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Abstract

An anisotropic, rate-dependent, single-crystal approach for modeling materials
under the conditions of high strain rates and pressures is provided. The model includes the
effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip
and twinning. It is envisioned that the model may be used to examine these coupled effects
on the local deformation of materials that are subjected to ballistic impact or explosive
loading. The model is formulated using a multiplicative decomposition of the deformation
gradient. A plate impact experiment on a multi-crystal sample of titanium was conducted.
The particle velocities at the back surface of three crystal orientations relative to the
direction of impact were measured. Molecular dynamics simulations were conducted to
investigate the details of the high-rate deformation and pursue issues related to the phase
transformation for titanium. Simulations using the single crystal model were conducted and
compared to the high-rate experimental data for the impact loaded single crystals. The
model was found to capture the features of the experiments.

Keywords: Titanium, High-Strain Rate, Crystal Plasticity, Twinning, Phase Transformations

I. Introduction / Background

The ability to model high-rate deformations is important for addressing dynamic
impact or explosive loading scenarios that are encountered in automotive, aerospace, and
defense applications. The deformation characteristics at the meso-mechanical or single-
crystal length scale have a direct effect on the macro-mechanical response of engineering
structures. Therefore, it is important to understand the coupled role of plastic slip, twinning,
and phase transformations at the meso-scale for high-rate conditions. The coupled effects of



the evolution of inelastic phenomena on the constitutive response of materials are poorly
understood for dynamic conditions. Physically-based, meso-mechanical (~10 um) models
are necessary to guide macro-mechanical model development and assist in the
interpretation of experimental data. Continuum single-crystal theories allow for the
simulations of materials at the meso-scale. That is, length and time scales that are larger
than allowed by atomistic approaches but at scales that provide a greater resolution and
detail than considered by macro-mechanical or engineering models. Therefore, single-
crystals models serve as a bridge between atomistic and macro-mechanical scales. Meso-
mechanical models have proven to be capable of capturing the micro-mechanical
phenomena that govern the deformation characteristics of materials.

There are numerous examples in the technical literature of investigations at the
single-crystal length scale. Most of these efforts are focused on low-rate deformations of
metallic materials due to plastic slip. The use of single-crystal models to examine the
polycrystal response to deformations and the evolution of texture is ubiquitous. Crystal
plasticity models have successfully explored coupled effects on the deformation
characteristics of materials using computational simulations. Models that address the
single-crystal response to high-rate deformations also are available. The dynamic behavior
of materials is closely related to the microstructural evolution during the deformation
process [Meyers (1994)]. For example, the high-rate, high pressure deformation of a single
crystal to shock loading and the effect of a stress pulse on the nonuniform plastic
deformation of a polycrystal sample of tantalum (Ta) has been considered [Becker ((2004)].
High-rate deformation and localization in Ta also has been addressed (Bronkhorst et al.
(2007)]. Plate impact experiments and simulations using a dislocation-based, single-crystal
model have been used to investigate the high-rate deformation of lithium fluoride (LiF) and
copper (Cu) [Winey and Gupta (2006)] as well as quartz and sapphire [Winey and Gupta
(2004)]. The high-rate deformation of energetic, organic single crystals also has received
attention. The response to shocked pentaerythritol tetranitrate (PETN) [Winey and Gupta
(2010)] and the a-polymorph of cyclotrimethylene trinitramine (RDX) has received recent
attention [De et al. (2014; Luscher et al. (2016)]. The ability to include phase
transformations for high-rate deformations also has been considered. A single-crystal
model for the shock induced o (bcc) to € (hcp) phase transformation in iron (Fe) was used
to investigate the response of single crystals and an ensemble of single crystals to high-rate
loading [Barton et al. (2005)] as well as the o (trigonal) to B (hex) transformation in quartz
[Barton and Wenk (2007)].

Group-1V hexagonal-close-packed (hcp) metals [titanium (Ti), zirconium (Zr), and
hafnium (Hf)] provide excellent candidates for studying high-rate deformations, because of
their ability to deform plastically, twin, and phase transform at temperatures and pressures,
which are relatively accessible. The inelastic behavior of these metals plays an important
role in their physical properties and mechanical behavior. Toughness, ductility, spall
strength and localization all are influenced by their inelastic response. Phase
transformations in group-1V metals are martensitic-like in nature [Ivanisenko et al. (2008);
Singh et al. (1982); Vohra (1978)]. That is, they are rapid, displacive, and diffusionless. It
has been shown that applied shear strains may enhance the transformation kinetics
[lvanisenko et al. (2008); Zong et al. (2014)] of group-IV metals and their alloys. An
apparent increase in the spall strength of alloys of these metals also has been observed
[Mescheryakov and Divakov (2001)] depending on whether the reverse phase
transformation occurs prior to the spallation event. In the past, polycrystal investigations
using group-1V metals have been conducted for both quasi-static and high-rate conditions.



Hexagonal-close-packed (hcp) single crystals have been studied under static and dynamic
pressures [Vohra (1978)]. Insight into the deformation mechanisms has been obtained
from these investigations. However, fewer investigations for hcp single crystals have been
pursued for high-strain rates, including phase transformations. Recently, high-rate, single-
crystal plate impact [Cerreta et al. (2013)] and split-Hopkinson pressure bar (SHPB)
experiments [Morrow et al. (2016)] were performed. When shocked above the o to ®
transformation pressure, Zr samples that were recovered from single-crystal, plate impact
experiments displayed a volume fraction of retained high-pressure phase (®) that was
related to the peak shock pressure [Cerreta et al. (2013)]. Quasi-static annealing
experiments of the post-shocked, recovered Zr samples were conducted [Low et al. (2015)]
to investigate the reverse transformation kinetics and the resulting evolution of dislocation
densities in both the o and ® phases. The influence of the evolution of the microstructure on
the reverse transformation was explored. In the SHPB experiments, single-crytals of Ti were
loaded at high rate (€ ~4.45 x 103 s1], below the transformation pressure, and placed at
different orientations with respect to the direction of compression. The samples were
loaded to about 30 % strain. The mechanical response of the single crystals of Ti differed
significantly as the orientation of the samples was changed relative to the compression
direction. In addition to pursuing microscopy on the recovered samples, the evolution of the
microstructure was investigated using a visco-plastic, self-consistent (VPSC) theory. It was
determined that above ~ 10 % strain, the crystal that was compressed along the [0001 ]
orientation deformed primarily by compressive twinning. By ~25 % strain, the single
crystal was completely twinned. However, the crystal that was compressed along the

[1011] orientation displayed significant prismatic slip [Morrow et al (2016)].

A thermo-mechanical framework for the large deformation of single-crystals
[Turtletaub and Suiker (2006); Tjahjanto et al. (2008a); Tjahjanto et al. (2008b); Suiker and
Turteltaub (2005); Suiker and Turteltaub (2007a); Suiker and Turteltaub (2007b)] has
been developed. The original framework included the effects of linear elasticity, phase
transformations, and plastic slip. The model relied on the multiplicative decomposition of
the deformation gradient (F') into its elastic (F,,), plastic (£}, ), and transformation (F,)

components

F=F,F,F,. (I-1)

The multiplicative decomposition of the deformation gradient is provided in schematic form
in Fig. 1. It may be seen from Fig. 1 that the decomposition represents four configurations,

the reference configuration (l;), two intermediate configurations (b and l;), and the

current configuration (b ). The total deformation gradient (F F~' = L) may be determined

directly from the velocity gradient ( L), which is obtained from the solution to the
momentum equations in the current configuration. The entropy density was considered to
be a thermal analogue of the deformation gradient [Turteltaub et al. (2006)]. Therefore,
analogous to the multiplicative decomposition of the total deformation gradient, the total
entropy density (7)) was additively decomposed into its reversible (7,,), plastic (n,) and

transformation (1], ) components

A=, +7, +17,. (1-2)
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Fig. 1. Schematic figure of the decomposition of the Deformation Gradient

Micro-mechanical or sub-granular effects that are related to the internal structure of the
crystal and the dislocation dynamics were treated in an averaged fashion. That is, it was
assumed that the details of the micro-scale elastic, plastic, and transformation deformations
were captured in an average sense by the decompositions of the deformation gradient and
entropy density. In the development, it was assumed that the elastic deformation gradient

(F?=F,) and the temperature (0’ = 8 ) were uniform for each of the constituents (¢).

The transformation deformation gradient was based on lower-length scale (~1 um)
contributions that are included through crystallographic information that was derived from
the theory of martensitic transformations [Ball and James (1987); James and Hane (2000);
Bhattacharya (2007)]. That is, the jump in the stretch tensor across the habit plane between
the parent and daughter phases was used to obtain the local jump condition for the
deformation gradient for a transformation system (®). The local jump condition then was
volume averaged to provide a meso-mechanical (~10 um) jump condition in terms of the
effective transformation deformation gradient ( F;, )

F,-1=%E, (b"®m")=Y E° Ty

- (I-3)
E, =281y

In Eq. (I-3), E“’ is the volume fraction of the daughter constituents, ¥, is the shape strain

magnitude, which is related to the volume change for the transformation, b is the shape

strain vector, and m” is the normal to the habit plane. The sum in Eq. (I-3) is taken over the
product constituents. The transformation deformation gradient is written in the reference
configuration, which coincides with the low-pressure phase in the current application. The

shape strain tensor (7,") is assumed to remain constant in the reference configuration. The
expression for the transformation entropy density was written [Turteltaub, et. al. (2006)]



A{(D
i, = 25“’ (1-4)

where, A is the transformation latent heat at the transformation temperature 6, .

The evolution of the plastic deformation gradient was provided by the effective
plastic velocity gradient ( sz ), which is determined in the second intermediate

configuration ([;) Allowing for plastic slip in each of the constituents, the plastic velocity
gradient is written

L

pl — “pl *pl

~ Ny e o~ . (1_5)
= Zéﬁ z’)/sl’A SS‘A
B K

In Eq. (I-5), Ng is the number of slip systems, )75S is the plastic slip rate in the B phase

on the s slip system. Also, S'gs = 57 ®@ i’ are tensors, which are provided in terms of the
normal (72) and shear (§) directions due to slip (s/). Equation (I-5) is written in the second

intermediate configuration (b ), where the tensors that describes slip are assumed to be
predefined. The volume fractions in the reference and second intermediate configurations
are related through the deformation gradients due to transformation and plasticity (i.e.,

§¢ =J,J, §¢ J, f‘p where J,, =1). The plastic entropy density rate [Tjahjanto, et. al.
(2008)] reflects an average of the plastic entropy rates for each of the phases, which is

analogous to the plastic velocity gradient. Similar to the plastic velocity gradient the entropy
rate was written

= Y EPY yhoghe - (I-6)
B s

In Eq. (I-6) (])ﬂ’s is a measure of the entropy related to plastic slip in each of the slip (s/)
systems for the parent (o) and product () constituents. Again, Eq. (I-6) has been expressed
in terms of the slip rate (j/sl ), which is written in the second intermediate configuration

(j/ =J, J, }/ﬁl’ , where J , =1). Egs. (I-5) and (I-6) represents an extension of the

original development [Tjahjanto, et. al. (2008)] where plastic slip in only the austenitic
phase was considered.

To obtain the relations, which describe the deformation of a material point that is
experiencing phase transformations and plastic slip, the driving forces and the
corresponding thermodynamic fluxes must be determined. For this purpose, the principles
of irreversible thermodynamics were invoked [Turteltaub, et. al. (2006)]. The balance laws
for energy and the rate of entropy production may be combined to provide an expression

for the dissipation (&)) in the reference configuration (l;)
Vo

®=P:F" - p(g-07)- q7>0 . (1-7)



In Eq. (I-7), €,0,1, P, F, p, and q are the internal energy density, temperature, entropy
density, first Piola-Kirchhoff stress, deformation gradient, density, and heat flux. For high-
rate problems, the heat flux may be neglected. The internal energy density (€ ) in the
reference configuration (b ) is written E(E,,ﬁdaf"’,ﬁd). That is, the internal energy

density is written in terms of the elastic deformation gradient ( F,), the reversible entropy

density (1],,), the volume fractions of the phases (E¢ ), and micro-strains due to slip (le ).

Details related to the slip micro-variables are not pursued in this development. The micro-
variable for plastic slip may be found in the literature [Tjahjanto et al. (2008a); Tjahjanto et
al. (2008b)].

Inserting the approprlate derivatives of the internal energy (8 ), the expressions for

the entropy rates (17) plastic deformation gradient (F ), and the transformation

deformation gradient (F o "), an expression for the dissipation may be obtained, which
provides the driving forces for the fluxes of plastic slip (j'/z’r) and phase transformations
(£?) in the reference configuration. For mechanics applications, it is convenient to work in

the second intermediate configuration ([;) Also, a conversion from internal energy to the
Helmholtz free energy was made [Tjahjanto, et. al. (2008)]. A strain measure was used in
place of the elastic deformation gradient. For this purpose, the Green-Lagrange strain

[E, =1 (F F, - I) ], which is the energy conjugate to the second Piola-Kirchhoff stress (S ),

el * el

is used. Both the Green-Lagrange strain and the second Piola-Kirchhoff are defined in the
second intermediate configuration. The resulting expression for the dissipation potential

(CD) provides the constitutive model [ (al// / aE )] and the reversible component of the

entropy density [17], (al// / 89)] as well as the driving force due to slip (Ci)fls) and phase

transformations (q)rr )

&em g, | E,350FT + ( e —igps 20 ﬂ | 08
L aﬁxl

& =0, | ESE(10) F] + pl 02l - 2 0-9)
i 0, 98"

The first term in Eq. (I-8), which is the resolved shear stress, is the dominant term in the
driving force for plastic slip [Tjahjanto et al. (2008)]. The driving forces may be determined
once the free energy has been prescribed. Similar to the approaches that are used in shock
physics investigations [Greeff et al (2001)], a free energy will be provided for each of the

constituents (l//"J ). The average free energy is then a mass fraction (g‘p =v &)

weighted sum of the free energies of the constituents (= 2g¢l//¢). A mixing term is not
¢

included in the expression for the average free energy. The forcing function (cI) ), which is

provided by Eq. (I-9), was used to drive the kinetics equation for the transformation («f"’
[Turteltaub and Suiker (2006)]. As provided by Eq. (I-9), the driving force includes the



effects of shear. That is, the driving force for transformations has been written in terms of

the stress tensor of the constituent (S') and not simply the volumetric component of the
stress (e.g., the pressure). It may be shown [Turteltaub and Suiker (2006)] that the driving

force provided by Eq. (I-9) can be related to a Gibbs’ free energy [g’ = l//‘D —v?s? :Ez],

which also has been defined as a driving force in the study of phase transformations. In the
below constitutive model, a Helmholtz free energy, which provides the nonlinear elastic
(equation of state) contribution that is a function of the specific volume in the current
configuration will be used. Also, the Gibbs free energy, which is a function of pressure and
temperature, will be used as the driving force for phase transformations. That is, the effect
of shear on the transformation process will be neglected.

In an effort to quantify the physics of high-rate deformations of single crystals, a
thermo-mechanical single-crystal model is provided. The deformation of low-symmetry
materials, including the coupled effects of material anisotropy, linear or nonlinear elasticity,
phase transformations, as well as plastic slip and twinning are considered. Insight into the
deformation mechanics of single-crystals that are subjected to high-rate conditions is
necessary for the purpose of quantifying material physics at the meso-scale (~10 pum).
Modeling low-symmetry crystals presents additional complexity compared to cubic
structures. Tensile-compressive anisotropy also is prevalent in low-symmetry crystals. The
deformation of low-symmetry crystals results in anisotropic elastic and inelastic responses.
Only diffusionless transformations are modeled. That is, only displacive transformations
that are the result of a small rearrangement of the crystal lattice are considered. Nucleation
events are not modeled. The theory assumes that all components within a computational
element have the same deformation gradient and temperature. It is intended to use the
model to explore the coupled physics related to high-rate and high-pressure deformation
scenarios. Phase transformations can induce inelastic deformations in neighboring phases
or the surrounding material. Only recently, has it become possible to experimentally
explore the in situ response of shocked materials, which are undergoing the coupled effects
of phase transformations and inelastic behavior. Consequently, thermo-mechanical models
and numerical simulations are important for exploring, interpreting, and understanding the
response of the high-rate deformations of materials. To achieve this goal, the above crystal
plasticity model [Tjahjanto, et. al. (2008a), Tjahjanto, et. al. (2008b)] will be modified. A
rate-dependent plasticity model is considered, which allows for material anisotropy.
Titanium (Ti) was chosen as a model material in this study also because of the information
(e.g. atomistic potentials and limited high-rate experimental data) that was available. Phase
transformations in Ti exhibit deformation characteristics such as hysteresis, retained high-
pressure phase, shear effects, and twinning, which are currently not included in many
computational models. For the ato ® transformations in titanium (Ti), each material
element is modeled to include the hexagonal close-packed (hcp) parent (o) phase and three
variants [Jaworski, et, al. (2005)] of the hexagonal (hex) daughter phase (®,, ®,, ;). It is felt
that the insight that may be gained through the development of a single-crystal model is
necessary for the development of macro-mechanical (polycrystal) descriptions. The relative
contributions from multiple and distinct deformation mechanisms will be distilled in this
investigation. It also is envisioned that this model offers the opportunity to explore the
deformation characteristics of energetic materials [Clayton, et. al. (2012)].

In this approach, the details of the microstructure (<1 um) or sub crystalline
deformation are not resolved. Instead, components of the inelastic deformation are
modeled in a volume-averaged manner. That is, a suitable representative volume is chosen



and the sub grain details associated with slip, twinning, and transformations are modeled in
an averaged sense. The single-crystal model does not resolve phase transformed or twin
domains. Instead, mass or volume fractions of the transformed or twinned regions are
evolved as the deformation progresses. Each constituent is allowed to possess distinct
material properties. Nonlinear elasticity (i.e. and equation of state) has been included using
free energies for both the a- and w-phases. Plastic slip is modeled using a thermal activation
model. An efficient pseudo-slip approach for twinning has been adopted. Both slip and twin
systems are defined in an intermediate configuration in a predefined manner. It is
anticipated that the model will provide insights into the impact that these relevant coupled
nonlinear effects have on the high-rate deformations of single-crystals.

Because information regarding aspects of the high-rate deformation of Ti are lacking,
molecular dynamics (MD) simulations were conducted in this investigation. The MD
analyses provided insight into issues relate to the transformation process as well as the
response of the high-pressure phase to deformations. An experimental component also was
included in this investigation. In an effort to pursue the high-rate deformation above the
transformation pressure, a plate impact experiment was conducted on a multi-crystal
sample of Ti. The particle velocities at the back surface for three orientations of the Ti
crystal with respect to the impact direction were measured. Simulations using the single-
crystal model were compared with these data.

In the formulation the juxtaposition of symbols implies the summation over one set
of adjacent indices (i.e, C=A B=A, B, =C, ). The symbol I is used to represent the

km™ml
second order identity tensor. The superscripts T, -1, and -T represent the transpose, inverse,
and the transpose of an inverse of a second order tensor. In general, upper case symbols are
second order tensors and lower case symbols are either vectors or scalors. The Greek
superscripts o, 3, or o refer to material phases, r or s to slip systems, and a or b to twin
systems.

The constitutive approach, which is used in this study, is provided in Sec. II. The
model has its basis in the consistent thermo-mechanical framework for single crystals
[Tjahjanto, et. al. (2008a), Tjahjanto, et. al. (2008b)]. Molecular dynamics (MD) simulations,
which provide the high-rate deformation characteristics of single-crystal Ti, are provided in
Sec. III. A description of the plate impact experiment for a multi-crystal sample of Ti and
resulting particle velocity data are discussed in Sec. IV. In Sec. V, simulations using the
proposed model are compared to the data obtained from the single-crystal Ti experiment.
Finally, summary remarks and future considerations will be addressed in Sec. VI.

I1. Constitutive Model

In an effort to address the high-strain-rate deformation of hcp materials, the
framework that was reviewed in Sec. I [Tjahjanto, et. al. (2008a), Tjahjanto, et. al. (2008b)]
is generalized in a heuristic fashion. The extension includes free energies, from which
nonlinear elasticity (equation of state) and the driving force for the phase transformations
are incorporated. Plasitic slip is included in each of the constituents. Also, a pseudo-slip
approach is used to include twinning in the parent (o) phase. The model is based on the
multiplicative decomposition [Eq. (I-1)] of the deformation gradient [Tjahjanto et al.
(2008a), Tjahjanto et al. (2008b)]. Once constitutive models are provided for the plastic and
transformation deformation gradients, the elastic deformation gradient and the elastic



strains (Ee,) may be determined. Models for plastic slip and twinning are provided. It is

assumed that the plastic deformation is isochoric [/, = det(F,) =0 ].

The transformation component of the deformation gradient is provided by Eq. (I-3)
[Turteltaub and Suiker (2006)]. Values for the shape strain vector and the habit plane
normal are obtained from molecular dynamics simulations (Sec. III). For the transformation
from the low-pressure (o) phase to the high-pressure (®) phase in Ti, the Silcock
mechanism is used (Sec. III). That is, the model will include the o.-phase and three variants
of the w-phase (w =1,2,3). It may be shown that [Turteltaub and Suiker (2006)]

J,=det(F)=7/v,=1+68, > & (11-1)
where, v and v, are the specific volumes in the intermediate and reference configurations.
Similarly,

J? =det(F)=7"/v,=1+6, . (I1-2)

In Eq. (1I-2), Jf;za =1 and 9, is the volume change due to the transformation. It is assumed

that the volume change is the same for each of the w-variants. For Ti, there is approximately
a 1.6% volume reduction due to the transformation. Consequently, the deformation

gradient (F],) may be obtained once the volume fraction (&) for each of the @ variants

has been obtained. An equation for the transformation kinetics is used to determine & .

The plastic component of the deformation gradient ( F, ) is obtained from a

constitutive model for plastic velocity gradient (sz = Fp[Fp_ll). In the model, the plastic

velocity gradient [Eq. (I-5)] allows for plastic slip in the o-phase and the w-variants and
twinning [Salem et al. (2005); Kalidindi (1998)] only in the a-phase. The plastic velocity
gradient in the intermediate configuration is written

L,=¢" {(FZ}“)Z%"SS“ + Zf”f,wi“w} + 28NS (11-3)

In Eq. (II-3), )73” is the plastic strain rate in the o-phase on the st slip system, ¥, is the

constant shear strain associated with twinning, f is the volume fraction of twins in the o-
phase on the at twin system, and S° = §* ® /i is the tensorial direction of the shear

resulting from active slip (S5") or twin (S;, ) systems, where §° and 71“ are unit vectors
along and normal to the slip or twin directions. Therefore, the plastic velocity gradient may
be obtained once constitutive models have been provided for the plastic shear rate (75")

and the rate of increase of the twin volume fraction ( f“), which are derived in terms of the
appropriate driving forces.

The evolution of plastic slip is modeled using a phenomenological hardening law.
The plasticity model is appropriate for thermally activated dislocation motion. That is, the



effects of dislocation drag are neglected. The thermal activation model, which has been used
to calculate the shearing rate due to slip [Bronkhorst et al. (2007)], is written as a function

of the resolved shear stress (7%*) on the st-slip system of the o -phase.

q

o,s o, P
. . E T —8"
Y =y, sgn(t)expy— 01— | asg (I1-4)
k6 8
where
s g;x,r _gO(,F _ _ . .
¢ =, IS rr-no T
r gs _gO

s |KO1A 12 (H_S)

8" =8| + ng(Zf")
b

0

In Eq. (1I-4), <x> = %(x+|x|) is the Macaulay bracket. Also, g** is the slip system resistance

of the a phase on the s slip system. The hardening model includes both self-hardening and
cross-hardening through the use of the self-hardening ratio (7). The material parameter

g}‘l’;’s accounts for the Hall-Petch effect [Salem et al. (2005)] that results from the effective
reduction in grain size due to twinning, g, provides the initial hardening rate, and g3;" is

the saturation value at 0 K in the absence of twinning. Also, gf’a is the saturation stress, gg’a
is the initial slip system resistance, k, is the Boltzman constant, and E, is the activation
energy. The exponents p and ¢ control the dislocation spatial energy barrier profile. The

resolved shear stress is assumed to be the dominant term in the driving force for
plastic slip [Eq. (I-8)]. Also, the effect of elastic stretch on the calculation of the resolved
shear stress is neglected [Kalidindi et al. (1992)]. Therefore the resolved shear stress [Eq. I-
8)] is written as

T = §5:8 =§8: (3" ®i"*) . (11-6)

sym

Titanium is a highly anisotropic material. Furthermore, a realistic model, which
addresses the important deformation modes of Ti should include twinning. Twinning is
modeled using a pseudo-slip [Salem et al. (2005); Kalidindi (1998)] approach. Twinning is
considered only in the a-phase [Eq. (II-4)]. It is assumed that the twinned and untwined
(matrix) regions experience the same deformation gradient. Both slip and twinning are
prohibited in twinned regions. The lattice orientations that are produced at different
instances of the deformation path are assumed to be identical for the same twin system.
Account of the differences in the lattice orientations of the twinned regions is included by

rotating the stiffness tensor (C“) of the matrix into the orientation of the twinned region

(CH)
C'=0:0:0:0:C* (11-7)



where Q is the transformation matrix between the lattice orientation in the matrix to the
lattice orientation in the twinned region

0=2n®n-1 (I1-8)

and 7 is the normal to the twin plane [Kalidindi (1998)]. A power law model [Salem et al.
(2005)] is used to describe the evolution of the deformation twin volume fractions

a v

o Yo [ 7]
;= }/,; X

(I1-9)

In Eq. (II-9), 7,,, is the reference twinning rate and y,, is the twinning strain. In the
current implementation, the twin volume fraction must remain positive ( f“>0) and the

sum of the volume fractions of all of the twin orientations is bounded (Zf” <1). When

a

twinning is included in the plastic velocity gradient (sz ), then a driving force similar to
that obtained for slip [Eq.(I-8)] may be obtained as the driving force for the production of
twins (f“”” ). Again, the dominant term in the driving force for twinning is assumed to be

the resolved shear stress on the a-twin system (7°“ =S§:5*“ =S (ﬁia’“ ®ﬁa‘”) ). The
m

Sy
twin hardening function is written [Salem et al. (2005)]

w

by, d
h“=htw(2y,wfbj(2ff] +hy | D7E | et | (11-10)
b c p q

The first term on the right of Eq. (II-10) accounts for hardening due to twin-twin
interactions and the second term represents hardening due to slip-twin interactions. In Egs.
(11-9) and (I1I-10), A, , h b,,, and d, are material parameters.

sl’atw’ w?

The formulation of a constitutive model requires work conjugate measures for the
stress and strain. The ability to address shock propagation effects is facilitated by including
nonlinear elasticity or an equation of state. The incorporation of an equation of state
requires the implementation of a pressure-volume relation. Therefore, it is necessary to
decompose the strain into volumetric and isochoric components. For this reason, an elastic
strain is employed, which results in a traceless strain measure for an isochoric deformation.
An isochoric deformation does not result in a contribution to the pressure for an isotropic
material or a crystal with cubic symmetry. Many models for high-rate applications use the
logarithmic strain and Kirchhoff stress, which are defined in the unrotated configuration
[Becker (2004)] between the second intermediate and current configurations. In this model,

the second Piola-Kirchhoff stress ( S ) and the elastic Green-Lagrange strain
[Ee, = %(FJFd - I) ], which are defined in the second intermediate configuration, are used.
The elastic deformation gradient ( F,=F_,F, ) is decomposed into an isochoric

(F,= Je_,mFg,) and volumetric (£, = J;,/SI) component. This results in a volumetric (Ee‘,)



and isochoric (E~ed) component of the Green-Lagrange strain (Ee,) [Bonet and Wood

(1997), Luscher et al. (2016)]. The resulting strain measures are

| - . .
Eel = E(F;?F;l - I) = Eed + Eev = Eed + ~ev I (11_11)
where
T 1 2/3
ev = E(Jel - 1) I
, (1I-12)
Eed :E(F;Fa - Jezz/3])

Therefore, the elastic strains are obtained once the elastic deformation gradient
F, =F F' F') has been determined from the total, transformation, and plastic
el tr pl p

deformation gradients.

The constitutive model may be obtained from the definition of the Helmholtz free
energy. Classical approaches for low-strain rate deformations consider a linear, thermo-
elastic expression for the Helmholtz free energy (¥ ). Excluding contributions due to

interfaces or defects [Tjahjanto et al. (2008)] a classical free energy may be written
~ ~ CV

E,.C:E, - Y

W(Ee[’e) =

(e_eref)2 + ﬁnref(e_eref) + ﬁl//ref' (1I-13)

N | =

ref

In Eq. (II-13), C is the fourth order elastic stiffness tensor, ¢, the heat capacity at constant
volume, p the density, and 7] the entropy. Eq. (II-13) then may be used to compute the

stress [S'z(alf//aﬁe)g] and the entropy [7] =(al/7/89)5)/]. Therefore, allowing for a

pressure and temperature dependent stiffness (@)

= = =~ 1|~ oC - |9p

S=C:E, +-|E,Z=:E, | 2L . (1-14)
2 ap 0e,,

The pressure derivative (dp/dé,, ) multiplying the last term in Eq. (II-14) is the negative of

the bulk modulus. Expressing Eq. (II-14) in terms of volumetric (SV, Eev) and deviatoric

(Sd, Eed) components [Luscher et al. (2016); De et al. (2014); Becker (2004)] provides

5, ={é[l:@:l]éev e 1:@:1}(%)2 9P }+1[Eed;@:1] . (11-15)




In Eq. (II-15), L, is a fourth order operator that extracts the deviatoric component from a

second order tensor [Becker (2004)]. It should be observed that for low-symmetry crystals,
the volumetric and deviatoric components of the stress and strain are coupled. For high-
rate applications, a linear dependence of the stress on the strain will not address shock
propagation scenarios. A nonlinear elastic formulation is necessary to facilitate the
steepening of the propagating wave-front for shock conditions. Consequently, the first term
in brackets of the second equation in Eq. (II-15), which relates the volumetric component of
stress to the volumetric component of strain, is replace by an expression for nonlinear
elasticity, or an equation of state [Luscher et al. (2016); De etal. (2014)]

S B N PO o I (O ) 2 5 ]
sm_{g[l.c.l]eev+18[1. ~.I}(eev) = }:pm : (11-16)

ey

The equation of state [ p,,, (v,0) = =0y, (v,0)/0dv ] is obtained from a free energy. It should

eos
be noted that the constitutive model [Eq. (II-15)] is written for each of the constituents
using the assumption of uniform elastic strain and temperature. Unique properties are used
to determine the stresses [S? = S‘Z’(Ee, ,0); ¢ =0, ] for each phase, variant, and twin.. The

total stress at a material point is obtained as a volume average of the stresses of the
constituents [Kalidindi (1998)]

S:g“{(l—Zf”]S’“+2f“§“}+2g“’ §¢ (11-17)

where ¢” and ¢“ are the volume fractions of the o-phase and the w-variants and f“are

the volume fractions of the twinned regions in the o-phase.

The transformation deformation gradient (Eq. II-3) may be obtained once the
volume fractions (£?) of each constituent have been determined from the transformation

kinetics. In this approach, the driving force for the transformation is taken to be the Gibbs
free energy. The transformation rate of change for the mass fraction of the w-variant is
represented by the exponential function [Greeff et al. (2002)]

go :[l—c,r (5"’)2} o 2—5 exp (2—5} : (11-18)

The first term on the right of Eq. (1I-18) places a lower bound on the production of the ®-
variant and Ag = g* — g“ is the change in the Gibbs free energy of the o-phase and ®-

variants. Only free energies for the a- and w-phases are available. It has been shown from
atomistic simulations (Sec. III) and experiment that the transformation from o-Ti to w-Ti
includes the effects of shear as well as a volume change [Ivanisenko et al. (2008); Zong et al.
(2014)]]- The ability to include the effects of shear in the transformation driving force was
provided in Eq. (I-9). However, the free energies that are used in the model are compatible
with a pressure versus temperature equilibrium phase diagram for Ti [Young (1976)].
Consequently, the effects of shear on the transformation process are neglected in the model.
Furthermore, the change of the Gibbs free energies that are used in Eq. (I1I-18) are written in



terms of an average pressure (gk = l//k +p v*). The above assumptions allow only for the

equal production of the three w-variants. The lack of quantitative information for high-rate,
high-pressure deformations of low-symmetry crystals has motivated this heuristic
approach.

The constitutive model and the transformation kinetics are determined once a free
energy has been defined. Helmholtz free energies for the nonlinear elastic component of

each phase (v’

calculations, have been developed [Greeff (2005) and Greeff et al. (2001)]. These free
energies place an emphasis on the equilibrium phase diagram [Young (1991)] and the
deformation path along the shock Hugoniot. Formulations are provided in terms of the
static lattice energy (¥, ), ion motion free energy energy (¥, ), and electronic excitation

), which are based on information provided by electronic structure

energy (¥, ). These free energies are provided in terms of the specific volume (v*) and
temperature (6 ) in the current configuration. Analytic expressions for the nonlinear elastic
0 ((1): o, phases)] are

eos ?

available for both Ti and Zr [Greeff (2005); Greeff et al. (2001)]. The Helmholtz free energy
for Ti is written [Greeff (2005)]

component (l//fm) of the free energies of each phase [y

l//;pox(éev ’9) - Wfos (V¢’0) = Wg(v¢) + I//\?ib(v(p ’0) + Wfl (V¢’0) * (11-19)

In Eq. (II-19), the static lattice potential [the superscript denoting the phase (¢ ) is omitted
for convenience] is

. 4B
W, =y + V—l [1-(1+n)exp(-n)]

(8-1)

nzg(Bf—l)[(:*)m —1}

The high-temperature expansion has been used for the lattice vibrational free energy (¥ ;,)

kel | 0| L[]
t//vib(v,e)—ZRO{ 1n[90(v)}+40[ 5 ”

6,(v)=6,(v) e . (I1-21)

6,(v) =6, exp{—ﬁ(v—vo)}
v

0

(11-20)

Finally, the electronic excitation free energy (V) is written

v, (1,6) = - %ro (1] 6’ - (11-22)

Vo



In the above equations, B" and Bl* are the bulk modulus and its pressure derivative at the

] . * * % .
equilibrium volume. Also, ¥ ,v,,v ,0,,I', ,k, and 7y, are material parameters.

Once a (Helmholtz) free energy for each phase (l//¢) is constructed, expressions for
¢

eos

the nonlinear elastic component of the stress (pfos =—Jy /0v?) and the driving forces

for the phase transformation (g?) may be obtained. Also, derivatives of the free energy

82
provide thermodynamic properties (e.g. the isothermal bulk modulus B=v P 1/2/ , the
1%
e v , v Oy
specific heat at constant volume ¢, = —6——, the Gruneisen parameter I'=—— , as
00 ¢, dvd6
well as the thermal expansivity o = BV ).
v

Finally, the temperature is updated using the second law of thermodynamics
(Luscher et. al. (2016); De et al. (2015)]

. . Vv oD o a-a
60T E+ (AE&”ZT”’ Jo e yj s
9 o a

CV
The first term in Eq. (II-23) is the reversible work due to elastic strains, the second term is
the irreversible work due to plastic slip, and the last term is the irreversible work due to

twinning. The beta-factors (3, and B,,) in Eq. (II-23) reflect the fact that not all of the

inelastic work is converted to internal energy or temperature but that some of the energy is
stored in the evolving microstructure (e.g. trapped in the lattice strain energy). In general,
the beta-factors may be a function of the strain rate. In this model they will be assumed to
be constant.

II1. Molecular Dynamics Simulations

In an effort to explore the high-rate deformation of materials, including the effects of
plastic slip, twinning, and phase transformations, titanium (Ti) was chosen as a
representative material. Titanium represented a convenient material because of the wealth
of knowledge that was available from both experimental and theoretical investigations.
Considerations at many length scales have been pursued for this material. Initially,
molecular dynamics (MD) simulations, using available atomistic potentials, were considered.
Issues related to the transformation pathway, the deformation characteristics of the high-
pressure (®) phase, and single-crystal model parameters such as the shape strain tensor
were considered in the MD simulations.

Molecular dynamics simulations were performed on single crystals using a potential,
which is consistent with the polycrystal shock Hugoniot data from flyer plate experiments
[Marsh (1980)]. The simulations were performed in a microcanonical ensemble using the
LAMMPS code [Plimpton (1995)]. The interatomic interactions in Ti were described by a
modified embedded atom potential [Hennig et al. (2008)], which gives accurate total



energies, elastic constants, and phonon spectra, as well as reasonable values for point
defects and surface and stacking fault energies. Simulations for 0.2 pum-thick single crystal
Ti samples were considered, using up to 3.0 million atoms. After isothermally annealing the
sample at 30 K for 1.2 ns, the left surface of the system was driven by a piston with a
particle velocity of 0.75 km/s and peak pressure 14 GPa, which is above the threshold
piston velocity of 0.57 km/s that is required to induce a phase change in Ti.

It was previously shown that the transformation pathway [Zong et al. (2014)] in
simulated, shocked samples of Ti obeys the experimentally observed Silcock orientation
relationship (OR) between the low-pressure (hcp) a-phase and high-pressure (hex) w-
phase that is shown in Fig. 2 [Jyoti et al. (2008)]. It is this same OR, which we use in our
phenomenological single-crystal model. However, we note that this transformation is
accompanied by hysteresis and can be irreversible with the high-pressure ®-phase retained
partially or almost fully after unloading under ambient conditions. Although this is well
established under both static and shock conditions, the crystallographic nature of the
transformation in Ti and Zr is still open to question as the dependence of the ORs on loading
conditions is not clear. Measurements to date have been primarily on polycrystalline
samples and the anisotropy in shock response as well as residual stresses are not easily
inferred from these measurements. Thus, we have used simulations on single crystals to
provide insight into factors mediating the phase transformation process.

The loading of an ideal hcp Ti crystal under shear at a strain rate of 108/s and the
complexity of the process is illustrated in Fig. 3. As the crystal is sheared, it first is deformed
elastically and at some relatively large strain, it yields with a drop in the stress and
nucleates the characteristic stacking of the w-phase. On further loading, the o-phase largely
transforms to the w-phase. The OR on this forward transformation phase is the familiar
Silcock OR or transformation pathway. On further shearing, the w-phase reverts back to a-
phase. There is a lower barrier to the reverse transformation than to dislocation nucleation
and plastic deformation of the w—phase. Moreover, this reverse transformation does not
follow the same OR as the Silcock mechanism because the initial state is quite different from
the forward transformation. The habit plane between the o- and ®-phases for the forward
transformation in a single crystal is shown in Fig. 4. The terracing emphasizes the
dislocation-mediated origin of the inhomogeneous shear. The habit plane normal (,“ ) and

shape strain vector (b”) are obtained from these simulations [Eq. (I-3)].

{ [11-20]

5[0001]

nle

[1100]

Fig. 2. The Silcock orientation relationship (OR), which arises in the MD simuiations from
coexisting a- and m-phases. This OR is used in the phenomenological single-crystal model.
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IV. Multi-Crystal Experiment

A multi-crystal, plate-impact experiment was conducted, in an effort to explore the
high-rate response of single crystals of titanium (Ti). A high-purity (99.99%) Ti multi-
crystal, composed of large grains, which extended completely through the thickness of the
sample, was impacted with a polycrystalline OFHC copper flyer. A micrograph of the multi-
crystal Ti sample is provided in Fig. 5. The thickness of the flyer and the sample were 2.032
mm and 1.502 mm, respectively. The diameter of the flyer was 38 mm. The 10.06 mm
diameter Ti sample was embedded in a Ti momentum trap. A schematic diagram of the
experiment is provided in Fig. 6. The velocity of the projectile was 0.956 mm/us. A peak
pressure in the Ti sample was estimated as 14.5 GPa. A photon doppler velocimeter (PDV)
probe was attached to three of the crystals within the target. Each grain represented a
different crystal orientation relative the impact load. The impact direction was along the

[0001], [1010], and [3144] orientations for the three grains (Fig. 5). The PDV probes
provided the history of the particle velocity at the back surface of the three grains. The
crystals were sufficiently large that grain boundary and edge effects were largely avoided
within the times of the free-surface velocity measurement. The measured particle velocity
as a function of time provides the distinct differences between the three crystal orientations.
The velocity histories of the three measurements are provided in Fig. 7. In the figure, the
velocity history of the three grains has been displaced in time. The elastic precursor for the

[0001] oriented grain is much higher than the [1010] and [3144) orientations. This is
likely a result of the relatively large sound speed in the [0001] direction in the Ti single
crystal. It may also indicate that there is a delayed activation of primary deformation due to
slip or twinning mechanisms for this orientation. A sharp kink was observed in the [1010]

and [3 144 ] orientations at 0.9 mm/us. This feature was not observed in the velocity trace
of the [0001] crystal orientation. This kink is generally attributed to the onset of the o- to
o-phase transformation. The pressure associated with the kink is in line with previous
expectation based on similar experiments performed on polycrystalline high-purity Ti
samples. It was thought that the absence of a distinct kink in the [0001] orientation at 0.9
mm /s indicated that the transition had been overdriven at this pressure. Additionally, the
plastic wave in the [0001] orientation exhibits a lower slope that the other orientations.
The slope of the plastic portion of the curve in the [0001] oriented grain may indicate that
the o— to w-transformation occurs over a relatively long period of time. Postulated locations
of the elastic precursor and the transformation from the o- to the w-phase are
superimposed on the Fig. 7.



Fig. 5: Micrograph of the Ti multi-crystal sample. (a) The red region is the [0001]
orientation, purple the [10 11] orientation, blue the [10 10] orientation, and gray the
[3 144] orientation. (b) Location of the PDV probes.
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Fig. 6: Schematic of the multi-grain Ti plate-impact experiment.
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Fig. 7. Multi-crystal titanium impact experiment (a) experiment schematic, (b) multi-crystal
sample showing the PDV probes, (c) measured particle velocity versus time at the back of
each single-crystal for the [0001], [10-10] and [3-1-44] orientations.

V. Simulations

Computational simulations were performed in an effort to highlight the ability of the
single-crystal model to capture the features of the high-rate deformation of Ti crystals.
Many of the parameters for the constitutive model are not readily available for the
conditions of high rates and pressures. This is especially true for the high-pressure m-phase.
Simulations of the multi-crystal experiment that was described in Sec. IV were conducted.
Plate impact or uniaxial strain experiments have been valuable for investigating the
deformation characteristics of materials at high-strain rates [Winey et al. (2004); Winey et
al. (2006), Becker (2004)]. Particle velocities at the back of the Ti target were measured
using PDV probes (Figs. 5 and 6). The model parameters that were used in the simulations
are provided in Tables I through IX. Anisotropic, elastic constants for theo-phase are
available in the literature [Vohr (1978); Fisher et al. (1964)]. The elastic constants that
were used in the simulations for the o- and w-phases are provided in Table I. The pressure
and temperature derivatives of the stiffness tensor

(C(p,9)=(C0+a£ dp+a£d9 =C, (V-1)
op 20

were not included in the analyses. The parameters that were used for the equation of state
are provided in Table II [Greeff et al. (2001)] for both the low- and high-pressure phases.
Eighteen slip systems (Table III) have been identified for hexagonal-close packed crystals.
For the simulations only the first fifteen slip systems were modeled for the a-phase. That is,



Table I: Average Material Parameters [Vohra (1978); Fisher, et. al. (1964)]

o-phase o-phase
P, (g/cm?) 4.506 4.579
Ci1 (Mbar) : c-axis 1.7759 1.904
Cz2 (Mbar) 1.7759 1.904
C33 (Mbar) 1.9134 2.051
C12 (Mbar) 0.8757 0.938
C13 (Mbar) 0.8757 0.938
Cz3 (Mbar) 0.8757 0.938
C44 (Mbar) 0.467 0.500
Css (Mbar) 0.467 0.500
Ce6 (Mbar) 0.467 0.500
Table II: Parameters for the Helmholtz Free Energy [Greeff et al. (2001)]

a-phase w-phase
V, (cm3/g) 0.22194 0.21837
0, (K) 252.0 263.4
Y, (1) 1.17 1.65
', (Mbar cm3/g K2) 9.60334e-10 9.29019e-10
K (1) 1.45 1.40
v (cm3/g) 0.22015 0.21608
B* (Mbar) 1.1008 1.1800
B1 (1) 4.3 3.05

0 -1.25261e-05

(Pg (Mbar cm3/g)




Table III: a-phase slip systems (c/a=.4699 nm/.2937 nm = 1.5856)

k

n

s

1 Pyramidal <c+a>

[0.00, c/a, 0.866]

[0.500, -0.866, c/a]

2 [-0.500, -0.866, c/a]
3 [0.866 c/a, 0.5 c/a, 0.866] [-0.500, -0.866, c/a]
4 [-1.00, 0.00, c/a]

5 [0.00, c/a, -0.866] [0.500, 0.866, c/a]
6 [-0.500, 0.866, c/a]
7 [0.866 c/a, 0.5 c/a, 0.866] [ 1.00, 0.00, c/a]

8 [0.500, 0.866, c/a]
9 [0.866 c/a,-0.5 c/a, 0.866] [-0.500, 0.866, c/a]
10 [-1.00, 0.00, c/a]

11 [0.866 c/a,-0.5 c/a, 0.866] [ 1.00, 0.00, c/a]

12 [0.50,-0.866, c/a]

13 Prism <a>

[0.00, 1.00, 0.00]

[1.00, 0.00, 0.00]

14

[0.866, 0.50, 0.00]

[-0.50, 0.866, 0.00]

15

[0.866, -0.50, 0.00]

[ 0.50,0.866, 0.00]

16 Basal <a>

[0.00, 0.00, 1.00]

[1.00, 0.00, 0.00]

17

[-0.50, 0.866, 0.00]

18

[0.50, 0.866, 0.00]




Table IV: w-phase slip systems (c/a =.2858 nm/.4688 nm = 0.6096)

k

n

s

1 Basal <a>

[0.000, 0.000,1.000]

[ 1.00, 0.000, 0.00]

2

[-0.50, 0.866, 0.00]

3

[ 0.50, 0.866, 0.00]

4 Prism <c>

[0.866,-0.500, 0.000]

[0.000, 0.000, 1.00]

5

[0.866, 0.500, 0.000]

6

[0.000, 1.000, 0.000]

Table V: a-phase Tensile Twin Systems: (c/a =.4699 nm/.2937 nm = 1.5856) [Bererlein and Tome

(2008)]

k n s

1 [0.866, 0.50, 1.732a/c] [-1.00, 0.000, c/a]
2 [0.000, 1.00, 1.732a/c] [-0.50, -0.866, c/a]
3 [-0.866 ,0.50,1.732 a/c] [0.50, -0.866, c/a]
4 [-0.866, -0.50,1.732 a/c] [0.50, 0.866, c/a]
5 [0.000, -1.00, 1.732 a/c] [0.50, 0.866, c/a]
6 [0.866,-0.50,1.732 a/c] [-0.50, 0.866, c/a]

Table VI: a-phase Compressive Twin Systems: (c/a =.

Tome (2008)]

4699 nm/.2937 nm = 1.5856) [Bererlein and

k

n s
1 [c/a, 0.000, 1.00] [-1.00, 0.000, c/a]
2 [0.5¢c/a, 0.866 c/a, 1.00] [-0.50,-0.866, c/a]
3 [-0.5 c/a, 0.866 c/a, 1.00] [ 0.50,-0.866, c/a]
4 [-c/a, 0.000, 1.00] [1.00, 0.000, c/a]
5 [-0.5 c/a,-0.866 c/a, 1.00] [0.50, 0.866, c/a]
6 [0.5¢c/a,-0.866 c/a, 1.00] [-0.50, 0.866, c/a]




Table VII: Estimated Plastic Slip Parameters for the [10 107/ [0001] orientation.

a-phase w-phase
Y, (1/ms) 100 / 100 100 / 100
g, (Mban) 0.0015 / 0.0115 0.0010 / 0.0115
g, (Mbar) 0.0010 / 0.0007 0.0010 / 0.0007
8., (Mbar) 0.0035 / 0.030 0.0030 / 0.030
r 1.40 / 1.40 1.40 / 1.40
E,/k; (K) 2.180e+04 / 2.180e+04 2.174e+04 / 2.180e+04
ky, /A (1/K) 1.400e-04 / 1.490e-04 1.400e-04 / 1.400e-04
p 06 / 0.6 06 / 0.6
q 14 / 14 14 / 14
ho 0.0020 / 0.0020 0.0020 /0.0020

Table VIII: Estimated a-phase Twinning Paramaters for the [10 101/ [0001] orientation.

Voo (1/ms) 0.0005 / 0.0450
a,, 20 / 20

b, 3.0 / 3.0

c,, 0.0 / 200.0

d, 3.0 / 3.0

Yo 0.20 / 0.20

he (Mbar) 0.15 / 0.15

hsl (Mbar) 0.10 / 0.10

h0 (Mbar) 0.00213 / 0.00213
hpp (Mbar) 100.0 / 0.0041




Table IX: Estimated Parameters for the Transformation Systems.

K 3 7

1 [0.500, -0.866, 0.00] [0.1890, -0.9820, 0.00]
2 [0.500, 0.866, 0.00] [0.1890, 0.9820, 0.00]
3 [1.000, 0.000, 0.00] [0.9449, ,0.3273. 0.00]

for the low-pressure phase (o), three primismatic <a> and twelve pyramidal <c+a> slip
systems were considered. The basal slip system was not included. Based on geometrical
considerations, six slip systems were modeled in the ®- phase. They included the three
basal <a> and three prismatic <c> slip systems. The six m-phase slip systems are provided in
Table IV. Atomistic simulations (Sec. III) and experimental investigations indicated that the
o-phase was relatively brittle. Also, six tensile (Table V) and six compressive twins (Table
VI) [Beyerlein and Tome (2008)] for the a-phase were included in the simulations. Recall
that slip within the twin systems, secondary twinning, and twinning in the w-phase were
neglected (Sec. II). Parameters for plastic slip, twinning, and phase transformation models
under high-rate conditions are not available especially for high-pressure phases. For the
simulations, material parameters for the inelastic deformation characteristics were
estimated based on the comparisons with the impact experiments. It is recognized that
there are difference slip and twin resistances [Salem et al. (2005)] for the different slip and
twin systems of Ti. For example, values for the initial resolved shear stress of 37 MPa for the
prismatic <a>, 47 MPa for the basal <a>, and 197 MPa for the pyramidal <c+a> have been
used in the literature [Salem et al. (2005)]. However, as already suggested, values for the
slip and twinning systems for high rate and pressure conditions are difficult to obtain.
Therefore, uniform values for all of the slip systems and for the tensile and compressive
twin systems have been used in the simulations. Also, because of the highly coupled nature
of the underlying physics, it was not feasible to vary parameters for the different slip or
twin systems. Consequently, the parameters for the different inelastic systems were not
varied. Furthermore, the inelastic parameters were varied with the orientation of the
crystal with respect to the impact direction in an effort to better match the experiments.
The slip and twin model parameters are provided in Tables VII and VIII, respectively. The
parameters for the shape strain tensor (Sec. III) were obtained from the atomistic

simulations (Sec. IV). The habit plan normal (7 ) and the shear direction (l; ) are provided
in Table IX. The magnitude of the shape strain tensor (¥, ) was obtained knowing the

volume change due to the transformation. Values for the kinetics parameter also were
assumed. The parameters that were used for the transformation kinetics were

@,=30us", B, =22x10"Mbar cm’ / gand ¢, =1.04 for the [0001] orientation and
@,=10us", B, =2.1x10"* Mbar cm® / g, and c, =1.20 for the [1010] orientation. The

amount of work that is converted into internal energy due to slip (3,,) and twinning (,,)

may be a function of conditions such as strain rate. For the simulations these parameters
were assumed to be constant 3, = 8, =0.75.

Comparison of the simulations and experiment for the multi-crystal experiment that
was discussed in Sec. IV are provided in Figs. 8 to 10. Two orientations of the crystals with




respect to the impact direction were modeled. The comparisons in which the crystal

orientations were parallel [0001] and perpendicular [1010] to the impact direction were
considered. The nominal velocity of the projectile was 0.956 mm/ms, which provided a
nominal peak stress of ~ 14.7 GPa. The model was implemented into an explicit, quasi-one-
dimensional analysis. That is, transverse components of the velocity and stress as a function
of the wave propagation direction were included. In the preliminary analyses, the Cu flyer
plate was modeled using a Mie-Gruneisen equation-of-state with a polynomial
representation for the Hugoniot and a Johnson-Cook strength model [Johnson and Cook
(1985)]. Initial simulations of the Cu / Ti geometry were used to obtain the conditions at the
impact interface. For convenience, subsequent simulations, which explored the changes in
material parameters, used these results as specified velocity boundary conditions on the Ti
single crystals.

A comparison of the calculated and experimental results for the free surface
velocities at the back of the sample as a function of time in which the crystal was oriented
along the [0001] direction with respect to the wave propagation direction is provided in Fig.
8a. It may be seen from Fig. 8a that the comparison of the simulated and experimental
particle velocity profiles is excellent. For the simulation, there was no slip in the w-phase,
and there was no tensile twinning. In an effort to identify which physical mechanisms that
are responsible for the particle velocity response (Fig. 8a), the mass fraction of the a-phase

(&Y), a curve that provides the scaled sum of the slip resistances (ZMM 1Y ) for the a-

s

phase, and a curve of the sum of the scaled values of the compressive twins (Zf“ [ f ) is

superimposed on the scaled velocity profile through the thickness of the crystal at a time of
0.20 us in Figs. 8b. It may be seen from Fig. 8b that the plateau for a particle velocity (Fig.
8a) of v~0.03 cm/us is the result of combined plastic slip and twinning. The initial
interpretation from the experimental data was that there was no phase transformation for
this orientation. However, it may be seen from Figs. 8a and 8b that the simulation suggests
that the phase transformation is initiated at a particle velocity (Fig. 8a) of about v~0.08

cm/us. The active slip system shear strains (Q/Z’k ; k=1,...,12) and the compressive twin

volume fractions ( f“;a=1,...,6) are provided in Figs. 8c and 8d, respectively. It may be

seen from Fig. 8c that all of the pyramidal <c+a> slip systems are active (k=1, ... ,12).
However, the three prismatic <a> slip systems (k=13,14,15) are not active. Also, all of the
compressive twins (k=1, ...,6) are equally active (Fig. 8d) for this orientation.

A comparison of the calculated and experimental results for the free surface
velocities at the back of the sample as a function of time in which the crystal was oriented

along the [1010] direction with respect to the wave propagation direction is provided in

Fig. 9a. Again, it may be seen from Fig. 9a that the comparison of the simulated and
experimental particle velocity profiles is excellent. In an effort to identify which physical
mechanisms that are responsible for the particle velocity response (Fig. 9a), the mass

fraction of the o-phase (&%), curves that provide the scaled sums of the slip resistances

(ZMM /Y ..) for the o-phase and the ®"** and @"** variants are superimposed on the

s

scaled velocity profile through the thickness of the crystal at a time of 0.20 us in Fig. 9b. For
this orientation, there was no slip in the ®*= variant (Table III) and there were no
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Fig. 8: Simulation of the crystal orientation [0001] with respect to the impact direction: (a)
Comparison of the calculated and experimental particle velocity profiles at the back surface
of the crystal. (b) Distribution of the relative velocity, a-phase volume fraction, relative slip
resistance of the a-phase, and relative compressive twin volume fraction of the a-phase
versus distance through the Ti single crystal at t=0.20 ms. (c) Slip resistances in the a-phase

versus time at x=0.30 mm in the Ti single crystal. (d) Volume fraction of the tensile twins in
the a-phase versus time at x=0.30 mm in the Ti single crystal.
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Fig. 9: Simulation of the crystal orientation [1010] with respect to the impact direction: (a)
Comparison of the calculated and experimental particle velocity profiles at the back surface
of the crystal. (b) Distribution of the relative velocity, the a-phase volume fraction and the
relative slip resistances of the a-phase, the w2-variant, and the w*-variant versus distance
through the Ti single crystal at t=0.20 ms. (c) Slip resistances in the a-phase versus time at
x=0.30 mm in the Ti single crystal. (d) Slip resistances in the w2-variant versus time at
x=0.30 mm in the Ti single crystal.
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compressive or tensile twins. The plateau in the particle velocity profile (Fig. 9a) at v~0.005
cm/us is a result of plastic slip in the a-phase. Also, the change in slope of the particle
velocity profile (Fig. 9a) at v~0.09 cm/us may be attributed to the o- to w-phase
transformation (Fig. 9b). It also may be seen (Fig. 9b) that the o-phase is not fully

transformed for this simulation. That is, £ = 0.1 behind the compressive wave. This is a

result of setting ¢, = 1.1 in Eq. II-18. The active slip resistance for the a-phase and the

"= variant are provided in Figs. 9c and 9d, respectively. It may be seen in Fig. 9c that slip
systems k=9,10,11,12,13, and 15 (cf. Table III) are active for the a-phase. Also (Fig. 9d) slip
systems k=3 and 5 (cf. Table V) are active for the @*=* variant.

Comparisons of the stresses, temperatures, and the increments of work due to slip
(dw, = 227’“‘7"%) and twinning (dw,, = Z}/Mf”’r"dt) for the two simulations is
ks a

provided in Fig. 10 as a function of distance through the sample at t=0.20 us. In Fig. 10a,
curves for the average pressure and the von Mises stress for the simulations are shown. It
may be seen in Fig. 10b that the temperature jump across the compression wave for the two
simulations is about 45 K. Again, it should be recalled that the beta factors for slip and
twinning that were used to calculate the temperatures were 8, = B, =0.75. For the

[0001] orientation, the peaks in the slip and twinning work at x~0.13 cm corresponds to the
beginning of inelastic deformation (Fig. 10b). The peak in the work at about x~0.11 cm is

near the end of the phase transformation. Because there is no slip or twinning in the ®-
phase, the inelastic work is zero at the completion of the transformation process (x~0.08

cm). For the [1010] orientation, there is no work due to twinning. The peak in the plastic

work at x~0.11 cm occurs at the beginning of the transformation process, where slip in the
o variants increase rapidly.

Calculated information regarding the active slip and twin systems as well as the
phase volume fractions may be used in the future to pursue additional high-rate
experiments. Future experiments could, for example, quantify slip and twin system strain
rates as well as transformation kinetics. In this manner, the resistances of the individual
systems could better be determined under high-rate conditions.

VI. Summary and Discussion

A thermodynamically consistent theory, which addresses the low-rate, inelastic
deformation of single crystals, was reviewed (Sec. I). The low-rate model was considered in
an effort to provide a framework from which modifications and simplifications for the
development of a high-rate model were made. The resulting model was intended to address
the high-rate and high-pressure conditions that are encountered during impact or
explosively driven deformations. The resulting thermo-mechanical, single-crystal model
includes the effects of nonlinear elasticity (i.e., an equation of state), phase transformations,
and plastic slip and twinning. The model is capable of investigating the high-rate response
of anisotropic single-crystals and may be applied to metallic as well as molecular crystals.
The development of single-crystals is important for the purpose of interpreting experiments
as well as extending modeling capabilities for macro-mechanical or engineering material
models. Simulations using the single-crystal model also may be used to design future



experiments for the purpose of better understanding the coupled inelastic deformations of
low-symmetry crystals. Meso-mechanical models also provide a bridge between the
atomistic and macro-mechanical length and time scales.

Molecular dynamics (MD) simulations were performed in an effort to investigate the
response of single-crystal Ti to impact loading. The MD simulations provided insight into
the phase transformation process as well as the response of the high-pressure phase of Ti.
Using the MD simulations, it was determined that the Silcock orientation relationship
between the low-pressure (o) and high-pressure (w) phase was obeyed during the
compression of Ti. It also was observed that the w-phase exhibited a brittle behavior. That is,
upon further loading, the w-phase tended to revert back to the o-phase instead of deforming
by plastic slip. The orientation of the habit plane between the low-pressure phase and the
high-pressure variants and the specification of the shape strain tensor was facilitated by the
MD investigation.

An experimental component also was included in the study. In the experiment, a
multi-crystal sample of Ti was impact loaded at high-rate. A phase Doppler velocimeter
(PDV) probe was attached to three of the crystals within the sample. In this manner, particle
velocity histories at the back surface of three crystals, which were oriented along the

[0001], [1010], and [ 3144 ] directions with respect to the loading axis, were measured.
Different particle velocity histories were obtained when the crystals were aligned with the
compression axis as opposed to transverse to the compression axis. The measurements
transverse to the impact direction exhibited the classical Hugiont Elastic Limit (HEL) and a
phase transformation signature that are typically observed in polycrystal Ti experiments.
However, when loaded along the c-axis, a significantly higher and broader HEL was
observed. Also, initial observations suggested that there was no transformation signature
when the crystal was shocked along the c-axis.

Comparisons were made between the model and the multi-crystal, plate impact
experiments. Only the initial compression wave was considered in both the simulations and
the experiment. The comparisons were made with the particle velocity at the back surface
of the multi-crystal target. It was shown that the model was able to capture the features of

the deformation for the crystals that were oriented along the [0001] and [1010] direction
with respect to the loading axis. The simulations highlighted the coupled effects of the
physical phenomena under consideration. Consequently, details of the in situ response of
the material with respect to the plastic slip, twinning, and transformation processes were
inferred. Issues related to the degree of twinning or transformation cannot be quantified
from these far-field measurements. In the future detailed in situ experimental investigations
are being planned. Once the details of the in situ processes are understood, better models
for the free energies, transformation kinetics, plastic slip resistances, and twinning, for
example, may be pursued. The model that has been developed requires a number of
parameters to characterize the effects of nonlinear, inelastic response. In general, these
parameters are not readily available for high-rate and high-pressure applications.
Consequently, an effort was not invested in obtaining a uniform set of parameters for the
two simulations. Instead, a different set of parameters was applied for the two orientations.
Furthermore, the differences in the resistances of the slip and twin systems were not
pursued. It is felt that additional high rate, single-crystal data is necessary to quantify these
differences.



Improvements related to the numerical implementation of the model also should be
given future consideration. These include improving the degree of implicitness or temporal
subcycling [Dumoulin et al. (2009); Ling et al. (2005)] of the constitutive model within
regions of large gradients. The existing explicit implementation requires small time step

sizes (At ~107 s ). A thermally activated plasticity model was used in the development.

For high-strain rates (£ >10* s™') the growth of dislocation generation begins to accelerate,

which leads to an abrupt increase in the dislocation density and results in the rapid increase
in the material flow stress. Consequently, future improvements to the model should include
a dislocation drag plastic slip model. A dislocation density based approach also should be
considered. However, the physics of dislocation generation at high strain-rates represents
an area that will require future research.

The effects of transformations, plasticity, twinning, and damage provide important
coupled processes on the stress-strain response of materials subjected to shock loading
conditions. Future efforts will consider the effects of damage [Lu et al. (2004)] on the
response of high-rate material deformation. Continuum damage mechanics models for
single crystals offer a convenient approach. An existing approach models damage by
degrading the elastic stiffness through a damage volume fraction for each constituent
[Suiker et. al. (2007a); Suiker et. al. (2007b)]. A kinetic law for the damage volume fractions
is provided in terms of driving forces for damage. These driving forces are provided using
thermodynamically consistent considerations. This approach reflects a brittle-like behavior
of the material. A single-crystal, ductile damage approach [Lu et. al. (2004)], which includes
softening of the plastic velocity gradient, will be considered. This approach offers the
potential for modeling spall effects in single crystals.

Improved expression for the free energies also must be developed. The existing
model relies on an extension to the Helmholtz free energy in an effort to include nonlinear
elasticity. Also a Gibbs free energy, which is a function of uniform pressure and temperature,
was used in the expression for the transformation kinetics. Consequently, the three high-
pressure variant of Ti were produced equally. More general transformation driving forces
that are written in terms of the total stress or strain tensor should be considered. Improved
expressions for the free energies also should include the effects of the energy barriers
between phases. In this manner, transformation hysteresis or retained high-pressure phase
for the unloading path could be modeled better.
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