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Abstract	
  

	
   An	
   anisotropic,	
   rate-­‐dependent,	
   single-­‐crystal	
   approach	
   for	
   modeling	
   materials	
  
under	
  the	
  conditions	
  of	
  high	
  strain	
  rates	
  and	
  pressures	
  is	
  provided.	
  The	
  model	
  includes	
  the	
  
effects	
   of	
   large	
   deformations,	
   nonlinear	
   elasticity,	
   phase	
   transformations,	
   and	
   plastic	
   slip	
  
and	
  twinning.	
  It	
  is	
  envisioned	
  that	
  the	
  model	
  may	
  be	
  used	
  to	
  examine	
  these	
  coupled	
  effects	
  
on	
   the	
   local	
   deformation	
   of	
   materials	
   that	
   are	
   subjected	
   to	
   ballistic	
   impact	
   or	
   explosive	
  
loading.	
  The	
  model	
   is	
   formulated	
  using	
  a	
  multiplicative	
  decomposition	
  of	
   the	
  deformation	
  
gradient.	
  A	
  plate	
   impact	
  experiment	
  on	
  a	
  multi-­‐crystal	
  sample	
  of	
   titanium	
  was	
  conducted.	
  
The	
   particle	
   velocities	
   at	
   the	
   back	
   surface	
   of	
   three	
   crystal	
   orientations	
   relative	
   to	
   the	
  
direction	
   of	
   impact	
   were	
   measured.	
   Molecular	
   dynamics	
   simulations	
   were	
   conducted	
   to	
  
investigate	
  the	
  details	
  of	
  the	
  high-­‐rate	
  deformation	
  and	
  pursue	
  issues	
  related	
  to	
  the	
  phase	
  
transformation	
  for	
  titanium.	
  Simulations	
  using	
  the	
  single	
  crystal	
  model	
  were	
  conducted	
  and	
  
compared	
   to	
   the	
   high-­‐rate	
   experimental	
   data	
   for	
   the	
   impact	
   loaded	
   single	
   crystals.	
   The	
  
model	
  was	
  found	
  to	
  capture	
  the	
  features	
  of	
  the	
  experiments.	
  

Keywords:	
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  Plasticity,	
  Twinning,	
  Phase	
  Transformations	
  

	
  

I.	
  Introduction	
  /	
  Background	
  

The	
   ability	
   to	
  model	
   high-­‐rate	
   deformations	
   is	
   important	
   for	
   addressing	
   dynamic	
  
impact	
  or	
  explosive	
   loading	
  scenarios	
   that	
  are	
  encountered	
   in	
  automotive,	
  aerospace,	
  and	
  
defense	
   applications.	
   The	
   deformation	
   characteristics	
   at	
   the	
   meso-­‐mechanical	
   or	
   single-­‐
crystal	
   length	
   scale	
  have	
  a	
  direct	
   effect	
  on	
   the	
  macro-­‐mechanical	
   response	
  of	
   engineering	
  
structures.	
  Therefore,	
  it	
  is	
  important	
  to	
  understand	
  the	
  coupled	
  role	
  of	
  plastic	
  slip,	
  twinning,	
  
and	
  phase	
  transformations	
  at	
  the	
  meso-­‐scale	
  for	
  high-­‐rate	
  conditions.	
  The	
  coupled	
  effects	
  of	
  



the	
  evolution	
  of	
   inelastic	
  phenomena	
  on	
   the	
  constitutive	
  response	
  of	
  materials	
  are	
  poorly	
  
understood	
   for	
   dynamic	
   conditions.	
   Physically-­‐based,	
  meso-­‐mechanical	
   (~10	
  µm)	
  models	
  
are	
   necessary	
   to	
   guide	
   macro-­‐mechanical	
   model	
   development	
   and	
   assist	
   in	
   the	
  
interpretation	
   of	
   experimental	
   data.	
   Continuum	
   single-­‐crystal	
   theories	
   allow	
   for	
   the	
  
simulations	
   of	
  materials	
   at	
   the	
  meso-­‐scale.	
   That	
   is,	
   length	
   and	
   time	
   scales	
   that	
   are	
   larger	
  
than	
   allowed	
  by	
   atomistic	
   approaches	
   but	
   at	
   scales	
   that	
   provide	
   a	
   greater	
   resolution	
   and	
  
detail	
   than	
   considered	
   by	
   macro-­‐mechanical	
   or	
   engineering	
   models.	
   Therefore,	
   single-­‐
crystals	
  models	
   serve	
   as	
   a	
   bridge	
   between	
   atomistic	
   and	
  macro-­‐mechanical	
   scales.	
  Meso-­‐
mechanical	
   models	
   have	
   proven	
   to	
   be	
   capable	
   of	
   capturing	
   the	
   micro-­‐mechanical	
  
phenomena	
  that	
  govern	
  the	
  deformation	
  characteristics	
  of	
  materials.	
  	
  

There	
   are	
   numerous	
   examples	
   in	
   the	
   technical	
   literature	
   of	
   investigations	
   at	
   the	
  
single-­‐crystal	
   length	
   scale.	
  Most	
   of	
   these	
   efforts	
   are	
   focused	
   on	
   low-­‐rate	
   deformations	
   of	
  
metallic	
   materials	
   due	
   to	
   plastic	
   slip.	
   The	
   use	
   of	
   single-­‐crystal	
   models	
   to	
   examine	
   the	
  
polycrystal	
   response	
   to	
   deformations	
   and	
   the	
   evolution	
   of	
   texture	
   is	
   ubiquitous.	
   Crystal	
  
plasticity	
   models	
   have	
   successfully	
   explored	
   coupled	
   effects	
   on	
   the	
   deformation	
  
characteristics	
   of	
   materials	
   using	
   computational	
   simulations.	
   Models	
   that	
   address	
   the	
  
single-­‐crystal	
  response	
  to	
  high-­‐rate	
  deformations	
  also	
  are	
  available.	
  The	
  dynamic	
  behavior	
  
of	
   materials	
   is	
   closely	
   related	
   to	
   the	
   microstructural	
   evolution	
   during	
   the	
   deformation	
  
process	
  [Meyers	
  (1994)].	
  For	
  example,	
  the	
  high-­‐rate,	
  high	
  pressure	
  deformation	
  of	
  a	
  single	
  
crystal	
   to	
   shock	
   loading	
   and	
   the	
   effect	
   of	
   a	
   stress	
   pulse	
   on	
   the	
   nonuniform	
   plastic	
  
deformation	
  of	
  a	
  polycrystal	
  sample	
  of	
  tantalum	
  (Ta)	
  has	
  been	
  considered	
  [Becker	
  ((2004)].	
  
High-­‐rate	
   deformation	
   and	
   localization	
   in	
   Ta	
   also	
   has	
   been	
   addressed	
   (Bronkhorst	
   et	
   al.	
  
(2007)].	
  Plate	
  impact	
  experiments	
  and	
  simulations	
  using	
  a	
  dislocation-­‐based,	
  single-­‐crystal	
  
model	
  have	
  been	
  used	
  to	
  investigate	
  the	
  high-­‐rate	
  deformation	
  of	
  lithium	
  fluoride	
  (LiF)	
  and	
  
copper	
   (Cu)	
   [Winey	
   and	
  Gupta	
   (2006)]	
   as	
  well	
   as	
  quartz	
   and	
   sapphire	
   [Winey	
   and	
  Gupta	
  
(2004)].	
   The	
   high-­‐rate	
   deformation	
   of	
   energetic,	
   organic	
   single	
   crystals	
   also	
   has	
   received	
  
attention.	
  The	
  response	
   to	
   shocked	
  pentaerythritol	
   tetranitrate	
   (PETN)	
   [Winey	
  and	
  Gupta	
  
(2010)]	
  and	
  the	
  α-­‐polymorph	
  of	
  cyclotrimethylene	
  trinitramine	
  (RDX)	
  has	
  received	
  recent	
  
attention	
   [De	
   et	
   al.	
   (2014;	
   Luscher	
   et	
   al.	
   (2016)].	
   The	
   ability	
   to	
   include	
   phase	
  
transformations	
   for	
   high-­‐rate	
   deformations	
   also	
   has	
   been	
   considered.	
   A	
   single-­‐crystal	
  
model	
  for	
  the	
  shock	
  induced	
  α	
  (bcc)	
  to	
  ε	
  (hcp)	
  phase	
  transformation	
  in	
  iron	
  (Fe)	
  was	
  used	
  
to	
  investigate	
  the	
  response	
  of	
  single	
  crystals	
  and	
  an	
  ensemble	
  of	
  single	
  crystals	
  to	
  high-­‐rate	
  
loading	
  [Barton	
  et	
  al.	
  (2005)]	
  as	
  well	
  as	
  the	
  α	
  (trigonal)	
  to	
  β	
  (hex)	
  transformation	
  in	
  quartz	
  
[Barton	
  and	
  Wenk	
  (2007)].	
  

Group-­‐IV	
   hexagonal-­‐close-­‐packed	
   (hcp)	
  metals	
   [titanium	
   (Ti),	
   zirconium	
   (Zr),	
   and	
  
hafnium	
  (Hf)]	
  provide	
  excellent	
  candidates	
  for	
  studying	
  high-­‐rate	
  deformations,	
  because	
  of	
  
their	
  ability	
  to	
  deform	
  plastically,	
  twin,	
  and	
  phase	
  transform	
  at	
  temperatures	
  and	
  pressures,	
  
which	
   are	
   relatively	
   accessible.	
   The	
   inelastic	
   behavior	
   of	
   these	
  metals	
   plays	
   an	
   important	
  
role	
   in	
   their	
   physical	
   properties	
   and	
   mechanical	
   behavior.	
   Toughness,	
   ductility,	
   spall	
  
strength	
   and	
   localization	
   all	
   are	
   influenced	
   by	
   their	
   inelastic	
   response.	
   Phase	
  
transformations	
  in	
  group-­‐IV	
  metals	
  are	
  martensitic-­‐like	
  in	
  nature	
  [Ivanisenko	
  et	
  al.	
  (2008);	
  
Singh	
  et	
   al.	
   (1982);	
  Vohra	
   (1978)].	
  That	
   is,	
   they	
  are	
   rapid,	
  displacive,	
   and	
  diffusionless.	
   It	
  
has	
   been	
   shown	
   that	
   applied	
   shear	
   strains	
   may	
   enhance	
   the	
   transformation	
   kinetics	
  
[Ivanisenko	
   et	
   al.	
   (2008);	
   Zong	
   et	
   al.	
   (2014)]	
   of	
   group-­‐IV	
   metals	
   and	
   their	
   alloys.	
   An	
  
apparent	
   increase	
   in	
   the	
   spall	
   strength	
   of	
   alloys	
   of	
   these	
  metals	
   also	
   has	
   been	
   observed	
  
[Mescheryakov	
   and	
   Divakov	
   (2001)]	
   depending	
   on	
   whether	
   the	
   reverse	
   phase	
  
transformation	
  occurs	
  prior	
  to	
  the	
  spallation	
  event.	
   	
   In	
  the	
  past,	
  polycrystal	
   investigations	
  
using	
  group-­‐IV	
  metals	
  have	
  been	
  conducted	
  for	
  both	
  quasi-­‐static	
  and	
  high-­‐rate	
  conditions.	
  



Hexagonal-­‐close-­‐packed	
   (hcp)	
   single	
   crystals	
  have	
  been	
  studied	
  under	
   static	
  and	
  dynamic	
  
pressures	
   [Vohra	
   (1978)].	
   	
   Insight	
   into	
   the	
   deformation	
   mechanisms	
   has	
   been	
   obtained	
  
from	
  these	
   investigations.	
  However,	
   fewer	
   investigations	
  for	
  hcp	
  single	
  crystals	
  have	
  been	
  
pursued	
   for	
  high-­‐strain	
  rates,	
   including	
  phase	
   transformations.	
  Recently,	
  high-­‐rate,	
  single-­‐
crystal	
   plate	
   impact	
   [Cerreta	
   et	
   al.	
   (2013)]	
   and	
   split-­‐Hopkinson	
   pressure	
   bar	
   (SHPB)	
  
experiments	
   [Morrow	
   et	
   al.	
   (2016)]	
   were	
   performed.	
   When	
   shocked	
   above	
   the	
   α	
   to	
   ω	
  
transformation	
  pressure,	
  Zr	
  samples	
  that	
  were	
  recovered	
  from	
  single-­‐crystal,	
  plate	
   impact	
  
experiments	
   displayed	
   a	
   volume	
   fraction	
   of	
   retained	
   high-­‐pressure	
   phase	
   (ω)	
   that	
   was	
  
related	
   to	
   the	
   peak	
   shock	
   pressure	
   [Cerreta	
   et	
   al.	
   (2013)].	
   Quasi-­‐static	
   annealing	
  
experiments	
  of	
  the	
  post-­‐shocked,	
  recovered	
  Zr	
  samples	
  were	
  conducted	
  [Low	
  et	
  al.	
  (2015)]	
  
to	
  investigate	
  the	
  reverse	
  transformation	
  kinetics	
  and	
  the	
  resulting	
  evolution	
  of	
  dislocation	
  
densities	
  in	
  both	
  the	
  α	
  and	
  ω	
  phases.	
  The	
  influence	
  of	
  the	
  evolution	
  of	
  the	
  microstructure	
  on	
  
the	
  reverse	
  transformation	
  was	
  explored.	
  In	
  the	
  SHPB	
  experiments,	
  single-­‐crytals	
  of	
  Ti	
  were	
  
loaded	
   at	
   high	
   rate	
   ( !ε ~4.45	
   x	
   103	
   s-­‐1],	
   below	
   the	
   transformation	
  pressure,	
   and	
  placed	
   at	
  
different	
   orientations	
   with	
   respect	
   to	
   the	
   direction	
   of	
   compression.	
   The	
   samples	
   were	
  
loaded	
   to	
  about	
  30	
  %	
  strain.	
  The	
  mechanical	
   response	
  of	
   the	
  single	
  crystals	
  of	
  Ti	
  differed	
  
significantly	
   as	
   the	
   orientation	
   of	
   the	
   samples	
   was	
   changed	
   relative	
   to	
   the	
   compression	
  
direction.	
  In	
  addition	
  to	
  pursuing	
  microscopy	
  on	
  the	
  recovered	
  samples,	
  the	
  evolution	
  of	
  the	
  
microstructure	
  was	
  investigated	
  using	
  a	
  visco-­‐plastic,	
  self-­‐consistent	
  (VPSC)	
  theory.	
  It	
  was	
  
determined	
   that	
   above	
  ~	
  10	
  %	
   strain,	
   the	
   crystal	
   that	
  was	
   compressed	
   along	
   the	
   [0001 ]	
  
orientation	
   deformed	
   primarily	
   by	
   compressive	
   twinning.	
   By	
   ~25	
   %	
   strain,	
   the	
   single	
  
crystal	
   was	
   completely	
   twinned.	
   However,	
   the	
   crystal	
   that	
   was	
   compressed	
   along	
   the	
  
[1011]	
  orientation	
  displayed	
  significant	
  prismatic	
  slip	
  [Morrow	
  et	
  al	
  (2016)].	
  

A	
   thermo-­‐mechanical	
   framework	
   for	
   the	
   large	
   deformation	
   of	
   single-­‐crystals	
  
[Turtletaub	
  and	
  Suiker	
  (2006);	
  Tjahjanto	
  et	
  al.	
  (2008a);	
  Tjahjanto	
  et	
  al.	
  (2008b);	
  Suiker	
  and	
  
Turteltaub	
   (2005);	
   Suiker	
   and	
   Turteltaub	
   (2007a);	
   Suiker	
   and	
   Turteltaub	
   (2007b)]	
   has	
  
been	
   developed.	
   The	
   original	
   framework	
   included	
   the	
   effects	
   of	
   linear	
   elasticity,	
   phase	
  
transformations,	
   and	
  plastic	
   slip.	
  The	
  model	
   relied	
  on	
   the	
  multiplicative	
  decomposition	
  of	
  
the	
  deformation	
  gradient	
  (F )	
   into	
   its	
  elastic	
  (Fel ),	
  plastic	
  (Fpl ),	
  and	
  transformation	
  (Ftr )	
  
components	
  	
  

F = Fel Fpl Ftr .	
  	
   	
   	
   	
   	
   	
   	
   (I-­‐1)	
  

The	
  multiplicative	
  decomposition	
  of	
  the	
  deformation	
  gradient	
  is	
  provided	
  in	
  schematic	
  form	
  
in	
  Fig.	
  1.	
  It	
  may	
  be	
  seen	
  from	
  Fig.	
  1	
  that	
  the	
  decomposition	
  represents	
  four	
  configurations,	
  
the	
   reference	
   configuration	
   ( b ),	
   two	
   intermediate	
   configurations	
   ( b̂ and b ),	
   and	
   the	
  
current	
  configuration	
  (b ).	
  The	
  total	
  deformation	
  gradient	
  ( F F

−1
= L )	
  may	
  be	
  determined	
  

directly	
   from	
   the	
   velocity	
   gradient	
   ( L ),	
   which	
   is	
   obtained	
   from	
   the	
   solution	
   to	
   the	
  
momentum	
  equations	
  in	
  the	
  current	
  configuration.	
  The	
  entropy	
  density	
  was	
  considered	
  to	
  
be	
   a	
   thermal	
   analogue	
   of	
   the	
   deformation	
   gradient	
   	
   [Turteltaub	
   et	
   al.	
   (2006)].	
   Therefore,	
  
analogous	
   to	
   the	
  multiplicative	
  decomposition	
  of	
   the	
   total	
   deformation	
   gradient,	
   the	
   total	
  
entropy	
  density	
  (η )	
  was	
  additively	
  decomposed	
  into	
  its	
  reversible	
  (ηel ),	
  plastic	
  (ηpl ),	
  and	
  
transformation	
  (ηtr )	
  components	
  

η = η
el
+ η

pl
+ ηtr .	
  	
   	
   	
   	
   	
   	
   	
   (I-­‐2)	
  



	
  

Fig.	
  1.	
  Schematic	
  figure	
  of	
  the	
  decomposition	
  of	
  the	
  Deformation	
  Gradient	
  

	
  

Micro-­‐mechanical	
   or	
   sub-­‐granular	
   effects	
   that	
   are	
   related	
   to	
   the	
   internal	
   structure	
   of	
   the	
  
crystal	
   and	
   the	
   dislocation	
   dynamics	
  were	
   treated	
   in	
   an	
   averaged	
   fashion.	
   That	
   is,	
   it	
  was	
  
assumed	
  that	
  the	
  details	
  of	
  the	
  micro-­‐scale	
  elastic,	
  plastic,	
  and	
  transformation	
  deformations	
  
were	
  captured	
  in	
  an	
  average	
  sense	
  by	
  the	
  decompositions	
  of	
  the	
  deformation	
  gradient	
  and	
  
entropy	
  density.	
  In	
  the	
  development,	
   it	
  was	
  assumed	
  that	
  the	
  elastic	
  deformation	
  gradient	
  
(Fel

φ = Fel )	
  and	
  the	
  temperature	
  (θ
φ
=θ )	
  were	
  uniform	
  for	
  each	
  of	
  the	
  constituents	
  (φ ).	
  

The	
  transformation	
  deformation	
  gradient	
  was	
  based	
  on	
  lower-­‐length	
  scale	
  (~1	
  µm)	
  
contributions	
  that	
  are	
  included	
  through	
  crystallographic	
  information	
  that	
  was	
  derived	
  from	
  
the	
  theory	
  of	
  martensitic	
  transformations	
  [Ball	
  and	
  James	
  (1987);	
  James	
  and	
  Hane	
  (2000);	
  
Bhattacharya	
  (2007)].	
  That	
  is,	
  the	
  jump	
  in	
  the	
  stretch	
  tensor	
  across	
  the	
  habit	
  plane	
  between	
  
the	
   parent	
   and	
   daughter	
   phases	
   was	
   used	
   to	
   obtain	
   the	
   local	
   jump	
   condition	
   for	
   the	
  
deformation	
  gradient	
   for	
  a	
   transformation	
  system	
  (ω).	
  The	
   local	
   jump	
  condition	
   then	
  was	
  
volume	
  averaged	
   to	
  provide	
  a	
  meso-­‐mechanical	
   (~10	
  µm)	
   jump	
  condition	
   in	
   terms	
  of	
   the	
  
effective	
  transformation	
  deformation	
  gradient	
  (Ftr )	
  

 

Ftr − I = ξ ω γ tr
ω
∑ bω ⊗mω( ) ≡ ξ ω

ω
∑ Ttr

ω

!Ftr = !ξ ω

ω
∑ Ttr

ω
	
   .	
   	
   	
   (I-­‐3)	
  

In	
  Eq.	
   (I-­‐3),	
  ξ ω 	
  is	
   the	
  volume	
  fraction	
  of	
   the	
  daughter	
  constituents,	
  γ tr 	
  is	
   the	
  shape	
  strain	
  
magnitude,	
  which	
   is	
   related	
   to	
   the	
  volume	
  change	
   for	
   the	
   transformation,	
  bω 	
  is	
   the	
   shape	
  
strain	
  vector,	
  and	
  mω 	
  is	
  the	
  normal	
  to	
  the	
  habit	
  plane.	
  The	
  sum	
  in	
  Eq.	
  (I-­‐3)	
  is	
  taken	
  over	
  the	
  
product	
  constituents.	
  The	
  transformation	
  deformation	
  gradient	
   is	
  written	
   in	
   the	
  reference	
  
configuration,	
  which	
  coincides	
  with	
  the	
  low-­‐pressure	
  phase	
  in	
  the	
  current	
  application.	
  The	
  
shape	
  strain	
  tensor	
  (Ttr

ω )	
  is	
  assumed	
  to	
  remain	
  constant	
  in	
  the	
  reference	
  configuration.	
  The	
  
expression	
  for	
  the	
  transformation	
  entropy	
  density	
  was	
  written	
  [Turteltaub,	
  et.	
  al.	
  (2006)]	
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ηtr = ξ ω λtr
ω

θtrω
∑ 	
   	
   	
   	
   	
   	
   	
   (I-­‐4)	
  

where,	
  λtr
ω 	
  is	
  the	
  transformation	
  latent	
  heat	
  at	
  the	
  transformation	
  temperature	
  θtr .	
  

The	
   evolution	
   of	
   the	
   plastic	
   deformation	
   gradient	
   was	
   provided	
   by	
   the	
   effective	
  
plastic	
   velocity	
   gradient	
   (  

!Lpl ),	
   which	
   is	
   determined	
   in	
   the	
   second	
   intermediate	
  

configuration	
  ( b ).	
  Allowing	
   for	
  plastic	
  slip	
   in	
  each	
  of	
   the	
  constituents,	
   the	
  plastic	
  velocity	
  
gradient	
  is	
  written	
  

	
  

 

!Lpl = "Fpl Fpl
−1

= !ξ β

β
∑ !"γ sl

β ,s !Ssl
β ,s

s

Nsl

∑
	
   .	
   	
   	
   	
   	
   (I-­‐5)	
  

In	
  Eq.	
  (I-­‐5),	
  Nsl	
  is	
  the	
  number	
  of	
  slip	
  systems,	
   !
"γ sl
β ,s 	
  is	
  the	
  plastic	
  slip	
  rate	
  in	
  the	
  β	
  phase	
  

on	
  the	
  s	
  slip	
  system.	
  	
  Also,	
   
!Ssl
β ,s = !sβ ,s ⊗ !nβ ,s 	
  are	
  tensors,	
  which	
  are	
  provided	
  in	
  terms	
  of	
  the	
  

normal	
  ( n )	
  and	
  shear	
  ( s )	
  directions	
  due	
  to	
  slip	
  ( sl ).	
  Equation	
  (I-­‐5)	
  is	
  written	
  in	
  the	
  second	
  
intermediate	
   configuration	
   ( b ),	
   where	
   the	
   tensors	
   that	
   describes	
   slip	
   are	
   assumed	
   to	
   be	
  
predefined.	
  The	
  volume	
  fractions	
   in	
   the	
  reference	
  and	
  second	
   intermediate	
  configurations	
  
are	
   related	
   through	
   the	
   deformation	
   gradients	
   due	
   to	
   transformation	
   and	
   plasticity	
   (i.e.,	
  

 ξ
φ = Jpl Jtr !ξ

φ = Jtr !ξ
φ ,	
  where	
   Jpl = 1).	
  The	
  plastic	
   entropy	
  density	
   rate	
   [Tjahjanto,	
   et.	
   al.	
  

(2008)]	
   reflects	
   an	
   average	
   of	
   the	
   plastic	
   entropy	
   rates	
   for	
   each	
   of	
   the	
   phases,	
   which	
   is	
  
analogous	
  to	
  the	
  plastic	
  velocity	
  gradient.	
  Similar	
  to	
  the	
  plastic	
  velocity	
  gradient	
  the	
  entropy	
  
rate	
  was	
  written	
  

	
   	
  
 
!ηpl = ξ β

β
∑ "!γ sl

β ,s

s
∑ φsl

β ,s 	
   .	
   	
   	
   	
   	
   (I-­‐6)	
  

In	
  Eq.	
   (I-­‐6)	
  φsl
β ,s 	
  is	
   a	
  measure	
  of	
   the	
  entropy	
   related	
   to	
  plastic	
   slip	
   in	
  each	
  of	
   the	
   slip	
   ( sl )	
  

systems	
  for	
  the	
  parent	
  (α)	
  and	
  product	
  (ω)	
  constituents.	
  Again,	
  Eq.	
  (I-­‐6)	
  has	
  been	
  expressed	
  
in	
   terms	
  of	
   the	
  slip	
   rate	
   ( !

"γ sl
β .b ),	
  which	
   is	
  written	
   in	
   the	
  second	
   intermediate	
  configuration	
  

( 
!γ β ,b = Jtr J pl "!γ

β ,b , where Jpl = 1 ).	
   Eqs.	
   (I-­‐5)	
   and	
   (I-­‐6)	
   represents	
   an	
   extension	
   of	
   the	
  
original	
   development	
   [Tjahjanto,	
   et.	
   al.	
   (2008)]	
   where	
   plastic	
   slip	
   in	
   only	
   the	
   austenitic	
  
phase	
  was	
  considered.	
  

To	
  obtain	
   the	
  relations,	
  which	
  describe	
   the	
  deformation	
  of	
  a	
  material	
  point	
   that	
   is	
  
experiencing	
   phase	
   transformations	
   and	
   plastic	
   slip,	
   the	
   driving	
   forces	
   and	
   the	
  
corresponding	
  thermodynamic	
  fluxes	
  must	
  be	
  determined.	
  For	
  this	
  purpose,	
  the	
  principles	
  
of	
  irreversible	
  thermodynamics	
  were	
  invoked	
  [Turteltaub,	
  et.	
  al.	
  (2006)].	
  The	
  balance	
  laws	
  
for	
  energy	
  and	
  the	
  rate	
  of	
  entropy	
  production	
  may	
  be	
  combined	
  to	
  provide	
  an	
  expression	
  
for	
  the	
  dissipation	
  (Φ )	
  in	
  the	
  reference	
  configuration	
  ( b )	
  

	
   	
   Φ = P : F
T
− ρ ε − θ η( ) − q

∇θ

θ
≥ 0 	
   .	
   	
   	
   (I-­‐7)	
  



In	
  Eq.	
   (I-­‐7),	
  ε , θ, η, P, F, ρ, and q 	
  are	
   the	
   internal	
  energy	
  density,	
   temperature,	
  entropy	
  
density,	
   first	
  Piola-­‐Kirchhoff	
  stress,	
  deformation	
  gradient,	
  density,	
  and	
  heat	
   flux.	
  For	
  high-­‐
rate	
   problems,	
   the	
   heat	
   flux	
   may	
   be	
   neglected.	
   The	
   internal	
   energy	
   density	
   (ε )	
   in	
   the	
  

reference	
   configuration	
   ( b )	
   is	
   written ε Fel ,ηel ,ξ
φ ,βsl( ) .	
   That	
   is,	
   the	
   internal	
   energy	
  

density	
  is	
  written	
  in	
  terms	
  of	
  the	
  elastic	
  deformation	
  gradient	
  (Fel ),	
  the	
  reversible	
  entropy	
  
density	
  (ηel ),	
  the	
  volume	
  fractions	
  of	
  the	
  phases	
  (ξ

φ ),	
  and	
  micro-­‐strains	
  due	
  to	
  slip	
  (βsl ).	
  
Details	
  related	
  to	
  the	
  slip	
  micro-­‐variables	
  are	
  not	
  pursued	
  in	
  this	
  development.	
  The	
  micro-­‐
variable	
  for	
  plastic	
  slip	
  may	
  be	
  found	
  in	
  the	
  literature	
  [Tjahjanto	
  et	
  al.	
  (2008a);	
  Tjahjanto	
  et	
  
al.	
  (2008b)].	
  

Inserting	
  the	
  appropriate	
  derivatives	
  of	
  the	
  internal	
  energy	
  ( ε ),	
  the	
  expressions	
  for	
  
the	
   entropy	
   rates	
   ( η ),	
   plastic	
   deformation	
   gradient	
   (  

!Fpl ),	
   and	
   the	
   transformation	
  
deformation	
   gradient	
   ( 

!Ftr
T ),	
   an	
   expression	
   for	
   the	
   dissipation	
   may	
   be	
   obtained,	
   which	
  

provides	
   the	
  driving	
   forces	
   for	
   the	
   fluxes	
  of	
  plastic	
   slip	
   ( !γ sl
φ ,Γ )	
   and	
  phase	
   transformations	
  

( 
!ξφ )	
  in	
  the	
  reference	
  configuration.	
  For	
  mechanics	
  applications,	
  it	
  is	
  convenient	
  to	
  work	
  in	
  

the	
  second	
   intermediate	
  configuration	
  ( b ).	
  Also,	
  a	
  conversion	
  from	
  internal	
  energy	
  to	
  the	
  
Helmholtz	
   free	
  energy	
  was	
  made	
   [Tjahjanto,	
   et.	
   al.	
   (2008)].	
  A	
   strain	
  measure	
  was	
  used	
   in	
  
place	
   of	
   the	
   elastic	
   deformation	
   gradient.	
   For	
   this	
   purpose,	
   the	
   Green-­‐Lagrange	
   strain	
  
[
 
!Eel = 1

2 Fel
T Fel − I( ) ],	
  which	
  is	
  the	
  energy	
  conjugate	
  to	
  the	
  second	
  Piola-­‐Kirchhoff	
  stress	
  ( S ),	
  

is	
  used.	
  Both	
   the	
  Green-­‐Lagrange	
  strain	
  and	
   the	
   second	
  Piola-­‐Kirchhoff	
  are	
  defined	
   in	
   the	
  
second	
   intermediate	
   configuration.	
   	
   The	
   resulting	
   expression	
   for	
   the	
  dissipation	
  potential	
  
( !Φ )	
  provides	
  the	
  constitutive	
  model	
  [

 
!S = ∂ !ψ / ∂ !Eel( ) ]	
  and	
  the	
  reversible	
  component	
  of	
  the	
  

entropy	
  density	
  [ !ηel = − ∂ !ψ / ∂θ( ) ]	
  as	
  well	
  as	
  the	
  driving	
  force	
  due	
  to	
  slip	
  ( !Φsl
β ,s )	
  and	
  phase	
  

transformations	
  ( 
!Φtr
ω )	
  

	
  
 

!Φsl
β ,s = Jtr Fel !S !Ssl

β ,sFel
T + !ρ θ !φsl

β ,s − !wsl
β ,s ∂ !ψ

∂βsl

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ 	
   ,	
   	
   (I-­‐8)	
  

	
   	
  
 

!Φtr
ω = Jtr Fel !SFtr

−T Ttr
ω( )T FelT + !ρ θ λT

ω

θT
− ∂ !ψ
∂ !ξω

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ 	
   .	
   	
   (I-­‐9)	
  

The	
   first	
   term	
   in	
  Eq.	
   (I-­‐8),	
  which	
   is	
   the	
  resolved	
  shear	
  stress,	
   is	
   the	
  dominant	
   term	
   in	
   the	
  
driving	
  force	
  for	
  plastic	
  slip	
  [Tjahjanto	
  et	
  al.	
  (2008)].	
  The	
  driving	
  forces	
  may	
  be	
  determined	
  
once	
  the	
  free	
  energy	
  has	
  been	
  prescribed.	
  Similar	
  to	
  the	
  approaches	
  that	
  are	
  used	
  in	
  shock	
  
physics	
   investigations	
   [Greeff	
   et	
  al	
   (2001)],	
   a	
   free	
  energy	
  will	
  be	
  provided	
   for	
  each	
  of	
   the	
  
constituents	
   (ψ φ ).	
   The	
   average	
   free	
   energy	
   is	
   then	
   a	
   mass	
   fraction	
   ( ς φ

= v ξφ
/v

φ )	
  
weighted	
  sum	
  of	
  the	
  free	
  energies	
  of	
  the	
  constituents	
  (ψ = ς φ

φ

∑ ψ φ ).	
  A	
  mixing	
  term	
  is	
  not	
  

included	
  in	
  the	
  expression	
  for	
  the	
  average	
  free	
  energy.	
  The	
  forcing	
  function	
  ( 
!Φtr
ω ),	
  which	
  is	
  

provided	
  by	
  Eq.	
  (I-­‐9),	
  was	
  used	
  to	
  drive	
  the	
  kinetics	
  equation	
  for	
  the	
  transformation	
  ( ξφ )	
  
[Turteltaub	
   and	
   Suiker	
   (2006)].	
   As	
   provided	
   by	
   Eq.	
   (I-­‐9),	
   the	
   driving	
   force	
   includes	
   the	
  



effects	
  of	
  shear.	
  That	
  is,	
  the	
  driving	
  force	
  for	
  transformations	
  has	
  been	
  written	
  in	
  terms	
  of	
  
the	
  stress	
   tensor	
  of	
   the	
  constituent	
   	
   ( !S )	
  and	
  not	
   simply	
   the	
  volumetric	
   component	
  of	
   the	
  
stress	
  (e.g.,	
  the	
  pressure).	
  	
  It	
  may	
  be	
  shown	
  [Turteltaub	
  and	
  Suiker	
  (2006)]	
  that	
  the	
  driving	
  
force	
   provided	
   by	
   Eq.	
   (I-­‐9)	
   can	
   be	
   related	
   to	
   a	
   Gibbs’	
   free	
   energy	
   [ gφ =ψ φ − v φSφ :Eel

φ ],	
  
which	
  also	
  has	
  been	
  defined	
  as	
  a	
  driving	
  force	
  in	
  the	
  study	
  of	
  phase	
  transformations.	
  In	
  the	
  
below	
   constitutive	
   model,	
   a	
   Helmholtz	
   free	
   energy,	
   which	
   provides	
   the	
   nonlinear	
   elastic	
  
(equation	
   of	
   state)	
   contribution	
   that	
   is	
   a	
   function	
   of	
   the	
   specific	
   volume	
   in	
   the	
   current	
  
configuration	
  will	
  be	
  used.	
  Also,	
  the	
  Gibbs	
  free	
  energy,	
  which	
  is	
  a	
  function	
  of	
  pressure	
  and	
  
temperature,	
  will	
  be	
  used	
  as	
  the	
  driving	
  force	
  for	
  phase	
  transformations.	
  That	
  is,	
  the	
  effect	
  
of	
  shear	
  on	
  the	
  transformation	
  process	
  will	
  be	
  neglected.	
  

In	
   an	
   effort	
   to	
   quantify	
   the	
   physics	
   of	
   high-­‐rate	
   deformations	
   of	
   single	
   crystals,	
   a	
  
thermo-­‐mechanical	
   single-­‐crystal	
   model	
   is	
   provided.	
   The	
   deformation	
   of	
   low-­‐symmetry	
  
materials,	
  including	
  the	
  coupled	
  effects	
  of	
  material	
  anisotropy,	
  linear	
  or	
  nonlinear	
  elasticity,	
  
phase	
  transformations,	
  as	
  well	
  as	
  plastic	
  slip	
  and	
  twinning	
  are	
  considered.	
  Insight	
  into	
  the	
  
deformation	
   mechanics	
   of	
   single-­‐crystals	
   that	
   are	
   subjected	
   to	
   high-­‐rate	
   conditions	
   is	
  
necessary	
   for	
   the	
   purpose	
   of	
   quantifying	
   material	
   physics	
   at	
   the	
   meso-­‐scale	
   (~10	
   µm).	
  
Modeling	
   low-­‐symmetry	
   crystals	
   presents	
   additional	
   complexity	
   compared	
   to	
   cubic	
  
structures.	
  Tensile-­‐compressive	
  anisotropy	
  also	
  is	
  prevalent	
  in	
  low-­‐symmetry	
  crystals.	
  The	
  
deformation	
  of	
  low-­‐symmetry	
  crystals	
  results	
  in	
  anisotropic	
  elastic	
  and	
  inelastic	
  responses.	
  	
  
Only	
   diffusionless	
   transformations	
   are	
   modeled.	
   That	
   is,	
   only	
   displacive	
   transformations	
  
that	
  are	
  the	
  result	
  of	
  a	
  small	
  rearrangement	
  of	
  the	
  crystal	
  lattice	
  are	
  considered.	
  Nucleation	
  
events	
   are	
  not	
  modeled.	
  The	
   theory	
   assumes	
   that	
   all	
   components	
  within	
   a	
   computational	
  
element	
   have	
   the	
   same	
   deformation	
   gradient	
   and	
   temperature.	
   It	
   is	
   intended	
   to	
   use	
   the	
  
model	
   to	
   explore	
   the	
   coupled	
  physics	
   related	
   to	
  high-­‐rate	
   and	
  high-­‐pressure	
  deformation	
  
scenarios.	
  Phase	
   transformations	
  can	
   induce	
   inelastic	
  deformations	
   in	
  neighboring	
  phases	
  
or	
   the	
   surrounding	
   material.	
   Only	
   recently,	
   has	
   it	
   become	
   possible	
   to	
   experimentally	
  
explore	
  the	
  in	
  situ	
  response	
  of	
  shocked	
  materials,	
  which	
  are	
  undergoing	
  the	
  coupled	
  effects	
  
of	
  phase	
  transformations	
  and	
  inelastic	
  behavior.	
  Consequently,	
  thermo-­‐mechanical	
  models	
  
and	
  numerical	
  simulations	
  are	
  important	
  for	
  exploring,	
  interpreting,	
  and	
  understanding	
  the	
  
response	
  of	
  the	
  high-­‐rate	
  deformations	
  of	
  materials.	
  To	
  achieve	
  this	
  goal,	
  the	
  above	
  crystal	
  
plasticity	
  model	
   [Tjahjanto,	
   et.	
   al.	
   (2008a),	
   Tjahjanto,	
   et.	
   al.	
   (2008b)]	
   will	
   be	
  modified.	
   A	
  
rate-­‐dependent	
   plasticity	
   model	
   is	
   considered,	
   which	
   allows	
   for	
   material	
   anisotropy.	
  
Titanium	
  (Ti)	
  was	
  chosen	
  as	
  a	
  model	
  material	
  in	
  this	
  study	
  also	
  because	
  of	
  the	
  information	
  
(e.g.	
  atomistic	
  potentials	
  and	
  limited	
  high-­‐rate	
  experimental	
  data)	
  that	
  was	
  available.	
  Phase	
  
transformations	
  in	
  Ti	
  exhibit	
  deformation	
  characteristics	
  such	
  as	
  hysteresis,	
  retained	
  high-­‐
pressure	
   phase,	
   shear	
   effects,	
   and	
   twinning,	
   which	
   are	
   currently	
   not	
   included	
   in	
   many	
  
computational	
   models.	
   For	
   the	
   α  to	
   ω	
   transformations	
   in	
   titanium	
   (Ti),	
   each	
   material	
  
element	
  is	
  modeled	
  to	
  include	
  the	
  hexagonal	
  close-­‐packed	
  (hcp)	
  parent	
  (α)	
  phase	
  and	
  three	
  
variants	
  [Jaworski,	
  et,	
  al.	
  (2005)]	
  of	
  the	
  hexagonal	
  (hex)	
  daughter	
  phase	
  (ω1, ω2, ω3).	
  It	
  is	
  felt	
  
that	
   the	
   insight	
   that	
  may	
   be	
   gained	
   through	
   the	
   development	
   of	
   a	
   single-­‐crystal	
  model	
   is	
  
necessary	
  for	
  the	
  development	
  of	
  macro-­‐mechanical	
  (polycrystal)	
  descriptions.	
  The	
  relative	
  
contributions	
   from	
  multiple	
   and	
  distinct	
   deformation	
  mechanisms	
  will	
   be	
   distilled	
   in	
   this	
  
investigation.	
   	
   It	
   also	
   is	
   envisioned	
   that	
   this	
  model	
   offers	
   the	
   opportunity	
   to	
   explore	
   the	
  
deformation	
  characteristics	
  of	
  energetic	
  materials	
  [Clayton,	
  et.	
  al.	
  (2012)].	
  

	
   In	
   this	
   approach,	
   the	
   details	
   of	
   the	
   microstructure	
   (<1	
   µm)	
   or	
   sub	
   crystalline	
  
deformation	
   are	
   not	
   resolved.	
   Instead,	
   components	
   of	
   the	
   inelastic	
   deformation	
   are	
  
modeled	
  in	
  a	
  volume-­‐averaged	
  manner.	
  That	
  is,	
  a	
  suitable	
  representative	
  volume	
  is	
  chosen	
  



and	
  the	
  sub	
  grain	
  details	
  associated	
  with	
  slip,	
  twinning,	
  and	
  transformations	
  are	
  modeled	
  in	
  
an	
   averaged	
   sense.	
   The	
   single-­‐crystal	
  model	
   does	
   not	
   resolve	
   phase	
   transformed	
   or	
   twin	
  
domains.	
   Instead,	
   mass	
   or	
   volume	
   fractions	
   of	
   the	
   transformed	
   or	
   twinned	
   regions	
   are	
  
evolved	
   as	
   the	
   deformation	
   progresses.	
   Each	
   constituent	
   is	
   allowed	
   to	
   possess	
   distinct	
  
material	
  properties.	
  Nonlinear	
  elasticity	
  (i.e.	
  and	
  equation	
  of	
  state)	
  has	
  been	
  included	
  using	
  
free	
  energies	
  for	
  both	
  the	
  α-­‐	
  and	
  ω-­‐phases.	
  Plastic	
  slip	
  is	
  modeled	
  using	
  a	
  thermal	
  activation	
  
model.	
  An	
  efficient	
  pseudo-­‐slip	
  approach	
  for	
  twinning	
  has	
  been	
  adopted.	
  Both	
  slip	
  and	
  twin	
  
systems	
   are	
   defined	
   in	
   an	
   intermediate	
   configuration	
   in	
   a	
   predefined	
   manner.	
   It	
   is	
  
anticipated	
  that	
  the	
  model	
  will	
  provide	
  insights	
  into	
  the	
  impact	
  that	
  these	
  relevant	
  coupled	
  
nonlinear	
  effects	
  have	
  on	
  the	
  high-­‐rate	
  deformations	
  of	
  single-­‐crystals.	
  

	
   Because	
  information	
  regarding	
  aspects	
  of	
  the	
  high-­‐rate	
  deformation	
  of	
  Ti	
  are	
  lacking,	
  
molecular	
   dynamics	
   (MD)	
   simulations	
   were	
   conducted	
   in	
   this	
   investigation.	
   The	
   MD	
  
analyses	
   provided	
   insight	
   into	
   issues	
   relate	
   to	
   the	
   transformation	
   process	
   as	
   well	
   as	
   the	
  
response	
  of	
  the	
  high-­‐pressure	
  phase	
  to	
  deformations.	
  An	
  experimental	
  component	
  also	
  was	
  
included	
   in	
   this	
   investigation.	
   In	
   an	
   effort	
   to	
   pursue	
   the	
   high-­‐rate	
   deformation	
   above	
   the	
  
transformation	
   pressure,	
   a	
   plate	
   impact	
   experiment	
   was	
   conducted	
   on	
   a	
   multi-­‐crystal	
  
sample	
   of	
   Ti.	
   The	
   particle	
   velocities	
   at	
   the	
   back	
   surface	
   for	
   three	
   orientations	
   of	
   the	
   Ti	
  
crystal	
  with	
   respect	
   to	
   the	
   impact	
  direction	
  were	
  measured.	
   Simulations	
  using	
   the	
   single-­‐
crystal	
  model	
  were	
  compared	
  with	
  these	
  data.	
  

	
   In	
  the	
  formulation	
  the	
  juxtaposition	
  of	
  symbols	
  implies	
  the	
  summation	
  over	
  one	
  set	
  
of	
   adjacent	
   indices	
   (i.e.,	
  C = A B = A

km
B
ml
= C

kl
).	
   The	
   symbol	
   I	
   is	
   used	
   to	
   represent	
   the	
  

second	
  order	
  identity	
  tensor.	
  The	
  superscripts	
  T,	
  -­‐1,	
  and	
  -­‐T	
  represent	
  the	
  transpose,	
  inverse,	
  
and	
  the	
  transpose	
  of	
  an	
  inverse	
  of	
  a	
  second	
  order	
  tensor.	
  In	
  general,	
  upper	
  case	
  symbols	
  are	
  
second	
   order	
   tensors	
   and	
   lower	
   case	
   symbols	
   are	
   either	
   vectors	
   or	
   scalors.	
   The	
   Greek	
  
superscripts	
  α,	
  β, or ω	
   refer	
   to	
  material	
   phases,	
   r	
   or	
   s	
   to	
   slip	
   systems,	
   and	
   a	
   or	
   b	
   to	
   twin	
  
systems.	
  

	
   The	
   constitutive	
   approach,	
  which	
   is	
   used	
   in	
   this	
   study,	
   is	
   provided	
   in	
   Sec.	
   II.	
   The	
  
model	
   has	
   its	
   basis	
   in	
   the	
   consistent	
   thermo-­‐mechanical	
   framework	
   for	
   single	
   crystals	
  
[Tjahjanto,	
  et.	
  al.	
  (2008a),	
  Tjahjanto,	
  et.	
  al.	
  (2008b)].	
  Molecular	
  dynamics	
  (MD)	
  simulations,	
  
which	
  provide	
  the	
  high-­‐rate	
  deformation	
  characteristics	
  of	
  single-­‐crystal	
  Ti,	
  are	
  provided	
  in	
  
Sec.	
   III.	
   A	
  description	
  of	
   the	
  plate	
   impact	
   experiment	
   for	
   a	
  multi-­‐crystal	
   sample	
   of	
  Ti	
   and	
  
resulting	
   particle	
   velocity	
   data	
   are	
   discussed	
   in	
   Sec.	
   IV.	
   In	
   Sec.	
   V,	
   simulations	
   using	
   the	
  
proposed	
  model	
  are	
  compared	
  to	
  the	
  data	
  obtained	
  from	
  the	
  single-­‐crystal	
  Ti	
  experiment.	
  
Finally,	
  summary	
  remarks	
  and	
  future	
  considerations	
  will	
  be	
  addressed	
  in	
  Sec.	
  VI.	
  

	
  

II.	
  Constitutive	
  Model	
  

In	
   an	
   effort	
   to	
   address	
   the	
   high-­‐strain-­‐rate	
   deformation	
   of	
   hcp	
   materials,	
   the	
  
framework	
  that	
  was	
  reviewed	
  in	
  Sec.	
  I	
  [Tjahjanto,	
  et.	
  al.	
  (2008a),	
  Tjahjanto,	
  et.	
  al.	
  (2008b)]	
  
is	
   generalized	
   in	
   a	
   heuristic	
   fashion.	
   The	
   extension	
   includes	
   free	
   energies,	
   from	
   which	
  
nonlinear	
  elasticity	
  (equation	
  of	
  state)	
  and	
  the	
  driving	
  force	
  for	
  the	
  phase	
  transformations	
  
are	
   incorporated.	
   Plasitic	
   slip	
   is	
   included	
   in	
   each	
   of	
   the	
   constituents.	
   Also,	
   a	
   pseudo-­‐slip	
  
approach	
   is	
   used	
   to	
   include	
   twinning	
   in	
   the	
  parent	
   (α)	
   phase.	
  The	
  model	
   is	
   based	
  on	
   the	
  
multiplicative	
   decomposition	
   [Eq.	
   (I-­‐1)]	
   of	
   the	
   deformation	
   gradient	
   [Tjahjanto	
   et	
   al.	
  
(2008a),	
  Tjahjanto	
  et	
  al.	
  (2008b)].	
  Once	
  constitutive	
  models	
  are	
  provided	
  for	
  the	
  plastic	
  and	
  
transformation	
   deformation	
   gradients,	
   the	
   elastic	
   deformation	
   gradient	
   and	
   the	
   elastic	
  



strains	
   ( 
!Eel )	
  may	
   be	
   determined.	
  Models	
   for	
   plastic	
   slip	
   and	
   twinning	
   are	
   provided.	
   It	
   is	
  

assumed	
  that	
  the	
  plastic	
  deformation	
  is	
  isochoric	
  [ Jpl = det(Fpl ) = 0 ].	
  

The	
  transformation	
  component	
  of	
  the	
  deformation	
  gradient	
  is	
  provided	
  by	
  Eq.	
  (I-­‐3)	
  
[Turteltaub	
   and	
   Suiker	
   (2006)].	
   Values	
   for	
   the	
   shape	
   strain	
   vector	
   and	
   the	
   habit	
   plane	
  
normal	
  are	
  obtained	
  from	
  molecular	
  dynamics	
  simulations	
  (Sec.	
  III).	
  For	
  the	
  transformation	
  
from	
   the	
   low-­‐pressure	
   (α)	
   phase	
   to	
   the	
   high-­‐pressure	
   (ω)	
   phase	
   in	
   Ti,	
   the	
   Silcock	
  
mechanism	
  is	
  used	
  (Sec.	
  III).	
  That	
  is,	
  the	
  model	
  will	
  include	
  the	
  α–phase	
  and	
  three	
  variants	
  
of	
  the	
  ω–phase	
  (ω = 1,2,3 ).	
  It	
  may	
  be	
  shown	
  that	
  [Turteltaub	
  and	
  Suiker	
  (2006)]	
  

	
  
 
Jtr = det(Ftr ) = !v / v0 ≈1+δ tr ξω

ω
∑ 	
   	
   	
   	
   	
   	
   (II-­‐1)	
  

where,	
   v 	
  and	
   v
0
	
  are	
  the	
  specific	
  volumes	
  in	
  the	
  intermediate	
  and	
  reference	
  configurations.	
  

Similarly,	
  

	
    Jtr
φ = det(Ftr

φ ) = !vφ / v0 = 1+δ tr 	
   .	
   	
   	
   	
   	
   (II-­‐2)	
  

In	
  Eq.	
  (II-­‐2),	
   Jtr
φ=α = 1 	
  and	
  δ tr 	
  is	
  the	
  volume	
  change	
  due	
  to	
  the	
  transformation.	
  It	
  is	
  assumed	
  

that	
  the	
  volume	
  change	
  is	
  the	
  same	
  for	
  each	
  of	
  the ω-­‐variants.	
  For	
  Ti,	
  there	
  is	
  approximately	
  
a	
   1.6%	
   volume	
   reduction	
   due	
   to	
   the	
   transformation.	
   Consequently,	
   the	
   deformation	
  
gradient	
   (Ftr )	
  may	
  be	
  obtained	
  once	
   the	
  volume	
   fraction	
  (ξ

ω )	
   for	
  each	
  of	
   the	
  ω 	
  variants	
  
has	
  been	
  obtained.	
  An	
  equation	
  for	
  the	
  transformation	
  kinetics	
  is	
  used	
  to	
  determine	
  ξω .	
  

The	
   plastic	
   component	
   of	
   the	
   deformation	
   gradient	
   ( Fpl )	
   is	
   obtained	
   from	
   a	
  
constitutive	
   model	
   for	
   plastic	
   velocity	
   gradient	
   ( 

!Lpl = "FplFpl
−1 ).	
   	
   In	
   the	
   model,	
   the	
   plastic	
  

velocity	
   gradient	
   [Eq.	
   (I-­‐5)]	
   allows	
   for	
   plastic	
   slip	
   in	
   the	
    α-­‐phase	
   and	
   the	
  ω-­‐variants	
   and	
  
twinning	
   [Salem	
   et	
   al.	
   (2005);	
   Kalidindi	
   (1998)]	
   only	
   in	
   the	
  α-­‐phase.	
   The	
   plastic	
   velocity	
  
gradient	
  in	
  the	
  intermediate	
  configuration	
  is	
  written	
  

 

!Lpl = ςα 1− !f a
a
∑⎛

⎝⎜
⎞
⎠⎟
!"γ sl
α ,s !Ssl

α ,s + !"f a
a
∑ !γ tw

!Stw
a

s
∑⎧

⎨
⎩

⎫
⎬
⎭
+ ςω !"γ sl

ω ,s !Ssl
ω ,s

s
∑

ω
∑ .	
  	
   (II-­‐3)	
  

In	
  Eq.	
   (II-­‐3),	
   !
"γ sl
α ,s 	
  is	
   the	
  plastic	
   strain	
   rate	
   in	
   the	
  α-­‐phase	
  on	
   the	
   sth	
   slip	
   system,	
   !γ tw 	
  is	
   the	
  

constant	
  shear	
  strain	
  associated	
  with	
  twinning,	
   
!f a 	
  is	
  the	
  volume	
  fraction	
  of	
  twins	
  in	
  the	
  α-­‐

phase	
   on	
   the	
   ath	
   twin	
   system,	
   and	
   
!Sa = !sa ⊗ !na 	
  is	
   the	
   tensorial	
   direction	
   of	
   the	
   shear	
  

resulting	
   from	
  active	
   slip	
   ( Ssl
α ,s )	
   or	
   twin	
   ( S

tw

α )	
   systems,	
  where	
   sa 	
  and	
   na 	
  are	
   unit	
   vectors	
  
along	
  and	
  normal	
  to	
  the	
  slip	
  or	
  twin	
  directions.	
  Therefore,	
  the	
  plastic	
  velocity	
  gradient	
  may	
  
be	
  obtained	
  once	
  constitutive	
  models	
  have	
  been	
  provided	
  for	
  the	
  plastic	
  shear	
  rate	
  ( !

"γ sl
α ,s )	
  

and	
  the	
  rate	
  of	
  increase	
  of	
  the	
  twin	
  volume	
  fraction	
  ( 
!"f a ),	
  which	
  are	
  derived	
  in	
  terms	
  of	
  the	
  

appropriate	
  driving	
  forces.	
  	
  

The	
   evolution	
   of	
   plastic	
   slip	
   is	
  modeled	
   using	
   a	
   phenomenological	
   hardening	
   law.	
  
The	
  plasticity	
  model	
   is	
  appropriate	
  for	
  thermally	
  activated	
  dislocation	
  motion.	
  That	
   is,	
   the	
  



effects	
  of	
  dislocation	
  drag	
  are	
  neglected.	
  The	
  thermal	
  activation	
  model,	
  which	
  has	
  been	
  used	
  
to	
  calculate	
  the	
  shearing	
  rate	
  due	
  to	
  slip	
  [Bronkhorst	
  et	
  al.	
  (2007)],	
  is	
  written	
  as	
  a	
  function	
  
of	
  the	
  resolved	
  shear	
  stress	
  (τ α ,s )	
  on	
  the	
  sth-­‐slip	
  system	
  of	
  the	
  α -­‐phase.	
  

	
  

 

!γ α ,s = !γ 0 sgn(τ
α ,s )exp − E0

kBθ
1−

τ α ,s − gα ,s

gl
α ,s

p q⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	
   	
   	
   (II-­‐4)	
  

where	
  

	
  

 

!gα ,s = gsl
gs
α ,r − gα ,r

gs
α ,r − g0

α ,r

⎛
⎝⎜

⎞
⎠⎟
⌣r + 1− ⌣r( )δ αr⎡⎣ ⎤⎦ !γ

r

r
∑

gs
α ,s = gs0

α ,s !γ α ,s

!γ 0

kθ /A

+ ghp
α ,s f b

b
∑⎛⎝⎜

⎞
⎠⎟

1/2 	
   	
   	
   	
   (II-­‐5)	
  

In	
  Eq.	
  (II-­‐4),	
   x = 1

2
x + x( ) 	
  is	
  the	
  Macaulay	
  bracket.	
  Also, gα ,s is	
  the	
  slip	
  system	
  resistance	
  

of	
  the	
  α	
  phase	
  on	
  the s 	
  slip	
  system.	
  	
  The	
  hardening	
  model	
  includes	
  both	
  self-­‐hardening	
  and	
  
cross-­‐hardening	
   through	
   the	
   use	
   of	
   the	
   self-­‐hardening	
   ratio	
   ( 

⌣r ).	
   The	
  material	
   parameter	
  
ghp
α ,s 	
  accounts	
   for	
   the	
  Hall-­‐Petch	
  effect	
   [Salem	
  et	
  al.	
   (2005)]	
   that	
  results	
   from	
  the	
  effective	
  

reduction	
   in	
   grain	
   size	
   due	
   to	
   twinning,	
   gsl provides	
   the	
   initial	
   hardening	
   rate,	
   and	
   gs0
α ,s is	
  

the	
  saturation	
  value	
  at	
  0	
  K	
  in	
  the	
  absence	
  of	
  twinning.	
  Also,	
   g
s

ϑ ,α is	
  the	
  saturation	
  stress, g
0

ϑ ,α 	
  
is	
   the	
   initial	
   slip	
   system	
   resistance,	
   k

B
	
  is	
   the	
   Boltzman	
   constant,	
   and	
  E0 	
  is	
   the	
   activation	
  

energy.	
  The	
  exponents	
   p 	
  and	
  q 	
  control	
  the	
  dislocation	
  spatial	
  energy	
  barrier	
  profile.	
  The	
  
resolved	
  shear	
   stress	
   is	
   assumed	
   to	
  be	
   the	
  dominant	
   term	
   in	
   the	
  driving	
   force	
   for	
  
plastic	
  slip	
  [Eq.	
  (I-­‐8)].	
  Also,	
  the	
  effect	
  of	
  elastic	
  stretch	
  on	
  the	
  calculation	
  of	
  the	
  resolved	
  
shear	
  stress	
  is	
  neglected	
  [Kalidindi	
  et	
  al.	
  (1992)].	
  Therefore	
  the	
  resolved	
  shear	
  stress	
  [Eq.	
  I-­‐
8)]	
  is	
  written	
  as	
  

 
τ α ,s ≈ !S : !Sα ,s = !S : !sα ,s ⊗ !nα ,s( )sym 	
   .	
   	
   	
   	
   (II-­‐6)	
  

Titanium	
   is	
   a	
   highly	
   anisotropic	
   material.	
   Furthermore,	
   a	
   realistic	
   model,	
   which	
  
addresses	
   the	
   important	
   deformation	
   modes	
   of	
   Ti	
   should	
   include	
   twinning.	
   Twinning	
   is	
  
modeled	
  using	
  a	
  pseudo-­‐slip	
  [Salem	
  et	
  al.	
  (2005);	
  Kalidindi	
  (1998)]	
  approach.	
  Twinning	
  is	
  
considered	
   only	
   in	
   the	
  α-­‐phase	
   [Eq.	
   (II-­‐4)].	
   It	
   is	
   assumed	
   that	
   the	
   twinned	
   and	
   untwined	
  
(matrix)	
   regions	
   experience	
   the	
   same	
   deformation	
   gradient.	
   Both	
   slip	
   and	
   twinning	
   are	
  
prohibited	
   in	
   twinned	
   regions.	
   The	
   lattice	
   orientations	
   that	
   are	
   produced	
   at	
   different	
  
instances	
   of	
   the	
   deformation	
   path	
   are	
   assumed	
   to	
   be	
   identical	
   for	
   the	
   same	
   twin	
   system.	
  
Account	
  of	
   the	
  differences	
   in	
  the	
   lattice	
  orientations	
  of	
   the	
  twinned	
  regions	
   is	
   included	
  by	
  
rotating	
   the	
  stiffness	
   tensor	
  ( !

a )	
  of	
   the	
  matrix	
   into	
   the	
  orientation	
  of	
   the	
   twinned	
  region	
  
( !

α )	
  

 !
a = Q :Q :Q :Q :!α 	
  	
   	
   	
   	
   	
   	
   (II-­‐7)	
  



where	
  Q 	
  is	
   the	
   transformation	
  matrix	
  between	
  the	
   lattice	
  orientation	
   in	
   the	
  matrix	
   to	
   the	
  
lattice	
  orientation	
  in	
  the	
  twinned	
  region	
  	
  

	
   	
   Q=2n⊗ n− I 	
  	
   	
   	
   	
   	
   	
   	
   (II-­‐8)	
  

and	
  n is	
   the	
  normal	
   to	
   the	
  twin	
  plane	
  [Kalidindi	
  (1998)].	
  A	
  power	
   law	
  model	
   [Salem	
  et	
  al.	
  
(2005)]	
  is	
  used	
  to	
  describe	
  the	
  evolution	
  of	
  the	
  deformation	
  twin	
  volume	
  fractions	
  

 
f a =

!γ tw0

γ tw

τ a

ha
⎛

⎝
⎜

⎞

⎠
⎟

atw

.	
   	
   	
   	
   	
   	
   	
   (II-­‐9)	
  

In	
   Eq.	
   (II-­‐9),	
   !γ tw0 	
  is	
   the	
   reference	
   twinning	
   rate	
   and	
  γ tw 	
  is	
   the	
   twinning	
   strain.	
   In	
   the	
  
current	
   implementation,	
   the	
   twin	
  volume	
   fraction	
  must	
   remain	
  positive	
   ( f a ≥ 0 )	
   and	
   the	
  
sum	
  of	
   the	
   volume	
   fractions	
  of	
   all	
   of	
   the	
   twin	
  orientations	
   is	
   bounded	
   ( f a ≤1

a
∑ ).	
  When	
  

twinning	
   is	
   included	
   in	
   the	
   plastic	
   velocity	
   gradient	
   ( 
!Lpl ),	
   then	
   a	
   driving	
   force	
   similar	
   to	
  

that	
  obtained	
  for	
  slip	
  [Eq.(I-­‐8)]	
  may	
  be	
  obtained	
  as	
  the	
  driving	
  force	
  for	
  the	
  production	
  of	
  

twins	
  ( 
!"f ω ,a ).	
  Again,	
   the	
  dominant	
  term	
  in	
  the	
  driving	
  force	
   for	
  twinning	
   is	
  assumed	
  to	
  be	
  

the	
   resolved	
   shear	
   stress	
   on	
   the	
   a-­‐twin	
   system	
   (
 
τ α ,a = !S :Sα ,a = !S : !mα ,a ⊗ !nα ,a( )sym ).	
   The	
  

twin	
  hardening	
  function	
  is	
  written	
  [Salem	
  et	
  al.	
  (2005)]	
  

	
  
 

!ha = htw γ tw
!f b

b
∑⎛⎝⎜

⎞
⎠⎟

!f c
c
∑⎛⎝⎜

⎞
⎠⎟

btw

+ hsl !γ sl
α ,p

p
∑⎛

⎝⎜
⎞

⎠⎟
γ sl

α ,q

q
∑⎛

⎝⎜
⎞

⎠⎟

dtw

	
   .	
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The	
   first	
   term	
   on	
   the	
   right	
   of	
   Eq.	
   (II-­‐10)	
   accounts	
   for	
   hardening	
   due	
   to	
   twin-­‐twin	
  
interactions	
  and	
  the	
  second	
  term	
  represents	
  hardening	
  due	
  to	
  slip-­‐twin	
  interactions.	
  In	
  Eqs.	
  	
  
(II-­‐9)	
  and	
  (II-­‐10),	
  htw , hsl , atw ,btw , 	
  and	
  dtw are	
  material	
  parameters.	
  

The	
   formulation	
  of	
  a	
  constitutive	
  model	
  requires	
  work	
  conjugate	
  measures	
   for	
   the	
  
stress	
  and	
  strain.	
  The	
  ability	
  to	
  address	
  shock	
  propagation	
  effects	
  is	
  facilitated	
  by	
  including	
  
nonlinear	
   elasticity	
   or	
   an	
   equation	
   of	
   state.	
   The	
   incorporation	
   of	
   an	
   equation	
   of	
   state	
  
requires	
   the	
   implementation	
   of	
   a	
   pressure-­‐volume	
   relation.	
   Therefore,	
   it	
   is	
   necessary	
   to	
  
decompose	
  the	
  strain	
  into	
  volumetric	
  and	
  isochoric	
  components.	
  For	
  this	
  reason,	
  an	
  elastic	
  
strain	
  is	
  employed,	
  which	
  results	
  in	
  a	
  traceless	
  strain	
  measure	
  for	
  an	
  isochoric	
  deformation.	
  
An	
  isochoric	
  deformation	
  does	
  not	
  result	
  in	
  a	
  contribution	
  to	
  the	
  pressure	
  for	
  an	
  isotropic	
  
material	
  or	
  a	
  crystal	
  with	
  cubic	
  symmetry.	
  Many	
  models	
  for	
  high-­‐rate	
  applications	
  use	
  the	
  
logarithmic	
   strain	
   and	
   Kirchhoff	
   stress,	
   which	
   are	
   defined	
   in	
   the	
   unrotated	
   configuration	
  
[Becker	
  (2004)]	
  between	
  the	
  second	
  intermediate	
  and	
  current	
  configurations.	
  In	
  this	
  model,	
  
the	
   second	
   Piola-­‐Kirchhoff	
   stress	
   (  !S )	
   and	
   the	
   elastic	
   Green-­‐Lagrange	
   strain	
  
[
 
!Eel = 1

2 Fel
T Fel − I( ) ],	
  which	
  are	
  defined	
  in	
  the	
  second	
  intermediate	
  configuration,	
  are	
  used.	
  

The	
   elastic	
   deformation	
   gradient	
   ( Fel = FedFev )	
   is	
   decomposed	
   into	
   an	
   isochoric	
  
(Fed = Jel

−1/3Fel )	
  and	
  volumetric	
  (Fev = Jel
1/3I )	
  component.	
  This	
  results	
   in	
  a	
  volumetric	
  ( !Eev )	
  



and	
   isochoric	
   ( E
ed
)	
   component	
   of	
   the	
   Green-­‐Lagrange	
   strain	
   ( 

!Eel )	
   [Bonet	
   and	
   Wood	
  
(1997),	
  Luscher	
  et	
  al.	
  (2016)].	
  The	
  resulting	
  strain	
  measures	
  are	
  

	
   	
  
 
!Eel =

1
2
(Fel

T Fel − I ) = !Eed + !Eev = !Eed + !eev I 	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (II-­‐11)	
  

where	
  

	
   	
  

 

!Eev =
1
2
(Jel

2/3 − 1) I

!Eed =
1
2
(Fel

T Fel − Jel
2/3I )

	
   .	
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Therefore,	
   the	
   elastic	
   strains	
   are	
   obtained	
   once	
   the	
   elastic	
   deformation	
   gradient	
  
( Fel = F Ftr

−1 Fpl
−1 )	
   has	
   been	
   determined	
   from	
   the	
   total,	
   transformation,	
   and	
   plastic	
  

deformation	
  gradients.	
  	
  

The	
   constitutive	
  model	
  may	
  be	
  obtained	
   from	
   the	
  definition	
  of	
   the	
  Helmholtz	
   free	
  
energy.	
   Classical	
   approaches	
   for	
   low-­‐strain	
   rate	
   deformations	
   consider	
   a	
   linear,	
   thermo-­‐
elastic	
   expression	
   for	
   the	
   Helmholtz	
   free	
   energy	
   ( ψ ).	
   Excluding	
   contributions	
   due	
   to	
  
interfaces	
  or	
  defects	
  [Tjahjanto	
  et	
  al.	
  (2008)]	
  a	
  classical	
  free	
  energy	
  may	
  be	
  written	
  

 
!ψ ( !Eel ,θ ) =

1
2
!Eel : !" : !Eel −

cv
2 θref

θ −θref( )2 + !ρηref θ −θref( ) + !ρψ ref .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (II-­‐13)	
  

In	
  Eq.	
  (II-­‐13),	
    	
  is	
  the	
  fourth	
  order	
  elastic	
  stiffness	
  tensor,	
   c
v
the	
  heat	
  capacity	
  at	
  constant	
  

volume,	
   ρ 	
  the	
   density,	
   and	
   η 	
  the	
   entropy.	
   Eq.	
   (II-­‐13)	
   then	
   may	
   be	
   used	
   to	
   compute	
   the	
  

stress	
   [ S = ∂ ψ / ∂ E
e( )

θ
]	
   and	
   the	
   entropy	
   [

 
!η = ∂ !ψ / ∂θ( ) !Eel ].	
   Therefore,	
   allowing	
   for	
   a	
  

pressure	
  and	
  temperature	
  dependent	
  stiffness	
  (  )	
  

 

!S = !" : !Eel +
1
2
!Eel :

∂ !"
∂ !p
: !Eel

⎡

⎣
⎢

⎤

⎦
⎥
∂ !p
∂ !eev

I 	
   .	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (II-­‐14)	
  

The	
  pressure	
  derivative	
  ( ∂p / ∂e
ev
)	
  multiplying	
  the	
  last	
  term	
  in	
  Eq.	
  (II-­‐14)	
  is	
  the	
  negative	
  of	
  

the	
   bulk	
  modulus.	
   Expressing	
   Eq.	
   (II-­‐14)	
   in	
   terms	
   of	
   volumetric	
   ( S
v
, E

ev
)	
   and	
   deviatoric	
  

( S
d
, E

ed
)	
  components	
  [Luscher	
  et	
  al.	
  (2016);	
  De	
  et	
  al.	
  (2014);	
  Becker	
  (2004)]	
  provides	
  

	
  

 

!Sd = Ld : !" : !Eele

!sv =
1
9
I : !" : I⎡⎣ ⎤⎦ !eev +

1
18

I : ∂
!"

∂ !p
: I

⎡

⎣
⎢

⎤

⎦
⎥ !eev( )2 ∂ !p

∂ !eev

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
+ 1
3
!Eeed : !" : I⎡⎣ ⎤⎦

+ 1
2
!Eeed : !" : !Eeed⎡⎣ ⎤⎦ +

1
9
!Eeed :

∂ !"
∂ !p
: !eevI

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
∂ !p
∂ !eev

	
   .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (II-­‐15)	
  



In	
  Eq.	
   (II-­‐15),	
   L
d
is	
  a	
   fourth	
  order	
  operator	
   that	
  extracts	
   the	
  deviatoric	
  component	
   from	
  a	
  

second	
  order	
  tensor	
  [Becker	
  (2004)].	
  It	
  should	
  be	
  observed	
  that	
  for	
  low-­‐symmetry	
  crystals,	
  
the	
   volumetric	
   and	
  deviatoric	
   components	
   of	
   the	
   stress	
   and	
   strain	
   are	
   coupled.	
   For	
   high-­‐
rate	
   applications,	
   a	
   linear	
   dependence	
   of	
   the	
   stress	
   on	
   the	
   strain	
   will	
   not	
   address	
   shock	
  
propagation	
   scenarios.	
   A	
   nonlinear	
   elastic	
   formulation	
   is	
   necessary	
   to	
   facilitate	
   the	
  
steepening	
  of	
  the	
  propagating	
  wave-­‐front	
  for	
  shock	
  conditions.	
  Consequently,	
  the	
  first	
  term	
  
in	
  brackets	
  of	
  the	
  second	
  equation	
  in	
  Eq.	
  (II-­‐15),	
  which	
  relates	
  the	
  volumetric	
  component	
  of	
  
stress	
   to	
   the	
   volumetric	
   component	
   of	
   strain,	
   is	
   replace	
   by	
   an	
   expression	
   for	
   nonlinear	
  
elasticity,	
  or	
  an	
  equation	
  of	
  state	
  [Luscher	
  et	
  	
  al.	
  (2016);	
  De	
  	
  et	
  al.	
  (2014)]	
  

 
!seos ≡

1
9
I : !" : I⎡⎣ ⎤⎦ !eev +

1
18

I : ∂
!"

∂ !p
: I

⎡

⎣
⎢

⎤

⎦
⎥ !eev( )2 ∂ !p

∂ !eev

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
⇒ !peos 	
   .	
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The	
  equation	
  of	
  state	
  [ p
eos
(v,θ ) = −∂ψ

eos
(v,θ ) / ∂v ]	
  is	
  obtained	
  from	
  a	
  free	
  energy.	
  It	
  should	
  

be	
   noted	
   that	
   the	
   constitutive	
   model	
   [Eq.	
   (II-­‐15)]	
   is	
   written	
   for	
   each	
   of	
   the	
   constituents	
  
using	
  the	
  assumption	
  of	
  uniform	
  elastic	
  strain	
  and	
  temperature.	
  Unique	
  properties	
  are	
  used	
  
to	
  determine	
  the	
  stresses	
  [ 

!Sφ = !Sφ ( !Eel ,θ ); φ =α ,ω ]	
  for	
  each	
  phase,	
  variant,	
  and	
  twin..	
  The	
  
total	
   stress	
   at	
   a	
   material	
   point	
   is	
   obtained	
   as	
   a	
   volume	
   average	
   of	
   the	
   stresses	
   of	
   the	
  
constituents	
  [Kalidindi	
  (1998)]	
  

	
  
 

!S = ςα 1− f a
a
∑⎛

⎝⎜
⎞
⎠⎟
!Sα + f a

a
∑ !Sa

⎧
⎨
⎩

⎫
⎬
⎭
+ ςω !Sω

ω
∑ 	
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where	
  ςα 	
  and	
  ςω 	
  are	
   the	
   volume	
   fractions	
   of	
   the	
  α-­‐phase	
   and	
   the	
  ω-­‐variants	
   and	
   	
   f a are	
  
the	
  volume	
  fractions	
  of	
  the	
  twinned	
  regions	
  in	
  the	
  α-­‐phase.	
  	
  

The	
   transformation	
   deformation	
   gradient	
   (Eq.	
   II-­‐3)	
   may	
   be	
   obtained	
   once	
   the	
  
volume	
   fractions	
   (ξφ )	
  of	
  each	
  constituent	
  have	
  been	
  determined	
   from	
  the	
   transformation	
  
kinetics.	
  In	
  this	
  approach,	
  the	
  driving	
  force	
  for	
  the	
  transformation	
  is	
  taken	
  to	
  be	
  the	
  Gibbs	
  
free	
   energy.	
   The	
   transformation	
   rate	
   of	
   change	
   for	
   the	
   mass	
   fraction	
   of	
   the	
  ω-­‐variant	
   is	
  
represented	
  by	
  the	
  exponential	
  function	
  [Greeff	
  et	
  al.	
  (2002)]	
  

	
   	
  
 

!ξω = 1− ctr ξω( )2⎡
⎣

⎤
⎦ ϖ

Δg
βtr

exp Δg
βtr

⎛
⎝⎜

⎞
⎠⎟

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	
   .	
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The	
  first	
  term	
  on	
  the	
  right	
  of	
  Eq.	
  (II-­‐18)	
  places	
  a	
  lower	
  bound	
  on	
  the	
  production	
  of	
  the	
  ω-­‐
variant	
   and	
  Δg = gα − gω 	
  is	
   the	
   change	
   in	
   the	
   Gibbs	
   free	
   energy	
   of	
   the	
  α-­‐phase	
   and	
  ω-­‐
variants.	
  Only	
  free	
  energies	
  for	
  the	
  α-­‐	
  and	
  ω-­‐phases	
  are	
  available.	
   It	
  has	
  been	
  shown	
  from	
  
atomistic	
   simulations	
   (Sec.	
   III)	
   and	
  experiment	
   that	
   the	
   transformation	
   from	
  α-­‐Ti	
   to	
  ω−Ti	
  
includes	
  the	
  effects	
  of	
  shear	
  as	
  well	
  as	
  a	
  volume	
  change	
  [Ivanisenko	
  et	
  al.	
  (2008);	
  Zong	
  et	
  al.	
  
(2014)]].	
  The	
  ability	
  to	
  include	
  the	
  effects	
  of	
  shear	
  in	
  the	
  transformation	
  driving	
  force	
  was	
  
provided	
  in	
  Eq.	
  (I-­‐9).	
  However,	
  the	
  free	
  energies	
  that	
  are	
  used	
  in	
  the	
  model	
  are	
  compatible	
  
with	
   a	
   pressure	
   versus	
   temperature	
   equilibrium	
   phase	
   diagram	
   for	
   Ti	
   [Young	
   (1976)].	
  
Consequently,	
  the	
  effects	
  of	
  shear	
  on	
  the	
  transformation	
  process	
  are	
  neglected	
  in	
  the	
  model.	
  
Furthermore,	
  the	
  change	
  of	
  the	
  Gibbs	
  free	
  energies	
  that	
  are	
  used	
  in	
  Eq.	
  (II-­‐18)	
  are	
  written	
  in	
  



terms	
  of	
  an	
  average	
  pressure	
  ( gk =ψ k + p vk ).	
  The	
  above	
  assumptions	
  allow	
  only	
  for	
  the	
  
equal	
  production	
  of	
  the	
  three	
  ω-­‐variants.	
  The	
  lack	
  of	
  quantitative	
  information	
  for	
  high-­‐rate,	
  
high-­‐pressure	
   deformations	
   of	
   low-­‐symmetry	
   crystals	
   has	
   motivated	
   this	
   heuristic	
  
approach.	
  

The	
  constitutive	
  model	
  and	
  the	
  transformation	
  kinetics	
  are	
  determined	
  once	
  a	
  free	
  
energy	
   has	
   been	
   defined.	
   Helmholtz	
   free	
   energies	
   for	
   the	
   nonlinear	
   elastic	
   component	
   of	
  
each	
   phase	
   (ψ

eos

φ ),	
   which	
   are	
   based	
   on	
   information	
   provided	
   by	
   electronic	
   structure	
  
calculations,	
   have	
   been	
   developed	
   [Greeff	
   (2005)	
   and	
   Greeff	
   et	
   al.	
   (2001)].	
   These	
   free	
  
energies	
   place	
   an	
   emphasis	
   on	
   the	
   equilibrium	
   phase	
   diagram	
   [Young	
   (1991)]	
   and	
   the	
  
deformation	
   path	
   along	
   the	
   shock	
   Hugoniot.	
   Formulations	
   are	
   provided	
   in	
   terms	
   of	
   the	
  
static	
   lattice	
  energy	
   (ψ

0
),	
   ion	
  motion	
   free	
  energy	
  energy	
   (ψ vib ),	
   and	
  electronic	
  excitation	
  

energy	
   (ψ el ).	
   These	
   free	
   energies	
   are	
   provided	
   in	
   terms	
   of	
   the	
   specific	
   volume	
   ( v
φ )	
   and	
  

temperature	
  (θ )	
  in	
  the	
  current	
  configuration.	
  Analytic	
  expressions	
  for	
  the	
  nonlinear	
  elastic	
  
component	
   (ψ eos

φ )	
   of	
   the	
   free	
   energies	
   of	
   each	
   phase	
   [ψ eos
φ , φ =α ,ω phases( ) ]	
   are	
  

available	
  for	
  both	
  Ti	
  and	
  Zr	
  [Greeff	
  (2005);	
  Greeff	
  et	
  al.	
  (2001)].	
  The	
  Helmholtz	
  free	
  energy	
  
for	
  Ti	
  is	
  written	
  [Greeff	
  (2005)]	
  

 ψ eos
φ ( !εev ,θ )→ ψ eos

φ (vφ ,θ ) =ψ 0
φ (vφ ) +ψ vib

φ (vφ ,θ ) +ψ el
φ (vφ ,θ ) 	
  .	
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In	
  Eq.	
  (II-­‐19),	
  the	
  static	
  lattice	
  potential	
  [the	
  superscript	
  denoting	
  the	
  phase	
  (φ )	
  is	
  omitted	
  
for	
  convenience]	
  is	
  

	
   	
  

ψ 0 (v) =ψ
*
+

4v
*
B
*

B1
* −1( )

2
1 − 1+η( )exp(−η)⎡⎣ ⎤⎦

η =
3

2
B1
* −1( )

v

v
*

⎛
⎝⎜

⎞
⎠⎟
1/3

− 1
⎡

⎣
⎢

⎤

⎦
⎥

	
  .	
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The	
  high-­‐temperature	
  expansion	
  has	
  been	
  used	
  for	
  the	
  lattice	
  vibrational	
  free	
  energy	
  (ψ vib )	
  

	
   	
  

ψ
vib
(v,θ ) = 2Rθ − ln

θ

θ0 (v)

⎡

⎣
⎢

⎤

⎦
⎥ +

1

40

θ2 (v)

θ

⎡

⎣⎢
⎤

⎦⎥

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

θ2 (v) = θ0 (v) e
1/3

θ0 (v) = θ0
* exp −

γ 0
v0

v − v0( )
⎧
⎨
⎩

⎫
⎬
⎭

	
   .	
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Finally,	
  the	
  electronic	
  excitation	
  free	
  energy	
  (ψ el )	
  is	
  written	
  

	
   	
   ψ
el
(v,θ ) = −

1

2
Γ
0

v

v
0

⎛
⎝⎜

⎞
⎠⎟

κ

θ 2 	
   	
   .	
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In	
  the	
  above	
  equations,	
   B* 	
  and	
   B1
* 	
  are	
  the	
  bulk	
  modulus	
  and	
  its	
  pressure	
  derivative	
  at	
  the	
  

equilibrium	
  volume.	
  Also,	
  ψ *,v0,v
*,θ0

*,Γ0 ,κ , 	
  and	
  γ 0 are	
  material	
  parameters.	
  

Once	
  a	
  (Helmholtz)	
  free	
  energy	
  for	
  each	
  phase	
  (ψ φ )	
  is	
  constructed,	
  expressions	
  for	
  
the	
  nonlinear	
   elastic	
   component	
  of	
   the	
   stress	
   ( peos

φ = −∂ψ eos
φ / ∂vφ )	
   and	
   the	
  driving	
   forces	
  

for	
   the	
   phase	
   transformation	
   ( gφ )	
   may	
   be	
   obtained.	
   Also,	
   derivatives	
   of	
   the	
   free	
   energy	
  

provide	
   thermodynamic	
   properties	
   (e.g.	
   the	
   isothermal	
   bulk	
   modulus	
   B = v ∂
2ψ
∂v2

,	
   the	
  

specific	
  heat	
  at	
  constant	
  volume	
   c
v
= −θ

∂
2ψ

∂θ 2
,	
  the	
  Gruneisen	
  parameter	
   Γ = −

v

c
v

∂
2ψ

∂v∂θ
,	
  as	
  

well	
  as	
  the	
  thermal	
  expansivity	
  α = Γ cv
v B

).	
  	
  

Finally,	
   the	
   temperature	
   is	
   updated	
   using	
   the	
   second	
   law	
   of	
   thermodynamics	
  
(Luscher	
  et.	
  al.	
  (2016);	
  De	
  et	
  al.	
  (2015)]	
  

	
   	
   θ = θ Γ : E
e
+
v

c
v

β
sl

ξϑ τ ϑ ,α

α

∑ γ
sl

ϑ ,α
+ β

tw
ξα τ a

γ
tw

a

a

∑
ϑ

∑⎛
⎝⎜

⎞
⎠⎟
	
   .	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (II-­‐23)	
  

The	
  first	
  term	
  in	
  Eq.	
  (II-­‐23)	
  is	
  the	
  reversible	
  work	
  due	
  to	
  elastic	
  strains,	
  the	
  second	
  term	
  is	
  
the	
   irreversible	
  work	
  due	
   to	
  plastic	
   slip,	
   and	
   the	
   last	
   term	
   is	
   the	
   irreversible	
  work	
  due	
   to	
  
twinning.	
   The	
   beta-­‐factors	
   ( β

sl
	
  and	
  β

tw
)	
   in	
   Eq.	
   (II-­‐23)	
   reflect	
   the	
   fact	
   that	
   not	
   all	
   of	
   the	
  

inelastic	
  work	
  is	
  converted	
  to	
  internal	
  energy	
  or	
  temperature	
  but	
  that	
  some	
  of	
  the	
  energy	
  is	
  
stored	
  in	
  the	
  evolving	
  microstructure	
  (e.g.	
  trapped	
  in	
  the	
  lattice	
  strain	
  energy).	
  In	
  general,	
  
the	
  beta-­‐factors	
  may	
  be	
  a	
  function	
  of	
  the	
  strain	
  rate.	
  In	
  this	
  model	
  they	
  will	
  be	
  assumed	
  to	
  
be	
  constant.	
  

	
  

III.	
  Molecular	
  Dynamics	
  Simulations	
  	
  

	
   In	
  an	
  effort	
  to	
  explore	
  the	
  high-­‐rate	
  deformation	
  of	
  materials,	
  including	
  the	
  effects	
  of	
  
plastic	
   slip,	
   twinning,	
   and	
   phase	
   transformations,	
   titanium	
   (Ti)	
   was	
   chosen	
   as	
   a	
  
representative	
  material.	
  Titanium	
  represented	
  a	
  convenient	
  material	
  because	
  of	
  the	
  wealth	
  
of	
   knowledge	
   that	
   was	
   available	
   from	
   both	
   experimental	
   and	
   theoretical	
   investigations.	
  
Considerations	
   at	
   many	
   length	
   scales	
   have	
   been	
   pursued	
   for	
   this	
   material.	
   Initially,	
  
molecular	
  dynamics	
  (MD)	
  simulations,	
  using	
  available	
  atomistic	
  potentials,	
  were	
  considered.	
  
Issues	
  related	
   to	
   the	
   transformation	
  pathway,	
   the	
  deformation	
  characteristics	
  of	
   the	
  high-­‐
pressure	
   (ω)	
   phase,	
   and	
   single-­‐crystal	
  model	
   parameters	
   such	
   as	
   the	
   shape	
   strain	
   tensor	
  
were	
  considered	
  in	
  the	
  MD	
  simulations.	
  

	
   Molecular	
  dynamics	
  simulations	
  were	
  performed	
  on	
  single	
  crystals	
  using	
  a	
  potential,	
  
which	
  is	
  consistent	
  with	
  the	
  polycrystal	
  shock	
  Hugoniot	
  data	
  from	
  flyer	
  plate	
  experiments	
  
[Marsh	
   (1980)].	
  The	
   simulations	
  were	
  performed	
   in	
  a	
  microcanonical	
   ensemble	
  using	
   the	
  
LAMMPS	
   code	
   [Plimpton	
   (1995)].	
   The	
   interatomic	
   interactions	
   in	
   Ti	
  were	
   described	
   by	
   a	
  
modified	
   embedded	
   atom	
   potential	
   [Hennig	
   et	
   al.	
   (2008)],	
   which	
   gives	
   accurate	
   total	
  



energies,	
   elastic	
   constants,	
   and	
   phonon	
   spectra,	
   as	
   well	
   as	
   reasonable	
   values	
   for	
   point	
  
defects	
  and	
  surface	
  and	
  stacking	
  fault	
  energies.	
  Simulations	
  for	
  0.2	
  μm-­‐thick	
  single	
  crystal	
  
Ti	
  samples	
  were	
  considered,	
  using	
  up	
  to	
  3.0	
  million	
  atoms.	
  After	
  isothermally	
  annealing	
  the	
  
sample	
   at	
   30	
   K	
   for	
   1.2	
   ns,	
   the	
   left	
   surface	
   of	
   the	
   system	
   was	
   driven	
   by	
   a	
   piston	
   with	
   a	
  
particle	
   velocity	
   of	
   0.75	
   km/s	
   and	
   peak	
   pressure	
   14	
   GPa,	
   which	
   is	
   above	
   the	
   threshold	
  
piston	
  velocity	
  of	
  0.57	
  km/s	
  that	
  is	
  required	
  to	
  induce	
  a	
  phase	
  change	
  in	
  Ti.	
  

It	
   was	
   previously	
   shown	
   that	
   the	
   transformation	
   pathway	
   [Zong	
   et	
   al.	
   (2014)]	
   in	
  
simulated,	
   shocked	
   samples	
   of	
   Ti	
   obeys	
   the	
   experimentally	
   observed	
   Silcock	
   orientation	
  
relationship	
   (OR)	
   between	
   the	
   low-­‐pressure	
   (hcp)	
   α-­‐phase	
   and	
   high-­‐pressure	
   	
   (hex)	
   ω-­‐
phase	
   that	
   is	
   shown	
   in	
  Fig.	
  2	
   [Jyoti	
   et	
  al.	
   (2008)].	
   It	
   is	
   this	
   same	
  OR,	
  which	
  we	
  use	
   in	
  our	
  
phenomenological	
   single-­‐crystal	
   model.	
   	
   However,	
   we	
   note	
   that	
   this	
   transformation	
   is	
  
accompanied	
  by	
  hysteresis	
  and	
  can	
  be	
  irreversible	
  with	
  the	
  high-­‐pressure	
  ω-­‐phase	
  retained	
  
partially	
   or	
   almost	
   fully	
   after	
   unloading	
   under	
   ambient	
   conditions.	
   Although	
   this	
   is	
   well	
  
established	
   under	
   both	
   static	
   and	
   shock	
   conditions,	
   the	
   crystallographic	
   nature	
   of	
   the	
  
transformation	
  in	
  Ti	
  and	
  Zr	
  is	
  still	
  open	
  to	
  question	
  as	
  the	
  dependence	
  of	
  the	
  ORs	
  on	
  loading	
  
conditions	
   is	
   not	
   clear.	
   Measurements	
   to	
   date	
   have	
   been	
   primarily	
   on	
   polycrystalline	
  
samples	
   and	
   the	
   anisotropy	
   in	
   shock	
   response	
   as	
  well	
   as	
   residual	
   stresses	
   are	
   not	
   easily	
  
inferred	
   from	
   these	
  measurements.	
   Thus,	
  we	
   have	
   used	
   simulations	
   on	
   single	
   crystals	
   to	
  
provide	
  insight	
  into	
  factors	
  mediating	
  the	
  phase	
  transformation	
  process.	
  	
  

The	
   loading	
  of	
  an	
   ideal	
  hcp	
  Ti	
  crystal	
  under	
  shear	
  at	
  a	
  strain	
  rate	
  of	
  108/s	
  and	
  the	
  
complexity	
  of	
  the	
  process	
  is	
  illustrated	
  in	
  Fig.	
  3.	
  As	
  the	
  crystal	
  is	
  sheared,	
  it	
  first	
  is	
  deformed	
  
elastically	
   and	
   at	
   some	
   relatively	
   large	
   strain,	
   it	
   yields	
   with	
   a	
   drop	
   in	
   the	
   stress	
   and	
  
nucleates	
  the	
  characteristic	
  stacking	
  of	
  the	
  ω-­‐phase.	
  On	
  further	
  loading,	
  the	
  α-­‐phase	
  largely	
  
transforms	
   to	
   the	
  ω-­‐phase.	
   The	
   OR	
   on	
   this	
   forward	
   transformation	
   phase	
   is	
   the	
   familiar	
  
Silcock	
  OR	
  or	
  transformation	
  pathway.	
  On	
  further	
  shearing,	
  the	
  ω-­‐phase	
  reverts	
  back	
  to  α-­‐
phase.	
  There	
  is	
  a	
  lower	
  barrier	
  to	
  the	
  reverse	
  transformation	
  than	
  to	
  dislocation	
  nucleation	
  
and	
   plastic	
   deformation	
   of	
   the	
  ω −phase.	
  Moreover,	
   this	
   reverse	
   transformation	
   does	
   not	
  
follow	
  the	
  same	
  OR	
  as	
  the	
  Silcock	
  mechanism	
  because	
  the	
  initial	
  state	
  is	
  quite	
  different	
  from	
  
the	
  forward	
  transformation.	
  The	
  habit	
  plane	
  between	
  the	
  α-­‐	
  and	
  ω-­‐phases	
  for	
  the	
  forward	
  
transformation	
   in	
   a	
   single	
   crystal	
   is	
   shown	
   in	
   Fig.	
   4.	
   The	
   terracing	
   emphasizes	
   the	
  
dislocation-­‐mediated	
  origin	
  of	
  the	
  inhomogeneous	
  shear.	
  The	
  habit	
  plane	
  normal	
  (mω )	
  and	
  
shape	
  strain	
  vector	
  (bω )	
  are	
  obtained	
  from	
  these	
  simulations	
  [Eq.	
  (I-­‐3)].	
  

	
  

Fig.	
  2.	
  The	
  Silcock	
  orientation	
  relationship	
  (OR),	
  which	
  arises	
  in	
  the	
  MD	
  simuiations	
  from	
  
coexisting	
  α-­‐	
  and	
  ω-­‐phases.	
  This	
  OR	
  is	
  used	
  in	
  the	
  phenomenological	
  single-­‐crystal	
  model.	
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Fig. 3: The dependence of the transformation mechanism and pathway on the loading coditions 
and the residual strains. The pristine α-phase undergoes the Silcock OR on shearing with 
nucleating and growth of the ω-phase. Further shearing of the transformed ω-crystal results in the 
reverse transformation to the α-phase rather than plastic deformation of the ω-phase.  
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Fig. 4: The habit plane between the a- and w-phases, showing that the homogeneous shear results 
from dislocation-mediated plasticity.	
  

	
  



	
  

IV.	
  Multi-­‐Crystal	
  Experiment	
  

	
   A	
  multi-­‐crystal,	
  plate-­‐impact	
  experiment	
  was	
  conducted,	
  in	
  an	
  effort	
  to	
  explore	
  the	
  
high-­‐rate	
   response	
   of	
   single	
   crystals	
   of	
   titanium	
   (Ti).	
   A	
   high-­‐purity	
   (99.99%)	
   Ti	
   multi-­‐
crystal,	
  composed	
  of	
   large	
  grains,	
  which	
  extended	
  completely	
  through	
  the	
  thickness	
  of	
  the	
  
sample,	
  was	
  impacted	
  with	
  a	
  polycrystalline	
  OFHC	
  copper	
  flyer.	
  A	
  micrograph	
  of	
  the	
  multi-­‐
crystal	
  Ti	
  sample	
  is	
  provided	
  in	
  Fig.	
  5.	
  The	
  thickness	
  of	
  the	
  flyer	
  and	
  the	
  sample	
  were	
  2.032	
  
mm	
   and	
   1.502	
   mm,	
   respectively.	
   The	
   diameter	
   of	
   the	
   flyer	
   was	
   38	
   mm.	
   The	
   10.06	
   mm	
  
diameter	
   Ti	
   sample	
   was	
   embedded	
   in	
   a	
   Ti	
   momentum	
   trap.	
   A	
   schematic	
   diagram	
   of	
   the	
  
experiment	
   is	
   provided	
   in	
   Fig.	
   6.	
   The	
   velocity	
   of	
   the	
   projectile	
  was	
  0.956	
  mm/µs.	
   A	
   peak	
  
pressure	
  in	
  the	
  Ti	
  sample	
  was	
  estimated	
  as	
  14.5	
  GPa.	
  A	
  photon	
  doppler	
  velocimeter	
  (PDV)	
  
probe	
   was	
   attached	
   to	
   three	
   of	
   the	
   crystals	
   within	
   the	
   target.	
   Each	
   grain	
   represented	
   a	
  
different	
   crystal	
   orientation	
   relative	
   the	
   impact	
   load.	
   The	
   impact	
   direction	
  was	
   along	
   the	
  
[ 0001 ],	
   [1010 ],	
   and	
   [3144 ]	
   orientations	
   for	
   the	
   three	
   grains	
   (Fig.	
   5).	
   The	
   PDV	
   probes	
  
provided	
   the	
   history	
   of	
   the	
   particle	
   velocity	
   at	
   the	
   back	
   surface	
   of	
   the	
   three	
   grains.	
   The	
  
crystals	
  were	
  sufficiently	
   large	
   that	
  grain	
  boundary	
  and	
  edge	
  effects	
  were	
   largely	
  avoided	
  
within	
  the	
  times	
  of	
   the	
   free-­‐surface	
  velocity	
  measurement.	
  The	
  measured	
  particle	
  velocity	
  
as	
  a	
  function	
  of	
  time	
  provides	
  the	
  distinct	
  differences	
  between	
  the	
  three	
  crystal	
  orientations.	
  
The	
  velocity	
  histories	
  of	
   the	
   three	
  measurements	
  are	
  provided	
   in	
  Fig.	
  7.	
   In	
   the	
   figure,	
   the	
  
velocity	
  history	
  of	
  the	
  three	
  grains	
  has	
  been	
  displaced	
  in	
  time.	
  The	
  elastic	
  precursor	
  for	
  the	
  
[0001]	
   oriented	
   grain	
   is	
   much	
   higher	
   than	
   the	
   [1010 ]	
   and	
   [3144 )	
   orientations.	
   This	
   is	
  
likely	
   a	
   result	
   of	
   the	
   relatively	
   large	
   sound	
   speed	
   in	
   the	
   [0001]	
   direction	
   in	
   the	
   Ti	
   single	
  
crystal.	
  It	
  may	
  also	
  indicate	
  that	
  there	
  is	
  a	
  delayed	
  activation	
  of	
  primary	
  deformation	
  due	
  to	
  
slip	
  or	
  twinning	
  mechanisms	
  for	
  this	
  orientation.	
  A	
  sharp	
  kink	
  was	
  observed	
  in	
  the	
  [1010 ]	
  
and	
  [3144 ]	
  orientations	
  at	
  0.9	
  mm/µs.	
  This	
  feature	
  was	
  not	
  observed	
  in	
  the	
  velocity	
  trace	
  
of	
  the	
  [ 0001]	
  crystal	
  orientation.	
  This	
  kink	
  is	
  generally	
  attributed	
  to	
  the	
  onset	
  of	
  the	
  α-­‐	
  to	
  
ω-­‐phase	
   transformation.	
   The	
   pressure	
   associated	
   with	
   the	
   kink	
   is	
   in	
   line	
   with	
   previous	
  
expectation	
   based	
   on	
   similar	
   experiments	
   performed	
   on	
   polycrystalline	
   high-­‐purity	
   Ti	
  
samples.	
  It	
  was	
  thought	
  that	
  the	
  absence	
  of	
  a	
  distinct	
  kink	
  in	
  the	
  [ 0001]	
  orientation	
  at	
  0.9	
  
mm/µs	
  indicated	
  that	
  the	
  transition	
  had	
  been	
  overdriven	
  at	
  this	
  pressure.	
  Additionally,	
  the	
  
plastic	
  wave	
   in	
   the	
   [ 0001]	
   orientation	
   exhibits	
   a	
   lower	
   slope	
   that	
   the	
   other	
   orientations.	
  
The	
  slope	
  of	
  the	
  plastic	
  portion	
  of	
  the	
  curve	
  in	
  the	
  [ 0001]	
  oriented	
  grain	
  may	
  indicate	
  that	
  
the	
  α−	
  to	
  ω-­‐transformation	
  occurs	
  over	
  a	
  relatively	
  long	
  period	
  of	
  time.	
  Postulated	
  locations	
  
of	
   the	
   elastic	
   precursor	
   and	
   the	
   transformation	
   from	
   the	
   α-­‐	
   to	
   the	
   ω-­‐phase	
   are	
  
superimposed	
  on	
  the	
  Fig.	
  7.	
  



	
  

Fig.	
  5:	
  Micrograph	
  of	
  the	
  Ti	
  multi-­‐crystal	
  sample.	
  (a)	
  The	
  red	
  region	
  is	
  the	
  [0001] 	
  
orientation,	
  purple	
  the	
  [1011] 	
  orientation,	
  blue	
  the	
  [1010] 	
  orientation,	
  and	
  gray	
  the	
  
[3144] 	
  orientation.	
  (b)	
  Location	
  of	
  the	
  PDV	
  probes.	
  

	
  

	
  

	
  

	
  

Fig.	
  6:	
  Schematic	
  of	
  the	
  multi-­‐grain	
  Ti	
  plate-­‐impact	
  experiment.	
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Fig.	
  7.	
  Multi-­‐crystal	
  titanium	
  impact	
  experiment	
  (a)	
  experiment	
  schematic,	
  (b)	
  multi-­‐crystal	
  
sample	
  showing	
  the	
  PDV	
  probes,	
  (c)	
  measured	
  particle	
  velocity	
  versus	
  time	
  at	
  the	
  back	
  of	
  
each	
  single-­‐crystal	
  for	
  the	
  [0001],	
  [10-­‐10]	
  and	
  [3-­‐1-­‐44]	
  orientations.	
  

	
  

V.	
  Simulations	
  

Computational	
  simulations	
  were	
  performed	
  in	
  an	
  effort	
  to	
  highlight	
  the	
  ability	
  of	
  the	
  
single-­‐crystal	
   model	
   to	
   capture	
   the	
   features	
   of	
   the	
   high-­‐rate	
   deformation	
   of	
   Ti	
   crystals.	
  
Many	
   of	
   the	
   parameters	
   for	
   the	
   constitutive	
   model	
   are	
   not	
   readily	
   available	
   for	
   the	
  
conditions	
  of	
  high	
  rates	
  and	
  pressures.	
  This	
  is	
  especially	
  true	
  for	
  the	
  high-­‐pressure	
  ω-­‐phase.	
  
Simulations	
  of	
   the	
  multi-­‐crystal	
  experiment	
  that	
  was	
  described	
   in	
  Sec.	
   IV	
  were	
  conducted.	
  
Plate	
   impact	
   or	
   uniaxial	
   strain	
   experiments	
   have	
   been	
   valuable	
   for	
   investigating	
   the	
  
deformation	
  characteristics	
  of	
  materials	
  at	
  high-­‐strain	
  rates	
  [Winey	
  et	
  al.	
  (2004);	
  Winey	
  et	
  
al.	
   (2006),	
   Becker	
   (2004)].	
   Particle	
   velocities	
   at	
   the	
   back	
   of	
   the	
   Ti	
   target	
  were	
  measured	
  
using	
  PDV	
  probes	
  (Figs.	
  5	
  and	
  6).	
  The	
  model	
  parameters	
  that	
  were	
  used	
  in	
  the	
  simulations	
  
are	
   provided	
   in	
   Tables	
   I	
   through	
   IX.	
   Anisotropic,	
   elastic	
   constants	
   for	
   the α-­‐phase	
   are	
  
available	
   in	
   the	
   literature	
   [Vohr	
   (1978);	
   Fisher	
   et	
   al.	
   (1964)].	
   	
   The	
   elastic	
   constants	
   that	
  
were	
  used	
  in	
  the	
  simulations	
  for	
  the	
  α-­‐	
  and	
  ω-­‐phases	
  are	
  provided	
  in	
  Table	
  I.	
  The	
  pressure	
  
and	
  temperature	
  derivatives	
  of	
  the	
  stiffness	
  tensor	
  

	
   	
  
 
!(p,θ ) = !0 +

∂!
∂p

dp + ∂!
∂θ

dθ ≈!0 	
  	
   	
   	
   	
   (V-­‐1)	
  

were	
  not	
  included	
  in	
  the	
  analyses.	
  The	
  parameters	
  that	
  were	
  used	
  for	
  the	
  equation	
  of	
  state	
  
are	
  provided	
   in	
  Table	
   II	
   [Greeff	
  et	
  al.	
   (2001)]	
   for	
  both	
   the	
   low-­‐	
  and	
  high-­‐pressure	
  phases.	
  
Eighteen	
  slip	
  systems	
  (Table	
   III)	
  have	
  been	
   identified	
   for	
  hexagonal-­‐close	
  packed	
  crystals.	
  
For	
  the	
  simulations	
  only	
  the	
  first	
  fifteen	
  slip	
  systems	
  were	
  modeled	
  for	
  the	
  α-­‐phase.	
  That	
  is,	
  	
  



Table	
  I:	
  	
  Average	
  Material	
  Parameters	
  [Vohra	
  (1978);	
  Fisher,	
  et.	
  al.	
  (1964)]	
  

	
   α-­‐phase	
   ω-­‐phase	
  

ρ0 (g/cm3)	
   4.506	
   4.579	
  

C11	
  (Mbar)	
  :	
  c-­‐axis	
   1.7759	
   1.904	
  

C22	
  (Mbar)	
   1.7759	
   1.904	
  

C33	
  (Mbar)	
   1.9134	
   2.051	
  

C12	
  (Mbar)	
   0.8757	
   0.938	
  

C13	
  (Mbar)	
   0.8757	
   0.938	
  

C23	
  (Mbar)	
   0.8757	
   0.938	
  

C44	
  (Mbar)	
   0.467	
   0.500	
  

C55	
  (Mbar)	
   0.467	
   0.500	
  

C66	
  (Mbar)	
   0.467	
   0.500	
  

	
  

	
  

Table	
  II:	
  Parameters	
  for	
  the	
  Helmholtz	
  Free	
  Energy	
  [Greeff	
  et	
  al.	
  (2001)]	
  

	
   a-­‐phase	
   w-­‐phase	
  

v0 	
  (cm3/g)	
   0.22194	
   0.21837	
  

θ0 	
  (K)	
   252.0	
   263.4	
  

γ 0 	
  (1)	
   1.17	
   1.65	
  

Γ0 	
  (Mbar	
  cm3/g	
  K2)	
   9.60334e-­‐10	
   9.29019e-­‐10	
  

κ 	
  (1)	
   1.45	
   1.40	
  

v* 	
  (cm3/g)	
   0.22015	
   0.21608	
  

B*	
  (Mbar)	
   1.1008	
   1.1800	
  

B1	
  (1)	
   4.3	
   3.05	
  

φ0
* 	
  	
  (Mbar	
  cm3/g)	
   0	
   -­‐1.25261e-­‐05	
  

	
  

	
  



	
  

	
  

	
  

Table	
  III:	
  a-­‐phase	
  slip	
  systems	
  	
  (c/a	
  =	
  .4699	
  nm/.2937	
  nm	
  	
  =	
  	
  1.5856)	
  

k	
    
!n 	
    

!s 	
  

1	
  	
  	
  Pyramidal	
  	
  <c+a>	
   [0.00,	
  c/a,	
  0.866]	
   [0.500,	
  -­‐0.866,	
  c/a]	
  

2	
   	
   [-­‐0.500,	
  -­‐0.866,	
  c/a]	
  

3	
   [0.866	
  c/a,	
  0.5	
  c/a,	
  0.866]	
   [-­‐0.500,	
  -­‐0.866,	
  c/a]	
  

4	
   	
   [-­‐1.00,	
  0.00,	
  c/a]	
  

5	
   [0.00,	
  c/a,	
  -­‐0.866]	
   [0.500,	
  	
  0.866,	
  c/a]	
  

6	
   	
   [-­‐0.500,	
  	
  0.866,	
  c/a]	
  

7	
   [0.866	
  c/a,	
  0.5	
  c/a,	
  0.866]	
   [	
  1.00,	
  0.00,	
  c/a]	
  

8	
   	
   [0.500,	
  	
  0.866,	
  c/a]	
  

9	
   [0.866	
  c/a,	
  -­‐0.5	
  c/a,	
  0.866]	
   [-­‐0.500,	
  	
  0.866,	
  c/a]	
  

10	
   	
   [-­‐1.00,	
  0.00,	
  c/a]	
  

11	
   [0.866	
  c/a,	
  -­‐0.5	
  c/a,	
  0.866]	
   [	
  1.00,	
  0.00,	
  c/a]	
  

12	
   	
   [0.50,	
  -­‐0.866,	
  c/a]	
  

13	
  	
  	
  Prism	
  	
  <a>	
   [0.00,	
  	
  	
  1.00,	
  	
  0.00]	
   [1.00,	
  	
  	
  0.00,	
  	
  	
  0.00]	
  

14	
   [0.866,	
  	
  0.50,	
  0.00]	
   [	
  -­‐0.50,	
  0.866,	
  0.00]	
  

15	
   [0.866,	
  -­‐0.50,	
  0.00]	
   [	
  	
  0.50,	
  0.866,	
  0.00]	
  

16	
  	
  Basal	
  <a>	
   [0.00,	
  	
  	
  0.00,	
  1.00]	
   [1.00,	
  0.00,	
  0.00]	
  

17	
   	
   [-­‐0.50,	
  0.866,	
  0.00]	
  

18	
   	
   [	
  0.50,	
  0.866,	
  0.00]	
  

	
  

	
  

	
  

	
  



	
  

Table	
  IV:	
  w-­‐phase	
  slip	
  systems	
  	
  (c/a	
  =	
  .2858	
  nm/.4688	
  nm	
  	
  =	
  	
  0.6096)	
  

k	
    
!n 	
    

!s 	
  

1	
  	
  Basal	
  	
  <a>	
   [0.000,	
  	
  	
  0.000,	
  1.000]	
   [	
  	
  1.00,	
  	
  	
  0.000,	
  	
  	
  0.00]	
  

2	
   	
   [	
  -­‐0.50,	
  	
  0.866,	
  	
  	
  0.00]	
  

3	
   	
   [	
  	
  0.50,	
  	
  0.866,	
  	
  	
  0.00]	
  

4	
  	
  	
  Prism	
  	
  <c>	
   [	
  0.866,	
  -­‐0.500,	
  0.000]	
   [0.000,	
  	
  	
  0.000,	
  	
  	
  1.00]	
  

5	
   [	
  0.866,	
  	
  0.500,	
  0.000]	
   	
  

6	
   [0.000,	
  	
  	
  1.000,	
  	
  0.000]	
   	
  

	
  

Table	
  V:	
  a-­‐phase	
  Tensile	
  Twin	
  Systems:	
  (c/a	
  =	
  .4699	
  nm/.2937	
  nm	
  	
  =	
  	
  1.5856)	
  [Bererlein	
  	
  and	
  Tome	
  
(2008)]	
  

k	
    
!n 	
    

!s 	
  

1	
   [	
  0.866,	
  	
  	
  0.50,	
  	
  1.732	
  a/c]	
   [-­‐1.00,	
  	
  0.000,	
  	
  c/a]	
  

2	
   [	
  0.000,	
  	
  	
  1.00,	
  	
  	
  1.732	
  a/c	
  ]	
   [-­‐0.50,	
  -­‐0.866,	
  	
  c/a]	
  

3	
   [-­‐0.866	
  	
  ,	
  0.50,	
  1.732	
  a/c]	
   [	
  0.50,	
  	
  -­‐0.866,	
  	
  c/a]	
  

4	
   [-­‐0.866,	
  	
  -­‐0.50,	
  1.732	
  a/c]	
   [	
  0.50,	
  	
  	
  0.866,	
  	
  c/a]	
  

5	
   [	
  0.000,	
  	
  -­‐1.00,	
  1.732	
  a/c]	
   [0.50,	
  	
  	
  0.866,	
  	
  c/a]	
  

6	
   [	
  0.866,	
  -­‐0.50,	
  1.732	
  a/c]	
   [-­‐0.50,	
  	
  0.866,	
  	
  c/a]	
  

	
  

Table	
  VI:	
  a-­‐phase	
  Compressive	
  Twin	
  Systems:	
  (c/a	
  =	
  .4699	
  nm/.2937	
  nm	
  	
  =	
  	
  1.5856)	
  [Bererlein	
  	
  and	
  
Tome	
  (2008)]	
  

k	
    
!n 	
    

!s 	
  

1	
   [	
  c/a,	
  	
  	
  	
  	
  	
  	
  0.000,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1.00]	
   [-­‐1.00,	
  	
  	
  0.000,	
  	
  c/a]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

2	
   [0.5	
  c/a,	
  0.866	
  c/a,	
  	
  1.00]	
   [-­‐0.50,	
  -­‐0.866,	
  	
  c/a]	
  

3	
   [-­‐0.5	
  c/a,	
  0.866	
  c/a,	
  	
  1.00]	
   [	
  0.50,	
  -­‐0.866,	
  	
  c/a]	
  

4	
   [	
  -­‐c/a,	
  	
  	
  	
  	
  	
  	
  0.000,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1.00]	
   [	
  1.00,	
  	
  	
  0.000,	
  	
  	
  c/a]	
  

5	
   [-­‐0.5	
  c/a,	
  -­‐0.866	
  c/a,	
  	
  1.00]	
   [	
  0.50,	
  	
  	
  0.866,	
  c/a]	
  

6	
   [0.5	
  c/a,	
  -­‐0.866	
  c/a,	
  	
  1.00]	
   [-­‐0.50,	
  	
  	
  0.866,	
  c/a]	
  

	
  



Table	
  VII:	
  	
  Estimated	
  Plastic	
  Slip	
  Parameters	
  for	
  the	
  [1010 ]	
  /	
  [ 0001 ]	
  orientation.	
  	
  

	
   a-­‐phase	
   w-­‐phase	
  

 !γ 0 	
  	
  (1/ms)	
   100	
  	
  /	
  	
  100	
   100	
  	
  	
  /	
  	
  100	
  

g0 	
  (Mbar)	
   0.0015	
  	
  /	
  	
  0.0115	
   0.0010	
  	
  /	
  	
  0.0115	
  

gl 	
  	
  	
  (Mbar)	
   0.0010	
  /	
  0.0007	
   0.0010	
  /	
  0.0007	
  

gsat 	
  (Mbar)	
  	
   0.0035	
  /	
  0.030	
   0.0030	
  /	
  0.030	
  

r	
   1.40	
  	
  	
  	
  /	
  	
  1.40	
  	
  	
   1.40	
  	
  	
  	
  /	
  	
  1.40	
  	
  	
  

E0 / kB 	
  	
  (K)	
   2.180e+04	
  /	
  2.180e+04	
   2.174e+04	
  /	
  2.180e+04	
  

kB / A 	
  	
  (1/K)	
   1.400e-­‐04	
  /	
  1.490e-­‐04	
   1.400e-­‐04	
  /	
  1.400e-­‐04	
  

p	
   0.6	
  	
  	
  	
  	
  /	
  	
  	
  	
  	
  0.6	
   0.6	
  	
  	
  	
  	
  	
  /	
  	
  	
  	
  	
  0.6	
  

q	
   1.4	
  	
  	
  	
  	
  /	
  	
  	
  	
  	
  1.4	
   1.4	
  	
  	
  	
  	
  	
  /	
  	
  	
  	
  	
  1.4	
  

h0	
   0.0020	
  /	
  0.0020	
   0.0020	
  	
  /	
  0.0020	
  

	
  

Table	
  VIII:	
  Estimated	
  a-­‐phase	
  Twinning	
  Paramaters	
  for	
  the	
  [1010 ]	
  /	
  [ 0001 ]	
  orientation.	
  

 !γ tw0 	
  	
  (1/ms)	
   0.0005	
  /	
  0.0450	
  

atw 	
   2.0	
  	
  	
  	
  	
  /	
  	
  	
  	
  	
  2.0	
  

btw 	
   3.0	
  	
  	
  	
  /	
  	
  	
  	
  	
  3.0	
  

ctw 	
   0.0	
  	
  	
  	
  /	
  	
  200.0	
  

dtw 	
   3.0	
  	
  	
  	
  /	
  	
  	
  	
  	
  3.0	
  

γ tw 	
   0.20	
  	
  /	
  	
  0.20	
  

htw	
  	
  	
  (Mbar)	
   0.15	
  	
  	
  	
  /	
  	
  	
  	
  0.15	
  

hsl	
  	
  	
  (Mbar)	
   0.10	
  	
  /	
  	
  	
  0.10	
  

h0	
  	
  	
  (Mbar)	
   0.00213	
  	
  /	
  	
  0.00213	
  

hhp	
  	
  (Mbar)	
   100.0	
  	
  	
  	
  /	
  	
  	
  0.0041	
  

	
  



Table	
  IX:	
  Estimated	
  Parameters	
  for	
  the	
  Transformation	
  Systems.	
  

k	
    
!
b 	
    

!m 	
  

1	
   	
  	
  	
  [0.500,	
  	
  -­‐0.866,	
  	
  0.00]	
   [0.1890,	
  	
  -­‐0.9820,	
  	
  0.00]	
  

2	
   	
  	
  [0.500,	
  	
  	
  0.866,	
  	
  0.00]	
   [0.1890,	
  	
  	
  0.9820,	
  	
  0.00]	
  

3	
   	
  [1.000,	
  	
  	
  0.000,	
  	
  	
  0.00]	
   [0.9449,	
  	
  ,0.3273.	
  	
  0.00]	
  

	
  

for	
   the	
   low-­‐pressure	
   phase	
   (α),	
   three	
   primismatic	
   <a>	
   and	
   twelve	
   pyramidal	
   <c+a>	
   slip	
  
systems	
  were	
   considered.	
   The	
   basal	
   slip	
   system	
  was	
   not	
   included.	
   Based	
   on	
   geometrical	
  
considerations,	
   six	
   slip	
   systems	
   were	
   modeled	
   in	
   the	
  ω-­‐	
   phase.	
   They	
   included	
   the	
   three	
  
basal	
  <a>	
  and	
  three	
  prismatic	
  <c>	
  slip	
  systems.	
  The	
  six	
  ω-­‐phase	
  slip	
  systems	
  are	
  provided	
  in	
  
Table	
  IV.	
  Atomistic	
  simulations	
  (Sec.	
  III)	
  and	
  experimental	
  investigations	
  indicated	
  that	
  the	
  
ω-­‐phase	
  was	
  relatively	
  brittle.	
  Also,	
  six	
  tensile	
  (Table	
  V)	
  and	
  six	
  compressive	
  twins	
  (Table	
  
VI)	
   [Beyerlein	
  and	
  Tome	
  (2008)]	
   for	
   the	
    α-­‐phase	
  were	
   included	
   in	
  the	
  simulations.	
  Recall	
  
that	
   slip	
  within	
   the	
   twin	
   systems,	
   secondary	
   twinning,	
   and	
   twinning	
   in	
   the	
  ω-­‐phase	
  were	
  
neglected	
  (Sec.	
   II).	
  Parameters	
   for	
  plastic	
  slip,	
   twinning,	
  and	
  phase	
  transformation	
  models	
  
under	
   high-­‐rate	
   conditions	
   are	
   not	
   available	
   especially	
   for	
   high-­‐pressure	
   phases.	
   For	
   the	
  
simulations,	
   material	
   parameters	
   for	
   the	
   inelastic	
   deformation	
   characteristics	
   were	
  
estimated	
   based	
   on	
   the	
   comparisons	
   with	
   the	
   impact	
   experiments.	
   It	
   is	
   recognized	
   that	
  
there	
  are	
  difference	
  slip	
  and	
  twin	
  resistances	
  [Salem	
  et	
  al.	
  (2005)]	
  for	
  the	
  different	
  slip	
  and	
  
twin	
  systems	
  of	
  Ti.	
  For	
  example,	
  values	
  for	
  the	
  initial	
  resolved	
  shear	
  stress	
  of	
  37	
  MPa	
  for	
  the	
  
prismatic	
  <a>,	
  47	
  MPa	
  for	
  the	
  basal	
  <a>,	
  and	
  197	
  MPa	
  for	
  the	
  pyramidal	
  <c+a>	
  have	
  been	
  
used	
   in	
   the	
   literature	
   [Salem	
  et	
   al.	
   (2005)].	
  However,	
   as	
  already	
   suggested,	
   values	
   for	
   the	
  
slip	
   and	
   twinning	
   systems	
   for	
   high	
   rate	
   and	
   pressure	
   conditions	
   are	
   difficult	
   to	
   obtain.	
  
Therefore,	
   uniform	
   values	
   for	
   all	
   of	
   the	
   slip	
   systems	
   and	
   for	
   the	
   tensile	
   and	
   compressive	
  
twin	
  systems	
  have	
  been	
  used	
  in	
  the	
  simulations.	
  Also,	
  because	
  of	
  the	
  highly	
  coupled	
  nature	
  
of	
   the	
   underlying	
   physics,	
   it	
  was	
   not	
   feasible	
   to	
   vary	
   parameters	
   for	
   the	
   different	
   slip	
   or	
  
twin	
   systems.	
   Consequently,	
   the	
   parameters	
   for	
   the	
   different	
   inelastic	
   systems	
   were	
   not	
  
varied.	
   Furthermore,	
   the	
   inelastic	
   parameters	
   were	
   varied	
   with	
   the	
   orientation	
   of	
   the	
  
crystal	
  with	
   respect	
   to	
   the	
   impact	
   direction	
   in	
   an	
   effort	
   to	
   better	
  match	
   the	
   experiments.	
  
The	
  slip	
  and	
  twin	
  model	
  parameters	
  are	
  provided	
  in	
  Tables	
  VII	
  and	
  VIII,	
  respectively.	
  The	
  
parameters	
   for	
   the	
   shape	
   strain	
   tensor	
   (Sec.	
   III)	
   were	
   obtained	
   from	
   the	
   atomistic	
  
simulations	
  (Sec.	
  IV).	
  The	
  habit	
  plan	
  normal	
  ( m )	
  and	
  the	
  shear	
  direction	
  (


b )	
  are	
  provided	
  

in	
   Table	
   IX.	
   The	
   magnitude	
   of	
   the	
   shape	
   strain	
   tensor	
   (γ
tr
)	
   was	
   obtained	
   knowing	
   the	
  

volume	
   change	
   due	
   to	
   the	
   transformation.	
   Values	
   for	
   the	
   kinetics	
   parameter	
   also	
   were	
  
assumed.	
   The	
   parameters	
   that	
   were	
   used	
   for	
   the	
   transformation	
   kinetics	
   were	
  
ϖ tr = 3.0µs

−1 ,	
   βtr = 2.2 x10
−4Mbar cm3 / g and	
   ctr = 1.04 for	
   the	
   [0001] 	
  orientation	
   and	
  

ϖ tr = 1.0µs
−1 ,	
   βtr = 2.1x10

−4 Mbar cm3 / g ,	
   and	
   ctr = 1.20 for	
   the	
  [1010] orientation.	
   The	
  
amount	
  of	
  work	
  that	
  is	
  converted	
  into	
  internal	
  energy	
  due	
  to	
  slip	
  (βsl )	
  and	
  twinning	
  (βtw )	
  
may	
  be	
  a	
   function	
  of	
   conditions	
   such	
  as	
   strain	
   rate.	
  For	
   the	
   simulations	
   these	
  parameters	
  
were	
  assumed	
  to	
  be	
  constant	
   β

sl
= β

tw
= 0.75 .	
  	
  

Comparison	
  of	
  the	
  simulations	
  and	
  experiment	
  for	
  the	
  multi-­‐crystal	
  experiment	
  that	
  
was	
  discussed	
  in	
  Sec.	
  IV	
  are	
  provided	
  in	
  Figs.	
  8	
  to	
  10.	
  Two	
  orientations	
  of	
  the	
  crystals	
  with	
  



respect	
   to	
   the	
   impact	
   direction	
   were	
   modeled.	
   The	
   comparisons	
   in	
   which	
   the	
   crystal	
  
orientations	
  were	
  parallel	
  [ 0001]	
  and	
  perpendicular	
  [1010 ]	
  to	
  the	
  impact	
  direction	
  were	
  
considered.	
   The	
   nominal	
   velocity	
   of	
   the	
   projectile	
   was	
   0.956	
   mm/ms,	
   which	
   provided	
   a	
  
nominal	
  peak	
  stress	
  of	
  ~	
  14.7	
  GPa.	
  The	
  model	
  was	
  implemented	
  into	
  an	
  explicit,	
  quasi-­‐one-­‐
dimensional	
  analysis.	
  That	
  is,	
  transverse	
  components	
  of	
  the	
  velocity	
  and	
  stress	
  as	
  a	
  function	
  
of	
  the	
  wave	
  propagation	
  direction	
  were	
  included.	
  In	
  the	
  preliminary	
  analyses,	
  the	
  Cu	
  flyer	
  
plate	
   was	
   modeled	
   using	
   a	
   Mie-­‐Gruneisen	
   equation-­‐of-­‐state	
   with	
   a	
   polynomial	
  
representation	
   for	
   the	
   Hugoniot	
   and	
   a	
   Johnson-­‐Cook	
   strength	
   model	
   [Johnson	
   and	
   Cook	
  
(1985)].	
  Initial	
  simulations	
  of	
  the	
  Cu	
  /	
  Ti	
  geometry	
  were	
  used	
  to	
  obtain	
  the	
  conditions	
  at	
  the	
  
impact	
   interface.	
  For	
  convenience,	
  subsequent	
  simulations,	
  which	
  explored	
  the	
  changes	
   in	
  
material	
  parameters,	
  used	
  these	
  results	
  as	
  specified	
  velocity	
  boundary	
  conditions	
  on	
  the	
  Ti	
  
single	
  crystals.	
  	
  

A	
   comparison	
   of	
   the	
   calculated	
   and	
   experimental	
   results	
   for	
   the	
   free	
   surface	
  
velocities	
  at	
  the	
  back	
  of	
  the	
  sample	
  as	
  a	
  function	
  of	
  time	
  in	
  which	
  the	
  crystal	
  was	
  oriented	
  
along	
  the	
  [0001] 	
  direction	
  with	
  respect	
  to	
  the	
  wave	
  propagation	
  direction	
  is	
  provided	
  in	
  Fig.	
  
8a.	
   It	
   may	
   be	
   seen	
   from	
   Fig.	
   8a	
   that	
   the	
   comparison	
   of	
   the	
   simulated	
   and	
   experimental	
  
particle	
  velocity	
  profiles	
   is	
  excellent.	
  For	
   the	
  simulation,	
   there	
  was	
  no	
  slip	
   in	
   the	
  ω-­‐phase,	
  
and	
  there	
  was	
  no	
  tensile	
  twinning.	
  In	
  an	
  effort	
  to	
  identify	
  which	
  physical	
  mechanisms	
  that	
  
are	
  responsible	
  for	
  the	
  particle	
  velocity	
  response	
  (Fig.	
  8a),	
  the	
  mass	
  fraction	
  of	
  the	
  α-­‐phase	
  
(ξα ),	
  a	
  curve	
  that	
  provides	
  the	
  scaled	
  sum	
  of	
  the	
  slip	
  resistances	
  ( γ α ,s

s
∑ / γ max )	
  for	
  the	
  α-­‐

phase,	
  and	
  a	
  curve	
  of	
  the	
  sum	
  of	
  the	
  scaled	
  values	
  of	
  the	
  compressive	
  twins	
  ( f a
a
∑ / fmax )	
  is	
  

superimposed	
  on	
  the	
  scaled	
  velocity	
  profile	
  through	
  the	
  thickness	
  of	
  the	
  crystal	
  at	
  a	
  time	
  of	
  
0.20	
  µs	
  in	
  Figs.	
  8b.	
  It	
  may	
  be	
  seen	
  from	
  Fig.	
  8b	
  that	
  the	
  plateau	
  for	
  a	
  particle	
  velocity	
  (Fig.	
  
8a)	
   of	
   v~0.03	
   cm/µs	
   is	
   the	
   result	
   of	
   combined	
   plastic	
   slip	
   and	
   twinning.	
   The	
   initial	
  
interpretation	
  from	
  the	
  experimental	
  data	
  was	
  that	
  there	
  was	
  no	
  phase	
  transformation	
  for	
  
this	
  orientation.	
  However,	
  it	
  may	
  be	
  seen	
  from	
  Figs.	
  8a	
  and	
  8b	
  that	
  the	
  simulation	
  suggests	
  
that	
   the	
   phase	
   transformation	
   is	
   initiated	
   at	
   a	
   particle	
   velocity	
   (Fig.	
   8a)	
   of	
   about	
   v~0.08	
  
cm/µs.	
   The	
   active	
   slip	
   system	
   shear	
   strains	
   (γ

sl

α ,k
; k =1,...,12 )	
   and	
   the	
   compressive	
   twin	
  

volume	
   fractions	
   ( f a ; a =1,..., 6 )	
  are	
  provided	
   in	
  Figs.	
  8c	
  and	
  8d,	
   respectively.	
   It	
  may	
  be	
  
seen	
   from	
   Fig.	
   8c	
   that	
   all	
   of	
   the	
   pyramidal	
   <c+a>	
   slip	
   systems	
   are	
   active	
   (k=1,	
   …	
   ,12).	
  
However,	
   the	
   three	
  prismatic	
  <a>	
  slip	
  systems	
  (k=13,14,15)	
  are	
  not	
  active.	
  Also,	
  all	
  of	
   the	
  
compressive	
  twins	
  (k=1,	
  …	
  ,6)	
  are	
  equally	
  active	
  (Fig.	
  8d)	
  for	
  this	
  orientation.	
  

A	
   comparison	
   of	
   the	
   calculated	
   and	
   experimental	
   results	
   for	
   the	
   free	
   surface	
  
velocities	
  at	
  the	
  back	
  of	
  the	
  sample	
  as	
  a	
  function	
  of	
  time	
  in	
  which	
  the	
  crystal	
  was	
  oriented	
  
along	
   the	
  [1010] 	
  direction	
  with	
   respect	
   to	
   the	
  wave	
  propagation	
  direction	
   is	
  provided	
   in	
  
Fig.	
   9a.	
   	
   Again,	
   it	
   may	
   be	
   seen	
   from	
   Fig.	
   9a	
   that	
   the	
   comparison	
   of	
   the	
   simulated	
   and	
  
experimental	
   particle	
   velocity	
   profiles	
   is	
   excellent.	
   In	
   an	
   effort	
   to	
   identify	
  which	
   physical	
  
mechanisms	
   that	
   are	
   responsible	
   for	
   the	
   particle	
   velocity	
   response	
   (Fig.	
   9a),	
   the	
   mass	
  
fraction	
   of	
   the	
  α-­‐phase	
   (ξα ),	
   curves	
   that	
   provide	
   the	
   scaled	
   sums	
   of	
   the	
   slip	
   resistances	
  

( γ α ,s

s
∑ / γ max )	
   for	
   the	
  α-­‐phase	
   and	
   the	
  ω

k=2 and	
  ω k=4 variants	
   are	
   superimposed	
   on	
   the	
  

scaled	
  velocity	
  profile	
  through	
  the	
  thickness	
  of	
  the	
  crystal	
  at	
  a	
  time	
  of	
  0.20	
  µs	
  in	
  Fig.	
  9b.	
  For	
  
this	
  orientation,	
  there	
  was	
  no	
  slip	
  in	
  the	
  ω k=3  variant	
  (Table	
  III)	
  and	
  there	
  were	
  no	
  	
  



	
  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.2 0.25 0.3 0.35 0.4

Single-Crystal Titanium
[0001] Orientation

V
flyer

 = 0.0956 cm/us

Experiment
SimulationPa

rt
ic

le
 V

el
oc

ity
 (c

m
/u

s)

Times (us)

Phase Transformation
Initiated

Slip / Twinning 
Initiated

	
  

0

0.2

0.4

0.6

0.8

1

0.05 0.1 0.15

Single-Crystal Ti
[0001]

t = 0.20 us

Ux/Umax
Alpha Frac.
Gam1/Gmax
Ftwc/Fmax

R
el

at
iv

e 
Q

ua
nt

it
y

  x (cm) 	
  

	
   	
   	
   (a)	
   	
   	
   	
   	
   (b)	
  

	
  

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0
0 0.05 0.1 0.15 0.2 0.25 0.3

Single-Crystal Ti
[0001]

x = 0.30 mm

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7
k = 8
k = 9
k = 10
k = 11
k = 12

A
lp

ha
 A

ct
iv

e 
S

lip
 R

es
is

ta
nc

e

Time (us)

No Prismatic Slip

	
  

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2 0.25 0.3

Single-Crystal Ti
[0001]

x = 0.30 mm

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6

A
lp

ha
 A

ct
iv

e 
Tw

in
 S

ys
te

m
s

Time (us)

No Tensile Twins

	
  

	
   	
   	
   (c)	
   	
   	
   	
   	
   (d)	
  

Fig.	
  8:	
  Simulation	
  of	
  the	
  crystal	
  orientation	
  [0001] 	
  with	
  respect	
  to	
  the	
  impact	
  direction:	
  (a)	
  
Comparison	
  of	
  the	
  calculated	
  and	
  experimental	
  particle	
  velocity	
  profiles	
  at	
  the	
  back	
  surface	
  
of	
  the	
  crystal.	
  (b)	
  Distribution	
  of	
  the	
  relative	
  velocity,	
  a-­‐phase	
  volume	
  fraction,	
  relative	
  slip	
  
resistance	
  of	
  the	
  a-­‐phase,	
  and	
  relative	
  compressive	
  twin	
  volume	
  fraction	
  of	
  the	
  a-­‐phase	
  
versus	
  distance	
  through	
  the	
  Ti	
  single	
  crystal	
  at	
  t=0.20	
  ms.	
  (c)	
  Slip	
  resistances	
  in	
  the	
  a-­‐phase	
  
versus	
  time	
  at	
  x=0.30	
  mm	
  in	
  the	
  Ti	
  single	
  crystal.	
  (d)	
  Volume	
  fraction	
  of	
  the	
  tensile	
  twins	
  in	
  
the	
  a-­‐phase	
  versus	
  time	
  at	
  x=0.30	
  mm	
  in	
  the	
  Ti	
  single	
  crystal.	
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Fig.	
  9:	
  Simulation	
  of	
  the	
  crystal	
  orientation	
  [1010] 	
  with	
  respect	
  to	
  the	
  impact	
  direction:	
  (a)	
  
Comparison	
  of	
  the	
  calculated	
  and	
  experimental	
  particle	
  velocity	
  profiles	
  at	
  the	
  back	
  surface	
  
of	
  the	
  crystal.	
  (b)	
  Distribution	
  of	
  the	
  relative	
  velocity,	
  the	
  a-­‐phase	
  volume	
  fraction	
  and	
  the	
  
relative	
  slip	
  resistances	
  of	
  the	
  a-­‐phase,	
  the	
  w2-­‐variant,	
  and	
  the	
  w4-­‐variant	
  versus	
  distance	
  
through	
  the	
  Ti	
  single	
  crystal	
  at	
  t=0.20	
  ms.	
  (c)	
  Slip	
  resistances	
  in	
  the	
  a-­‐phase	
  versus	
  time	
  at	
  
x=0.30	
  mm	
  in	
  the	
  Ti	
  single	
  crystal.	
  (d)	
  Slip	
  resistances	
  in	
  the	
  w2-­‐variant	
  versus	
  time	
  at	
  
x=0.30	
  mm	
  in	
  the	
  Ti	
  single	
  crystal.	
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Fig.	
  10:	
  Comparison	
  of	
  the	
  through	
  thickness	
  parameters	
  in	
  the	
  Ti	
  single	
  crystals	
  at	
  t-­‐0.20	
  
ms.	
  (a)	
  Pressure	
  and	
  von	
  Mises	
  Stress	
  versus	
  distance	
  through	
  the	
  sample	
  thickness.	
  (b)	
  
Temperature	
  versus	
  distance	
  through	
  the	
  sample	
  thickness.	
  (c)	
  Work	
  due	
  to	
  plastic	
  slip	
  and	
  
twinning	
  through	
  the	
  sample	
  thickness.	
  

	
  

	
  



compressive	
  or	
  tensile	
  twins.	
  The	
  plateau	
  in	
  the	
  particle	
  velocity	
  profile	
  (Fig.	
  9a)	
  at	
  v~0.005	
  
cm/µs	
   is	
   a	
   result	
   of	
   plastic	
   slip	
   in	
   the	
  α-­‐phase.	
   Also,	
   the	
   change	
   in	
   slope	
   of	
   the	
   particle	
  
velocity	
   profile	
   (Fig.	
   9a)	
   at	
   v~0.09	
   cm/µs	
   may	
   be	
   attributed	
   to	
   the	
   α-­‐	
   to	
   ω-­‐phase	
  
transformation	
   (Fig.	
   9b).	
   	
   It	
   also	
   may	
   be	
   seen	
   (Fig.	
   9b)	
   that	
   the	
   α-­‐phase	
   is	
   not	
   fully	
  
transformed	
   for	
   this	
   simulation.	
   That	
   is,	
  ξα ≈ 0.1 	
  behind	
   the	
   compressive	
  wave.	
   This	
   is	
   a	
  
result	
   of	
   setting	
   cξ =1.1 	
  in	
   Eq.	
   II-­‐18.	
   The	
   active	
   slip	
   resistance	
   for	
   the	
   α-­‐phase	
   and	
   the	
  

ω
k=2 variant	
  are	
  provided	
  in	
  Figs.	
  9c	
  and	
  9d,	
  respectively.	
  It	
  may	
  be	
  seen	
  in	
  Fig.	
  9c	
  that	
  slip	
  

systems	
  k=9,10,11,12,13,	
  and	
  15	
  (cf.	
  Table	
  III)	
  are	
  active	
  for	
  the	
  α-­‐phase.	
  Also	
  (Fig.	
  9d)	
  slip	
  
systems	
  k=3	
  and	
  5	
  (cf.	
  Table	
  IV)	
  are	
  active	
  for	
  the	
  ω k=2 variant.	
  

Comparisons	
  of	
  the	
  stresses,	
  temperatures,	
  and	
  the	
  increments	
  of	
  work	
  due	
  to	
  slip	
  
(
 
dwpl = !γ k ,sτ k ,2dt

s
∑

k
∑ )	
   and	
   twinning	
   (

 
dwtw = γ tw

!f aτ adt
a
∑ )	
   for	
   the	
   two	
   simulations	
   is	
  

provided	
   in	
  Fig.	
  10	
  as	
  a	
   function	
  of	
  distance	
   through	
   the	
   sample	
  at	
   t=0.20	
  µs.	
   In	
  Fig.	
  10a,	
  
curves	
  for	
  the	
  average	
  pressure	
  and	
  the	
  von	
  Mises	
  stress	
  for	
  the	
  simulations	
  are	
  shown.	
  It	
  
may	
  be	
  seen	
  in	
  Fig.	
  10b	
  that	
  the	
  temperature	
  jump	
  across	
  the	
  compression	
  wave	
  for	
  the	
  two	
  
simulations	
   is	
   about	
   45	
   K.	
   Again,	
   it	
   should	
   be	
   recalled	
   that	
   the	
   beta	
   factors	
   for	
   slip	
   and	
  
twinning	
   that	
   were	
   used	
   to	
   calculate	
   the	
   temperatures	
   were	
   β

sl
= β

tw
= 0.75 .	
   For	
   the	
  

[0001]orientation,	
  the	
  peaks	
  in	
  the	
  slip	
  and	
  twinning	
  work	
  at	
  x~0.13	
  cm	
  corresponds	
  to	
  the	
  
beginning	
  of	
   inelastic	
  deformation	
  (Fig.	
  10b).	
  The	
  peak	
   in	
  the	
  work	
  at	
  about	
  x~0.11	
  cm	
  is	
  
near	
   the	
   end	
   of	
   the	
   phase	
   transformation.	
   Because	
   there	
   is	
   no	
   slip	
   or	
   twinning	
   in	
   the	
  ω-­‐
phase,	
   the	
   inelastic	
  work	
   is	
   zero	
  at	
   the	
  completion	
  of	
   the	
   transformation	
  process	
   (x~0.08	
  
cm).	
  For	
  the	
  [1010] 	
  orientation,	
  there	
  is	
  no	
  work	
  due	
  to	
  twinning.	
  The	
  peak	
  in	
  the	
  plastic	
  
work	
  at	
  x~0.11	
  cm	
  occurs	
  at	
  the	
  beginning	
  of	
  the	
  transformation	
  process,	
  where	
  slip	
  in	
  the	
  
ω	
  variants	
  increase	
  rapidly.	
  

Calculated	
   information	
   regarding	
   the	
   active	
   slip	
   and	
   twin	
   systems	
   as	
   well	
   as	
   the	
  
phase	
   volume	
   fractions	
   may	
   be	
   used	
   in	
   the	
   future	
   to	
   pursue	
   additional	
   high-­‐rate	
  
experiments.	
   Future	
  experiments	
   could,	
   for	
   example,	
  quantify	
   slip	
  and	
   twin	
   system	
  strain	
  
rates	
   as	
  well	
   as	
   transformation	
   kinetics.	
   In	
   this	
  manner,	
   the	
   resistances	
   of	
   the	
   individual	
  
systems	
  could	
  better	
  be	
  determined	
  under	
  high-­‐rate	
  conditions.	
  

	
  

VI.	
  Summary	
  and	
  Discussion	
  

	
   A	
   thermodynamically	
   consistent	
   theory,	
   which	
   addresses	
   the	
   low-­‐rate,	
   inelastic	
  
deformation	
  of	
  single	
  crystals,	
  was	
  reviewed	
  (Sec.	
  I).	
  The	
  low-­‐rate	
  model	
  was	
  considered	
  in	
  
an	
   effort	
   to	
   provide	
   a	
   framework	
   from	
   which	
   modifications	
   and	
   simplifications	
   for	
   the	
  
development	
  of	
  a	
  high-­‐rate	
  model	
  were	
  made.	
  The	
  resulting	
  model	
  was	
  intended	
  to	
  address	
  
the	
   high-­‐rate	
   and	
   high-­‐pressure	
   conditions	
   that	
   are	
   encountered	
   during	
   impact	
   or	
  
explosively	
   driven	
   deformations.	
   The	
   resulting	
   thermo-­‐mechanical,	
   single-­‐crystal	
   model	
  
includes	
  the	
  effects	
  of	
  nonlinear	
  elasticity	
  (i.e.,	
  an	
  equation	
  of	
  state),	
  phase	
  transformations,	
  
and	
  plastic	
  slip	
  and	
  twinning.	
  The	
  model	
  is	
  capable	
  of	
  investigating	
  the	
  high-­‐rate	
  response	
  
of	
  anisotropic	
  single-­‐crystals	
  and	
  may	
  be	
  applied	
  to	
  metallic	
  as	
  well	
  as	
  molecular	
  crystals.	
  
The	
  development	
  of	
  single-­‐crystals	
  is	
  important	
  for	
  the	
  purpose	
  of	
  interpreting	
  experiments	
  
as	
  well	
   as	
   extending	
  modeling	
   capabilities	
   for	
  macro-­‐mechanical	
   or	
   engineering	
  material	
  
models.	
   Simulations	
   using	
   the	
   single-­‐crystal	
   model	
   also	
   may	
   be	
   used	
   to	
   design	
   future	
  



experiments	
  for	
  the	
  purpose	
  of	
  better	
  understanding	
  the	
  coupled	
  inelastic	
  deformations	
  of	
  
low-­‐symmetry	
   crystals.	
   Meso-­‐mechanical	
   models	
   also	
   provide	
   a	
   bridge	
   between	
   the	
  
atomistic	
  and	
  macro-­‐mechanical	
  length	
  and	
  time	
  scales.	
  

	
   Molecular	
  dynamics	
  (MD)	
  simulations	
  were	
  performed	
  in	
  an	
  effort	
  to	
  investigate	
  the	
  
response	
  of	
   single-­‐crystal	
   Ti	
   to	
   impact	
   loading.	
   The	
  MD	
   simulations	
  provided	
   insight	
   into	
  
the	
  phase	
  transformation	
  process	
  as	
  well	
  as	
  the	
  response	
  of	
  the	
  high-­‐pressure	
  phase	
  of	
  Ti.	
  
Using	
   the	
   MD	
   simulations,	
   it	
   was	
   determined	
   that	
   the	
   Silcock	
   orientation	
   relationship	
  
between	
   the	
   low-­‐pressure	
   (α)	
   and	
   high-­‐pressure	
   (ω)	
   phase	
   was	
   obeyed	
   during	
   the	
  
compression	
  of	
  Ti.	
  It	
  also	
  was	
  observed	
  that	
  the	
  ω-­‐phase	
  exhibited	
  a	
  brittle	
  behavior.	
  That	
  is,	
  
upon	
  further	
  loading,	
  the	
  ω-­‐phase	
  tended	
  to	
  revert	
  back	
  to	
  the	
  α-­‐phase	
  instead	
  of	
  deforming	
  
by	
  plastic	
  slip.	
  The	
  orientation	
  of	
  the	
  habit	
  plane	
  between	
  the	
  low-­‐pressure	
  phase	
  and	
  the	
  
high-­‐pressure	
  variants	
  and	
  the	
  specification	
  of	
  the	
  shape	
  strain	
  tensor	
  was	
  facilitated	
  by	
  the	
  
MD	
  investigation.	
  

	
   An	
   experimental	
   component	
   also	
  was	
   included	
   in	
   the	
   study.	
   In	
   the	
   experiment,	
   a	
  
multi-­‐crystal	
   sample	
   of	
   Ti	
   was	
   impact	
   loaded	
   at	
   high-­‐rate.	
   A	
   phase	
   Doppler	
   velocimeter	
  
(PDV)	
  probe	
  was	
  attached	
  to	
  three	
  of	
  the	
  crystals	
  within	
  the	
  sample.	
  In	
  this	
  manner,	
  particle	
  
velocity	
   histories	
   at	
   the	
   back	
   surface	
   of	
   three	
   crystals,	
   which	
   were	
   oriented	
   along	
   the	
  
[ 0001 ],	
   [1010 ],	
   and	
   [ 3144 ]	
   directions	
  with	
   respect	
   to	
   the	
   loading	
   axis,	
  were	
  measured.	
  
Different	
  particle	
  velocity	
  histories	
  were	
  obtained	
  when	
  the	
  crystals	
  were	
  aligned	
  with	
  the	
  
compression	
   axis	
   as	
   opposed	
   to	
   transverse	
   to	
   the	
   compression	
   axis.	
   The	
   measurements	
  
transverse	
  to	
  the	
  impact	
  direction	
  exhibited	
  the	
  classical	
  Hugiont	
  Elastic	
  Limit	
  (HEL)	
  and	
  a	
  
phase	
   transformation	
   signature	
   that	
   are	
   typically	
   observed	
   in	
   polycrystal	
   Ti	
   experiments.	
  
However,	
   when	
   loaded	
   along	
   the	
   c-­‐axis,	
   a	
   significantly	
   higher	
   and	
   broader	
   HEL	
   was	
  
observed.	
  Also,	
   initial	
   observations	
   suggested	
   that	
   there	
  was	
  no	
   transformation	
   signature	
  
when	
  the	
  crystal	
  was	
  shocked	
  along	
  the	
  c-­‐axis.	
  

Comparisons	
   were	
   made	
   between	
   the	
   model	
   and	
   the	
   multi-­‐crystal,	
   plate	
   impact	
  
experiments.	
  Only	
  the	
  initial	
  compression	
  wave	
  was	
  considered	
  in	
  both	
  the	
  simulations	
  and	
  
the	
  experiment.	
  The	
  comparisons	
  were	
  made	
  with	
  the	
  particle	
  velocity	
  at	
  the	
  back	
  surface	
  
of	
  the	
  multi-­‐crystal	
  target.	
  It	
  was	
  shown	
  that	
  the	
  model	
  was	
  able	
  to	
  capture	
  the	
  features	
  of	
  
the	
  deformation	
  for	
  the	
  crystals	
  that	
  were	
  oriented	
  along	
  the	
  [0001 ]	
  and	
  [1010 ]	
  direction	
  
with	
   respect	
   to	
   the	
   loading	
   axis.	
   The	
   simulations	
   highlighted	
   the	
   coupled	
   effects	
   of	
   the	
  
physical	
   phenomena	
   under	
   consideration.	
   Consequently,	
   details	
   of	
   the	
   in	
   situ	
   response	
   of	
  
the	
  material	
  with	
  respect	
   to	
   the	
  plastic	
   slip,	
   twinning,	
  and	
   transformation	
  processes	
  were	
  
inferred.	
   Issues	
   related	
   to	
   the	
   degree	
   of	
   twinning	
   or	
   transformation	
   cannot	
   be	
   quantified	
  
from	
  these	
  far-­‐field	
  measurements.	
  In	
  the	
  future	
  detailed	
  in	
  situ	
  experimental	
  investigations	
  
are	
  being	
  planned.	
  Once	
   the	
  details	
  of	
   the	
   in	
  situ	
  processes	
  are	
  understood,	
  better	
  models	
  
for	
   the	
   free	
   energies,	
   transformation	
   kinetics,	
   plastic	
   slip	
   resistances,	
   and	
   twinning,	
   for	
  
example,	
   may	
   be	
   pursued.	
   The	
   model	
   that	
   has	
   been	
   developed	
   requires	
   a	
   number	
   of	
  
parameters	
   to	
   characterize	
   the	
   effects	
   of	
   nonlinear,	
   inelastic	
   response.	
   In	
   general,	
   these	
  
parameters	
   are	
   not	
   readily	
   available	
   for	
   high-­‐rate	
   and	
   high-­‐pressure	
   applications.	
  
Consequently,	
  an	
  effort	
  was	
  not	
   invested	
   in	
  obtaining	
  a	
  uniform	
  set	
  of	
  parameters	
   for	
   the	
  
two	
  simulations.	
  Instead,	
  a	
  different	
  set	
  of	
  parameters	
  was	
  applied	
  for	
  the	
  two	
  orientations.	
  
Furthermore,	
   the	
   differences	
   in	
   the	
   resistances	
   of	
   the	
   slip	
   and	
   twin	
   systems	
   were	
   not	
  
pursued.	
  It	
  is	
  felt	
  that	
  additional	
  high	
  rate,	
  single-­‐crystal	
  data	
  is	
  necessary	
  to	
  quantify	
  these	
  
differences.	
  



	
   Improvements	
  related	
  to	
  the	
  numerical	
  implementation	
  of	
  the	
  model	
  also	
  should	
  be	
  
given	
  future	
  consideration.	
  These	
  include	
  improving	
  the	
  degree	
  of	
  implicitness	
  or	
  temporal	
  
subcycling	
   [Dumoulin	
   et	
   al.	
   (2009);	
   Ling	
   et	
   al.	
   (2005)]	
   of	
   the	
   constitutive	
   model	
   within	
  
regions	
   of	
   large	
   gradients.	
   The	
   existing	
   explicit	
   implementation	
   requires	
   small	
   time	
   step	
  
sizes	
  ( Δt ∼ 10

−5 µs ).	
  A	
  thermally	
  activated	
  plasticity	
  model	
  was	
  used	
  in	
  the	
  development.	
  
For	
  high-­‐strain	
  rates	
  ( !ε >10

4 s−1 )	
  the	
  growth	
  of	
  dislocation	
  generation	
  begins	
  to	
  accelerate,	
  
which	
  leads	
  to	
  an	
  abrupt	
  increase	
  in	
  the	
  dislocation	
  density	
  and	
  results	
  in	
  the	
  rapid	
  increase	
  
in	
  the	
  material	
  flow	
  stress.	
  Consequently,	
  future	
  improvements	
  to	
  the	
  model	
  should	
  include	
  
a	
  dislocation	
  drag	
  plastic	
   slip	
  model.	
  A	
  dislocation	
  density	
  based	
  approach	
  also	
  should	
  be	
  
considered.	
  However,	
   the	
  physics	
  of	
  dislocation	
  generation	
  at	
  high	
  strain-­‐rates	
  represents	
  
an	
  area	
  that	
  will	
  require	
  future	
  research.	
  

The	
  effects	
  of	
   transformations,	
  plasticity,	
   twinning,	
  and	
  damage	
  provide	
   important	
  
coupled	
   processes	
   on	
   the	
   stress-­‐strain	
   response	
   of	
   materials	
   subjected	
   to	
   shock	
   loading	
  
conditions.	
   Future	
   efforts	
   will	
   consider	
   the	
   effects	
   of	
   damage	
   [Lu	
   et	
   al.	
   (2004)]	
   on	
   the	
  
response	
   of	
   high-­‐rate	
   material	
   deformation.	
   Continuum	
   damage	
   mechanics	
   models	
   for	
  
single	
   crystals	
   offer	
   a	
   convenient	
   approach.	
   An	
   existing	
   approach	
   models	
   damage	
   by	
  
degrading	
   the	
   elastic	
   stiffness	
   through	
   a	
   damage	
   volume	
   fraction	
   for	
   each	
   constituent	
  
[Suiker	
  et.	
  al.	
  (2007a);	
  Suiker	
  et.	
  al.	
  (2007b)].	
  A	
  kinetic	
  law	
  for	
  the	
  damage	
  volume	
  fractions	
  
is	
  provided	
  in	
  terms	
  of	
  driving	
  forces	
  for	
  damage.	
  These	
  driving	
  forces	
  are	
  provided	
  using	
  
thermodynamically	
  consistent	
  considerations.	
  This	
  approach	
  reflects	
  a	
  brittle-­‐like	
  behavior	
  
of	
  the	
  material.	
  A	
  single-­‐crystal,	
  ductile	
  damage	
  approach	
  [Lu	
  et.	
  al.	
  (2004)],	
  which	
  includes	
  
softening	
   of	
   the	
   plastic	
   velocity	
   gradient,	
   will	
   be	
   considered.	
   This	
   approach	
   offers	
   the	
  
potential	
  for	
  modeling	
  spall	
  effects	
  in	
  single	
  crystals.	
  

Improved	
   expression	
   for	
   the	
   free	
   energies	
   also	
   must	
   be	
   developed.	
   The	
   existing	
  
model	
  relies	
  on	
  an	
  extension	
  to	
  the	
  Helmholtz	
  free	
  energy	
  in	
  an	
  effort	
  to	
  include	
  nonlinear	
  
elasticity.	
  Also	
  a	
  Gibbs	
  free	
  energy,	
  which	
  is	
  a	
  function	
  of	
  uniform	
  pressure	
  and	
  temperature,	
  
was	
  used	
   in	
   the	
   expression	
   for	
   the	
   transformation	
  kinetics.	
   Consequently,	
   the	
   three	
  high-­‐
pressure	
  variant	
  of	
  Ti	
  were	
  produced	
  equally.	
  More	
  general	
   transformation	
  driving	
   forces	
  
that	
  are	
  written	
  in	
  terms	
  of	
  the	
  total	
  stress	
  or	
  strain	
  tensor	
  should	
  be	
  considered.	
  Improved	
  
expressions	
   for	
   the	
   free	
   energies	
   also	
   should	
   include	
   the	
   effects	
   of	
   the	
   energy	
   barriers	
  
between	
  phases.	
  In	
  this	
  manner,	
  transformation	
  hysteresis	
  or	
  retained	
  high-­‐pressure	
  phase	
  
for	
  the	
  unloading	
  path	
  could	
  be	
  modeled	
  better.	
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