
LA-UR-16-26595
Approved for public release; distribution is unlimited.

Title: LANL Summer 2016 Report

Author(s): Mendoza, Paul Michael

Intended for: Internal report

Issued: 2016-08-29

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

LANL Summer 2016 Report

Paul Mendoza

August 26, 2016

Abstract

The Monte Carlo N-Particle (MCNP) transport code developed at Los Alamos

National Laboratory (LANL) utilizes nuclear cross-section data in a compact ENDF

(ACE) format. The accuracy of MCNP calculations depend on the accuracy of nuclear

ACE data tables, which depend on the accuracy of the original ENDF files.

There are some noticeable differences in ENDF files from one generation to the next

[2], even among the more common fissile materials. As the next generation of ENDF

files are being prepared, several software tools were developed to simulate a large

number of benchmarks in MCNP (over 1000), collect data from these simulations, and

visually represent the results.

1 Introduction

Each generation of ENDF files released by the US Cross Section Evaluation Working

Group (CSEWG) combines experimental cross-section data with nuclear models to generate

a more consistent and accurate dataset than the previous [3]. Although the first generation

of ENDF files came out with particular focus on fissile materials in 1968, there are some

noticeable differences in ENDF files from one generation to the next [2]. Whether due to the

1

shear volume of data required for a “complete” nuclear cross section dataset, which would

require information for numerous reactions for over 3000 isotopes, or due to the complexity

of experiments required to generate cross section data for the ENDF files, there remains

needed refinement in the area of nuclear data.

Monte Carlo N-Particle (MCNP) application data, which is data that is usable by the

MCNP program, is produced when a version of the ENDF/B files are processed through a

program called NJOY. NJOY recreates ENDF files by reconstructing resonances, doppler-

broadening the cross sections, and coupling the cross section data with other desired data

across a common energy grid [4].

The MCNP application data is used with MCNP to simulate systems based on geometry,

materials, and physics specifications for phenomena to follow. A large number (over 4000)

of critical experimental systems have been systematically catalogued by the International

Criticality Safety Benchmark Evaluation Project (ICSBEP) for cross section library and code

validation [1]. Input decks, which define systems for MCNP to simulate, have been prepared

for 1152 of the ICSBEP experiments and are used to validate the MCNP application data

through comparison with the real-world experimental results.

The present work focuses on automating the MCNP simulation of the ICSBEP MCNP

input decks on Los Alamos National Laboratory’s (LANL’s) supercomputers for quicker

data testing and analysis turnaround. Further, work included preparing a dataset with

static information for these benchmarks, developing algorithms for consolidating the results

from the simulations and the static information dataset, and finally, visually representing

the data. Various applications were developed to accomplish the above four tasks, and are

described in the next section. Cumulative results are presented in the following section, with

closing remarks thereafter.

2

2 Applications Developed

2.1 benchmark runner

benchmark runner is an application developed that sets up files designed to pass jobs

to a LANL supercomputer. The jobs are assumed to be ICSBEP benchmark simulations

with MCNP. The algorithm for benchmark runner first processes input information, then

prepares to create moab scripts, and then creates scripts for benchmark execution.

There are 19 different inputs that benchmark runner will process. These are for specifying

which MCNP input decks should be executed and the conditions for their execution. There

are also options for specifying whether or not the particular execution of benchmark runner

is a ‘rerun’, expected speed of MCNP calculations, and frequency for receiving updates about

the calculation.

The inputs are then used to count the number of jobs that will be submitted to the

supercomputer, determine the number of particle histories that MCNP will simulated, and

count how many processors are on the current supercomputer. This information is used to

calculate approximately how long each simulation will take, and use that information for

requesting resources on the system. In this portion of the code, directories are set up so that

output files are either organized in the same directory as the input files, or all grouped in

another directory entirely.

This code will then create a moab script for each MCNP input file. A moab script is a

bash script that will first, request resources from a LANL supercomputer, and second, once

those resources are granted, execute a series of linux commands using those resources for

the calculations. benchmark runner will also create two additional programs to submit the

moab scripts and to limit the number of job requests on the system.

3

2.1.1 check benchmarks

Several secondary programs were developed to determine the success of benchmark runner :

check benchmarks, check fatal, check time, and check basic. These programs are all variations

of check benchmarks, which will analyze the moab and MCNP outputs (slurm and .o .r .s .m

files) and summarizes the status of the simulations providing information about the number

of successful jobs, and jobs with fatal errors or ran out of time of the moab client. This

tool also prints out all the unique fatal errors encountered and the last completed cycle for

benchmarks that ran out of time.

benchmark runner will allocate all processors for each node resource granted to a single

job. Figure 1 shows the execution time on the LANL supercomptuer ’mustang’, which

has 24 processors per node, for each of the MCNP input decks. Each symbol represents

a different benchmark sweep, where the benchmarks are numbered on the x-axis, and the

execution time is on the y-axis. Figure 1 shows that the different types of benchmarks will

take different amounts of time on the same system. This is due to the differences in the

geometric complexity for each system.

0 100 200 300 400 500 600 700 800 900 1000

Benchmark Number

0

20

40

60

80

100

120

140

M
C
N
P

E
x
e
c
u
t
i
o
n

t
i
m
e

(
m
i
n
)

ENDF/B-VII.1 HEU-MET-FAST

HEU-MET-INTER

HEU-MET-MIXED

HEU-MET-THERM

HEU-SOL-THERM

IEU-COMP-FAST

IEU-MET-FAST

LEU-COMP-THERM

LEU-SOL-THERM

MIX-COMP-FAST

MIX-MET-FAST

MIX-MET-INTER

MIX-MET-MIXED

PU-MET-FAST

PU-MET-INTER

PU-SOL-THERM

U233-COMP-THERM

U233-MET-FAST

U233-SOL-INTER

U233-SOL-THERM

Figure 1: MCNP wall time for mustang.

4

Figure 2 is a histogram of the previous data, showing that the majority of the input decks

required less than 20 minutes to execute. This is useful to know because the moab client

will allocate resources based on quantity and the length of the time request. The larger

the resource request, the longer it takes to receive the resources on the supercomputing

system. Therefore, minimizing the request times for the majority of the MCNP calculations

is optimal.

0 10 20 30 40 50 60

Time (min)

0

50

100

150

200

250

300

C
o
u
n
t

43% less than 10 mins
60% less than 20 mins
91% less than 30 mins
96% less than 40 mins

ENDF/B-VII.1

Figure 2: Histogram for time of execution on mustang.

2.2 format static bench info

As mentioned above, ICSBEP has compiled criticality benchmark experiment data into a

standardised format for over 4000 configurations [1]. This project utilized a subset of 1152 of

these benchmarks, where MCNP input decks were created for each. The goal of this project

is to be able to simulate these input decks with different cross section datasets. Certain data,

such as the experimental k-eigenvalue with its associated error, geometry, number densities,

and volumes, will remain constant from one cross section dataset simulation to the next. It

was deemed advantageous to store this information in a single dataset.

5

A program called format static bench info was used to accomplish this task. Information

about the k-eigenvalues with error and geometry were provided in an excel spreadsheet. for-

mat static bench info started with the spreadsheet, and added additional information about

number densities and volumes. The most difficult portion of this task was ensuring that

the naming convention for the benchmarks remained consistent so that the data could be

properly linked together, both at this stage of the data manipulation and the next.

Another difficulty encountered during this portion of the project was organizing the

number density and volume information. Across the 1152 input decks, there were a variety

of isotopes that were used. Creating a dataset with a column for every isotope is possible,

but was not attempted. Rather, important isotopes were selected in the categories of: fissile,

fertile, moderator, and poison. The sum total of isotopes gathered was 37 isotopes as shown

in Table 1. This list is not exhaustive, but format static bench info was written in a way

that this list could be very easily added to.

Table 1: List of isotopes collected in static benchmark dataset

Fissile Fertile Moderator Poison
233U 232Th 1H 10B
235U 232U 2H 11B

239Pu 234U 3H 3He
241Pu 236U natC 111Cd

- 238U 12C 113Cd
- 238Pu 13C 154Gd
- 240Pu 9Be 155Gd
- 241Am 54Fe 156Gd
- - 56Fe 157Gd
- - 57Fe 158Gd
- - 58Fe 9B
- - natFe 6Li
- - - 7Li

Due to the fact that these isotopes may exist in any number of MCNP cells, an average

volume weighted atom density was determined with Eq. 1, where ρ is the atom density, A

6

is the atom fraction for the particular isotope, and V is the volume. This calculation was

possible if MCNP was able to calculate the volume for each of the cells. The term Visotope

was determined with Eq. 2, where M is the mass fraction for the particular isotope.

ρisotope =

N∑
cell=1

Aisotope
cell ρcell

Vcell

Visotope

(1)

Visotope =

N∑
cell=1

M isotopeVcell (2)

2.3 compile bench data

compile bench data was developed to combine the previous dataset with the simulation

results from MCNP. The algorithm stores the static dataset in a matrix, gathers information

while looping through the output MCNP files, and links the two datasets together in a csv

file. Output parameters collected from MCNP were k-eigenvalues, percent of fissions caused

by thermal, intermediate, and fast neutrons, and average energy/lethargy of neutrons causing

fission.

2.4 plot benchmarks

A program was developed to visually represent the above data. Given that plots are

generated for each set of simulations, with potential slight modifications, a plotting program

was developed that works by producing figures based on a provided input deck and data.

The input deck specifies the type of plot and data, and the plotting program produces the

plot. This approach was chosen so that the syntax of plotting is reduced to setting a given

library of well defined variables.

7

3 Results

The above programs were used to execute the MCNP simulations for the benchmarks

for ENDF/B-VII.1 and ENDF/B-VIII.0 β 1. The following results present a comparison

between the two different cross section sets. Most of the following data utilized a ratio

between the MCNP calculated k-eigenvalue (MCNP keff) and the experimentally determined

k-eigenvalue (Experiment keff). If MCNP perfectly modeled the physics with exactly correct

cross section data, and if the experimentally determined k-eigenvalues perfectly represented

reality, then this ratio would be precisely one (given that MCNP simulated an infinite number

of particles).

Figure 3 shows a histogram plot for both ENDF/B-VII.1 and ENDF/B-VIII.0 β 1 k-

eigenvalue ratios. A Gaussian curve is shown both of the plots because MCNP utilizes

random numbers for its simulations. If the above three asumptions were correct, then a

Gaussian curve would be expected.

MCNP keff / Experiment keff

C
o
u
n
t

0.97 0.98 0.99 1.00 1.01 1.02 1.03
0

30

60

90
Mean = 1.0002
σ = 0.0059

ENDF/B-VII.1
0

30

60

90
Mean = 1.0024
σ = 0.0081

ENDF/B-VIII.0 β 1

Figure 3: Histogram Comparison of Cross Section Libraries

The ENDF/B-VII.1 Gaussian fit is wider than the peak area because the peak is off

8

center, and the distance to the edge data for the dataset is fairly large. Overall though, the

narrower fit and mean value for the ENDF/B-VII.1 data suggests that ENDF/B-VIII.0 β 1

cross section data does not reproduce experimental k-eigenvalues as well.

In order to narrow in on one of the sources of these differences, the ratio between the two

different MCNP calculations were plotted and shown in Figure 4 with the legend provided

below in Figure 5 and the errors highlighted as background color. Figure 5 provides legend

information for Figures 4, and 6.

0 100 200 300 400 500 600 700 800 900 1000 1100

Benchmark Number

0.97

0.98

0.99

1.00

1.01

1.02

1.03

V
I
I
I
.
0

β

1

k
ef
f
/

V
I
I
.
1

3

k
ef
f

MCNP Calculated values

Figure 4: K-eigenvalue (MCNP) Ratio vs. Benchmark Number (legend shown in Figure 5)

HEU-MET-FAST

HEU-MET-INTER

HEU-MET-MIXED

HEU-SOL-THERM

IEU-MET-FAST

LEU-COMP-THERM

LEU-SOL-THERM

MIX-COMP-FAST

MIX-MET-FAST

MIX-MET-INTER

PU-MET-FAST

PU-MET-INTER

PU-SOL-THERM

U233-MET-FAST

U233-SOL-INTER

U233-SOL-THERM

Figure 5: Legend for Figures 4,6

9

Two cases stand out in Figure 4 as being clearly different between the two different

cross section sets, “LEU-COMP-THERM” and “PU-SOL-THERM” which stand for low

enriched uranium-composite-thermal, and plutonium-solution-thermal, respectively. Other

benchmark groups have large differences as well, but these two groups have a large number

of cases with sizable differences from unity.

An examination of the benchmark groups shows that the “LEU-COMP-THERM” group

is one of the only two groups with LEU, the other of which also has higher estimates for the

k-eigenvalue. A possible reason for this is that the 238U cross section changed between the

two datasets. If this were the case, then larger quantities of 238U in a system would lead to

larger values of the MCNP/Experiment ratio because the k-eigenvalues for ENDF/B-VIII.0

β 1 increased from ENDF/B-VII.1.

238U Mass (kg)

M
C
N
P

k
ef
f
/

E
x
p
e
r
i
m
e
n
t

k
ef
f

0 10 20 30 40 50 60
0.97

0.98

0.99

1.00

1.01

1.02

1.03
ENDF/B-VII.1

0.97

0.98

0.99

1.00

1.01

1.02

1.03
ENDF/B-VIII.0 β 1

Figure 6: K-eigenvalue Ratio vs. 238U Mass (legend shown in Figure 5)

Figure 6 is a plot of the MCNP/Experiment ratio plotted against the mass of 238U

for ENDF/B-VII.1 and ENDF/B-VIII.0 β 1. This figure shows that as the mass of 238U

in the system increases, MCNP/Experiment values for ENDF/B-VII.1 are relatively flat.

ENDF/B-VIII.0 β 1 does seem to have an increase in the MCNP/Experiment ratio, but

10

a closer examination shows that a few select cases of some groups increased, and that the

“LEU-COMP-THERM” group increased, but that the majority of the points on the plot

stayed relatively constant. There is probably more that is contributing to the increase in

k-eigenvalue estimates.

3.1 Conclusions

Several software tools were developed to simulate a large number of benchmarks in

MCNP (over 1000), collect data from these simulations, and visually represent the results.

A simple analysis was also discussed to show some of the differences between two cross

section datasets concluding that ENDF/B-VIII.0 β 1 has a better Gaussian shape, but that

ENDF/B-VII.1 is closer to experimental k-eigenvalues. Also, that 238U is not the main

contribution for the differences in the “LEU-COMP-THERM” results between the two cross

section datasets.

These programs reduce the simulation and analysis time from on the order to weeks

to on the order of days. The benchmark runner program has the capability to parse out

benchmark jobs so that if a node were avaiable for each job, the simulation time would be

reduced to around 4 hours, and data collection with corresponding visualization would take

less than an hour.

Additional work for this project includes gathering more information from the MCNP

output files. The information listed above that was collected and organized is a small fraction

of the total data produced by these simulations. With further focus on collecting data, more

avenues for understanding the nuclear cross section data become available. Other areas for

future work would be in the area of fitting mathematical models to sets of the data and

spending more time analyzing trends.

11

References

[1] J Blair Briggs, Virginia F Dean, and Lori Scott. The international criticality safety

benchmark evaluation project (icsbep). Experimental Needs In Criticality Safety, page

109, 2003.

[2] M.B. Chadwick, P. Obložinskỳ, et al. Next generation evaluated nuclear data library for

nuclear science and technology. Nuclear data sheets, 2006.

[3] RB Kidman. Endf/bv, lib-v, and the csewg benchmarks. Technical report, LA-8950-MS,

Los Alamos National Laboratory, Los Alamos, NM, 1981.

[4] RE MacFarlane, RJ Barrett, DW Muir, and RM Boicourt. Njoy nuclear data processing

system: user’s manual. Technical report, Los Alamos Scientific Lab., 1978.

12

	Introduction
	Applications Developed
	benchmark_runner
	check_benchmarks

	format_static_bench_info
	compile_bench_data
	plot_benchmarks

	Results
	Conclusions

