

**LA-UR-15-27719**

Approved for public release; distribution is unlimited.

**Title:** Reactor Power for Large Displacement Autonomous Underwater Vehicles

**Author(s):**  
McClure, Patrick Ray  
Reid, Robert Stowers  
Poston, David Irvin  
Dasari, Venkateswara Rao

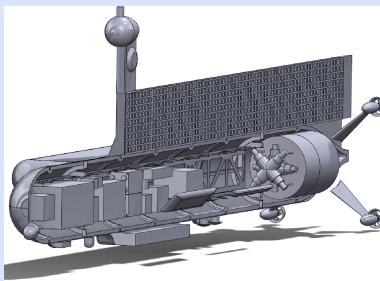
**Intended for:** PentaChart for use by Program Offices

---

**Issued:** 2016-08-24 (rev.1)

**Disclaimer:**

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

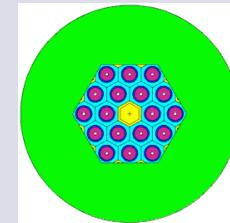

Nuclear power in a AUV removes any time limitation on a mission, extending it from weeks to years

## Background / State of the Art



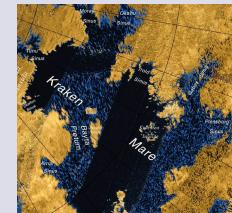
- Currently AUVs use batteries or combinations of batteries and fuel cells for power
- Battery/fuel cell technology is limited by duration
- Batteries and fuel cells are a good match for some missions, but other missions could benefit greatly by a longer duration

## Innovation




- Adapting space reactor designs for use in an AUV
- Goal is to adapt several power levels from 1 kWe to 150 kWe
- Non-proliferation is a must!
- Fitting the reactor and shielding into the AUV can be challenging

## Achievements


### MAIN ACHIEVEMENT:

- Multiple designs for AUVs with focus on non-proliferation and packing.
- Use of moderation in reactor where appropriate to lower amount of U<sub>235</sub> and limit Security Category to 3 or 4.
- Use water or methane to lower shielding mass
- Design a version of the reactor for a NASA



### HOW IT WORKS:

- Small fission system could be used to explore Saturn's moon Titan
- Reactor will be small highly reflected fast reactor using current LANL space reactor designs
- Power conversion will be Stirling Engines from NASA



### ASSUMPTIONS AND LIMITATIONS:

- Design is limited by the space available
- Design is limited by shielding requirements for electronics

TRL Level 3 – Current designs are conceptual

## Impact



- NASA has become very interested in idea of nuclear powered AUVs for exploration
  - Current design would need 32 kg Pu-238 for radioisotope power
  - Reactor can accomplish same mission with 25 kg HEU core

## Goals / Action Plan

### Goals

- Design nuclear systems to power an AUV and meet design constraints including:
  - Non-proliferation issues
  - Power level
  - Size constraints
  - Power conversion limitations

### Action Plan

- Continue development of a range of systems for terrestrial systems
- Focus on a system for Titan Moon as alternative to Pu-238 for NASA

**Point of Contact:** Patrick McClure, NEN-5, [pmccclure@lanl.gov](mailto:pmccclure@lanl.gov) (505) 667-9534

# Status: Complete

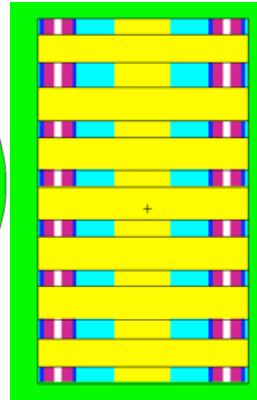
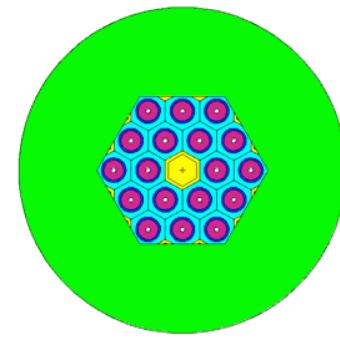
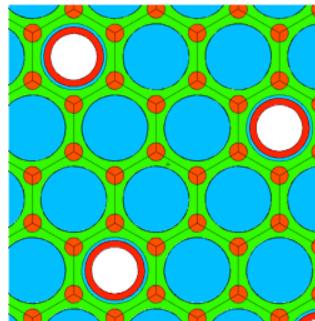
| Deliverable                  | Date      | Status | Comments (include date completed) |
|------------------------------|-----------|--------|-----------------------------------|
| Reactor Designs              | Jun 2015  | ●      | Finished                          |
| Shielding Studies            | Aug 2015  | ●      | Finished                          |
| Packaging & Power Conversion | Sept 2015 | ●      | Finished                          |
| Develop into final design    | Sept 2015 | ●      | Finished                          |

## Issues:

- Potential concern/perception with unmanned nuclear systems

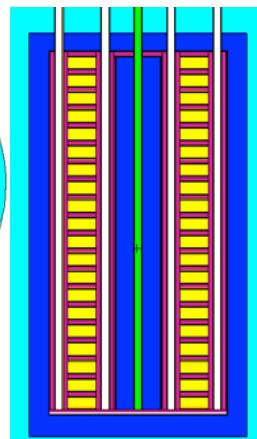
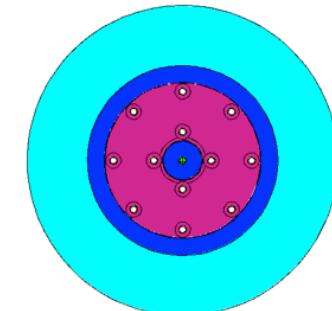
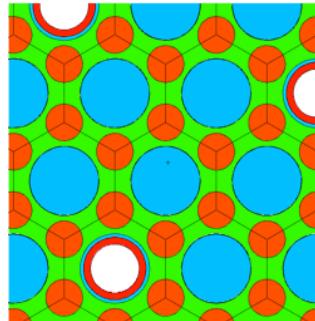
## Future Directions:

- Pursue program development for Saturn Moon Titan Explore Submarine with NASA
- Pursue program development with DoD and NNSA




## Contacts:

- Continued support from NASA
- Interactions with Defense Science Board on military fission systems
- Interactions with NNSA for AUV systems

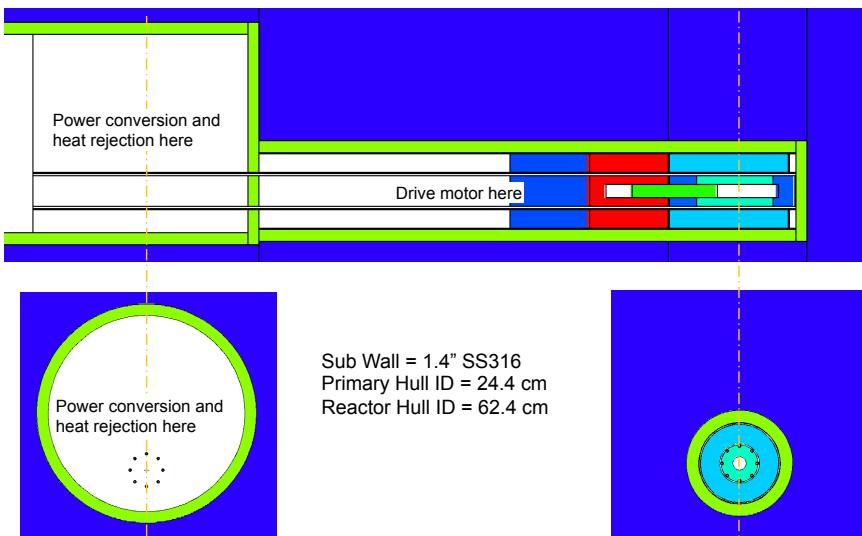
# Reactor Concepts




| Reactor Description                                        | Thermal Power | Electric Power | Dia. | Length (cm) | Amount of U <sup>235</sup> in Core (kg) | Core Weight (kg) | Weight plus Shield (kg) | Security Category | Peak Temp |
|------------------------------------------------------------|---------------|----------------|------|-------------|-----------------------------------------|------------------|-------------------------|-------------------|-----------|
| Fast Reactor w/ Uranium Oxide Fuel                         | 600           | 150            | 86   | 120         | 304                                     | 3700             | 5440                    | 4                 | 650       |
| Moderated Reactor w/ Uranium Oxide Fuel and YH Moderator   | 600           | 150            | 85   | 117         | 277                                     | 3420             | 5100                    | 4                 | 650       |
| Fast Reactor w/ Uranium Nitride Fuel                       | 500           | 125            | 77   | 101         | 256                                     | 2800             | 4170                    | 4                 | 650       |
| Moderated Reactor w/ Uranium Nitride Fuel and YH Moderator | 500           | 125            | 75   | 99          | 233                                     | 2575             | 3900                    | 4                 | 650       |
| Fast Reactor w/ Uranium Oxide Fuel                         | 150           | 38             | 86   | 100         | 263                                     | 3100             | 4500                    | 4                 | 650       |
| Fast Reactor w/ Uranium Nitride Fuel                       | 150           | 38             | 77   | 90          | 227                                     | 2480             | 3650                    | 4                 | 650       |
| Moderated Reactor w/ Uranium Oxide Fuel and YH Moderator   | 150           | 38             | 76   | 102         | 58                                      | 2010             | 3280                    | 4                 | 650       |
| Moderated Reactor w/ Uranium Zirconium Hydride Fuel        | 175           | 22             | 60   | 80          | 55                                      | 1060             | 1925                    | 4                 | 500       |
| Fast Reactor w/ Uranium Metal Fuel, HEU                    | 4             | 1              | 31   | 40          | 30                                      | 135              | 310                     | 1                 | 800       |
| Fast Reactor w/ Uranium Metal Fuel, MEU                    | 4             | 1              | 38   | 42          | 39                                      | 230              | 420                     | 3                 | 800       |
| Fast Reactor w/ Uranium Metal Fuel, LEU                    | 4             | 1              | 52   | 62          | 94                                      | 880              | 1100                    | 4                 | 800       |
| Moderated Reactor w/ HEU Uranium Carbide Fuel and YH Pins  | 4             | 1              | 42   | 46          | 6                                       | 165              | 350                     | 3                 | 800       |
| Moderated Reactor w/ HEU Uranium Metal Fuel and YH Plates  | 4             | 1              | 31   | 48          | 6                                       | 107              | 300                     | 3                 | 800       |
| Moderated Reactor w/ LEU Uranium Oxide Fuel and YH         | 4             | 1              |      |             |                                         |                  |                         | 4                 | 800       |

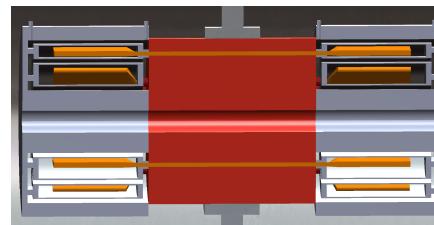
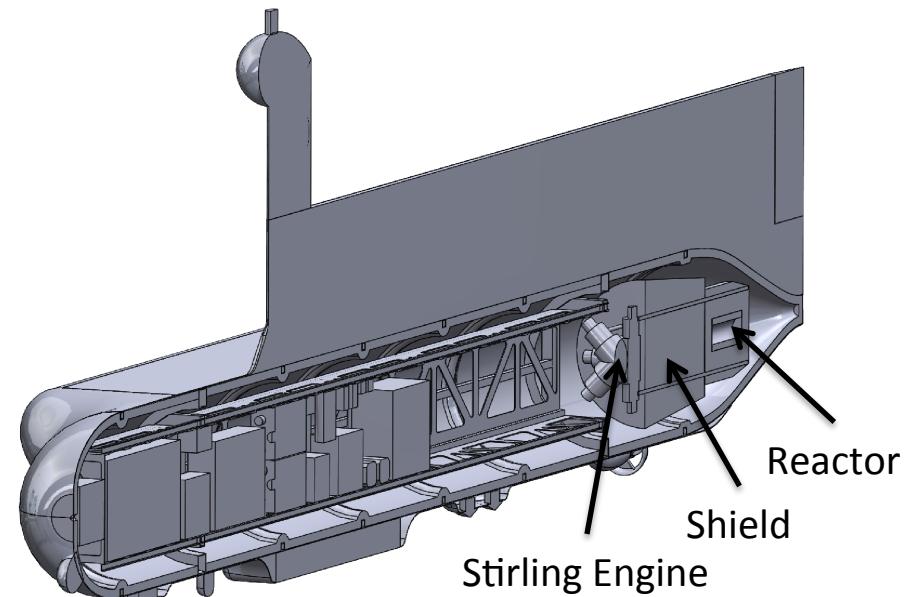
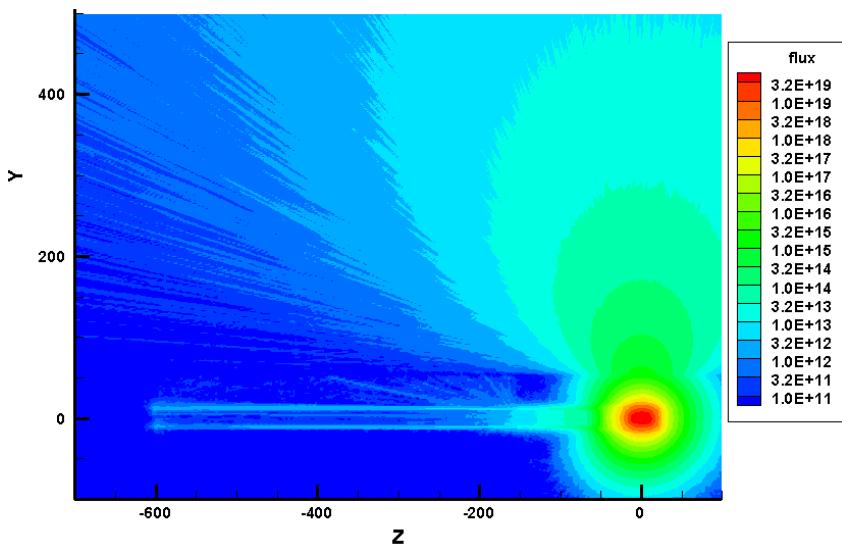
## Fuel/Moderator Pin Geometry



Interstitial Geometry (Small Pin)

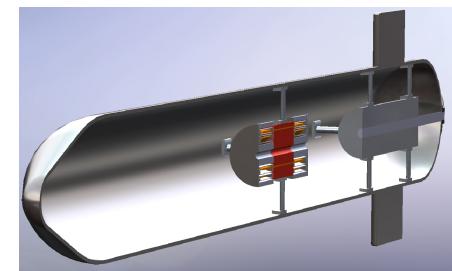

## Fuel Plate Geometry






Interstitial Geometry (Large Pin)

# Shielding and Packaging

## Titan Reactor MCNP Model




Fast neutron fluence: 0 cm below surface  
25 cm Be, 25 cm LiH, 2 yr full power operation



Reactor & TPV Power Conversion

Thermal-Photo-Voltaic (TPV) Power Conversion

