATTACK
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Hydrogen production becomes an issue when quenching core
once degradation becomes extensive.
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MCCI
experiment

Decay heat
liberates water
from concrete

Metals (Zr and
steel) oxidize

and produce
H, and CO

Exothermic
energy from
chemical
reactions
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Combustible Gas Generation

= \Water and carbon dioxide are released from concrete

= QOxidation of core debris yields hydrogen and carbon monoxide (both
combustible)

Zr + 2H,0 - ZrO, + H, + heat
Zr + 2C0O, - ZrO, + CO + heat
Fe + H,O0 - FeO + H,
Fe + CO, - FeO + CO
Cr from stainless steel also quite reactive
= Large quantities of combustible gas can be generated

= Combustible gases may burn above the molten pool or may accumulate in
containment

= Combustible gases contribute to total pressure in containment
= Burns or static overpressure can challenge containment



HYDROGEN COMBUSTION




Hydrogen Combustion

2H,+ 0, —> 2H,0 + energy (heat)

52,000 Btu/lb-mol of H, burned
(1 Ib H, energy equiv. 26 Ibs TNT)
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Combustion Modes

= Deflagrations - subsonic
= Detonations - supersonic

= Continuous combustion

= Diffusion flames or jets

= High temperature recombination
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Deflagration versus Detonation
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Deflagration Detonation
milliJoules kiloJoules
Ignition empirical flammability (or deflagration to
limits detonation transition)
Conduction Shock Heating
Propagation Subsonic Supersonic
1-1000 m/s 1500-3000 m/s
Loads & Static, Dynamic
Structural Thermodynamic Bound Shock Waves
Response Hard to Model (3D)
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Deflagrations

= Conditions required for ignition are understood
" Propagate by conduction from burned gas to unburned gas
= Burn front is subsonic relative to unburned gas

= Static loading, peak pressure
= Depends on combustion completeness and heat transfer during
burn, which are affected by:

" Flame speed
= |nitial gas composition and state
= Geometry and location of ignition source
» Turbulence

" Heat sinks

» Bounded by complete, adiabatic, constant-volume combustion
pressure

= The TMI-2 combustion event was a deflagration




Containment Vulnerability To ) i,
Deflagrations

= BWR Mark | and Mark Il

» |nerted containments
= Surrounding reactor building not inerted

= BWR Mark Il

= High vulnerability of exceeding design pressure without mitigation
= Larger free containment volume but lower design pressure




Hydrogen Flammability Limits
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Hydrogen Detonation

= Supersonic relative to unburned gas
" Propagates by shock heating of unburned gas
= Dynamic structural loads

= Detonations depend on both geometry and gas
composition

= No ‘detonation limits’ akin to deflagration limits

= Limits for detonation quoted in older sources based on
experiments with fixed geometry
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Other Detonation Concerns

= Deflagration to detonation transition (DDT)
= Turbulent flame acceleration

= Contributing factors
= Confinement
" Geometry (obstacles)
" High temperatures

= Difficult to predict
= Compression of gas by deflagration increases pressure when
detonation finally occurs

= |ocal Detonations
= Missiles
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Locations Where High Hydrogen
Concentrations May Occur (Assuming It’s Not
High Everywhere)

= Near the hydrogen release point

= Under ceilings or dome due to rise and stratification of
low density plume

= |n areas where steam is being removed
= Areas with large heat sinks

= |n or above ice condensers

= Above suppression pools

= Downstream of fan coolers

= |n containment with functioning sprays
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Hydrogen Rule (10 CFR 50.44)

= Recombiners or other measures provided for hydrogen control in design-basis
accidents would not be effective for severe accidents

= |n 1981, BWR Mark | and Il containments ordered to be inerted

= Additional mitigation required for BWRs with Mark Il containments

= Deliberate ignition systems (glow plug igniters) installed

= Burn hydrogen when flammable at 5-7% before detonable concentrations are attained
= Dedicated AC power for deliberate ignition systems

= Not cost beneficial for plants with Mark Ill containment
" Residual concerns: Very rapid H, releases, SBO

= Recombiners no longer need to be classified as safety-related

= Europe - PAHRs (Passive Autocatylitic Hydrogen Recombiners)
=  Recombine Hydrogen and Oxygen



Hydrogen Igniter
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Passive

Autocatalytic Water vapor and oxygen-depleted air

Recombiners

Hydrogen and air inflow
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Summary

= Hydrogen is produced primary by oxidation of Zircaloy cladding,
but also by oxidation of stainless steel and MCCI

= Oxidation reactions are the driver for fuel damage

= Hydrogen combustion one of the few regulated severe accident
phenomena
= Temperature threat
= Pressure threat
= Different types of combustion are possible
= Deflagration (TMI-2, Fukushima-1)
= Detonations (Chernobyl ?)
= Deflagration to detonation transition (Fukushima-3/4 ?)
= Combustion still a concern despite regulatory actions

= Can threaten containment integrity by overpressure




BACK-UP SLIDES
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Diffusion Flames

=  Mechanism
= [jke a Bunsen-burner (buoyancy driven)
= [jke a jet or torch (momentum driven)

= Scenarios
= Flame or jet as hydrogen flows from reactor vessel
= Flames as hydrogen emerges from suppression pool
= [ow pressure rises but high local temperatures

=  Key parameters:
= Source gas
= Composition
= Temperature
= Froude number (buoyant versus momentum driven flow)

=  Surrounding gas composition
= |gnition source
= Sustainability
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High Temperature Recombination

= Mechanism

= Spontaneous ignition temperature exceeded
= See next figure
" Recombination of H, with O, at hot surfaces

= Scenarios
= Hot surfaces near hydrogen release point

" Hot particles dispersed via high-pressure melt ejection (H,
recombination with DCH)

» Core-concrete interactions in dry reactor cavity if there is air
available
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TMI-2 containment pressure versus time

And the Hydrogen Burn
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Combustion Limits Tests

Nabiha Chaumeix
Institut de Combustion, Aérothermique, Réactivité et Environnement

Orleans, France
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Flame Front Evolution with Time

Pressure versus Time

0.333H, + 0.140, + 0.527N,
100 kPa ; 30°C
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Figure 4.6-3 Effect of initial temperature on downward
propagating flammability limits in hydrogen-air mixtures



