Enabling Co-Design of Multi-Layer
Exascale Storage Architectures

Award Number: DE-SC0004875
Final Report through 8/31/2015

1 PIPersonnel
Christopher D. Carothers, Rensselaer Polytechnic Institute

2 Goals and Objectives

Growing demands for computing power in applications such as energy production, climate analysis, com-
putational chemistry, and bioinformatics have propelled computing systems toward the exascale: systems
with 10" floating-point operations per second. These systems, to be designed and constructed over the
next decade, will create unprecedented challenges in component counts, power consumption, resource
limitations, and system complexity. Data storage and access are an increasingly important and complex
component in extreme-scale computing systems, and significant design work is needed to develop suc-
cessful storage hardware and software architectures at exascale. Co-design of these systems will be neces-
sary to find the best possible design points for exascale systems.

The goal of this work has been to enable the exploration and co-design of exascale storage systems by
providing a detailed, accurate, and highly parallel simulation of exascale storage and the surrounding en-
vironment. Specifically, this simulation has (1) portrayed realistic application checkpointing and analysis
workloads, (2) captured the complexity, scale, and multilayer nature of exascale storage hardware and
software, and (3) executed in a timeframe that enables “what i exploration of design concepts. We de-
veloped models of the major hardware and software components in an exascale storage system, as well as
the application I/O workloads that drive them. We used our simulation system to investigate critical ques-
tions in reliability and concurrency at exascale, helping guide the design of future exascale hardware and
software architectures. Additionally, we provided this system to interested vendors and researchers so that
others can explore the design space. We validated the capabilities of our simulation environment by con-
figuring the simulation to represent the Argonne Leadership Computing Facility Blue Gene/Q system and
comparing simulation results for application I/O patterns to the results of executions of these I/O kernels
on the actual system.

3 Technical Progress

3.1 Torus Network Simulation

Torus networks (Figure 1) have been widely employed
as the underlying network topology for many supercom-
puting systems, such as the Blue Gene [Adiga2005] and

SRu

Cray XT [Bland2009] families. Torus networks offer | - -
;‘gﬂ‘j =] l\/EJ T
E“EJJ =
1 = " L

Figure 1: 3-ary 3-cube torus.

low latency for nearest neighbor communication and scalable bisection bandwidth. They also provide an
easy physical wiring plan for upgrading a system with additional nodes without having to updating entire
core network [Adiga2005].

We constructed a packet-level simulation of torus networks using the Rensselaer’s Optimistic Simulation
System (ROSS), a parallel, discrete-event simulation framework using Jefferson’s Time Warp event
scheduling mechanism [Jefferson1985].

The simulation results were validated using Little’s law for different torus configurations under varying
packet arrival rates. We also conducted comparison tests between the actual Blue Gene torus network and
our model using MPI Send()/MPI Recv(), showing reasonable correlation to actual results.

We are able to achieve a near-linear speedup for our torus model. On Blue Gene/L, the peak event-rate on
32K cores is 4.78 G/s. On Blue Gene/P, the best event-rate observed is 12.359G/s on 128K cores. We fur-
ther demonstrated the ability to model and simulate a million-node and a billion-node torus network on
both Blue Gene/L and Blue Gene/P platforms [Liu2012].

Following this initial work, we have focused efforts in further improving the fidelity of the model, focus-
ing on even more accurately modeling the BG/P and BG/Q networks for MPI communication (Figure 2).
The mpptest tool is being used to capture performance results for comparison purposes.

Latency mpptest vs. ross torus model BG/Q, Farthest node

1000 mpptest CCNI BG/Q
ross torus model BG/Q

100 !

10

Latency (microseconds)

7 8 \"6 32 6? [2@ 355 513 205 20"76’ 096’ 192 636, 8)6 553 310)
Message length (bytes)

Figure 2: Comparing experimental results to simulation of network latency in BG/Q system.
Improvements to our torus model have resulted in highly accurate modeling of communication
latency and bandwidth.

In follow on work [Mubarak2014a and Mubarak2014b], we improve both the accuracy of our torus net-
work model as well as add the ability to efficiently simulate collective network operations.

3.2 Dragonfly Network Simula-
tion

The dragonfly network topology (Figure 3), a
two-level directly connected network, is an-
other candidate for exascale architectures be-
cause of its low diameter and reduced latency.
The dragonfly topology lowers the cost of the
interconnection network and improves net-
work performance by using high-radix routers,
made possible by increasing chip pin counts,
to reduce the diameter of the network and lim-
it the number of global channels traversed by

[
T/ =
ST 2% =00.

%

packets [Kim2008, Kim2009]. o ;f%‘«g

. O NODES D/;X/ S] =

In the case of the Dragonfly network, a high Jp— :.S\ H O =
S &

fidelity (but less scalable) simulator () roms
(BookSim) had been used by Kim et al. to ex-
amine the network characteristics for systems
with up to 1,024 endpoints and 264 routers.
Although BookSim is not appropriate for use
in exascale system simulation, it has proven to
be a useful validation tool until more Dragonfly based systems are deployed. Figure 4 shows a perfor-
mance comparison between BookSim and our Dragonfly simulation: even at small scale our simulation
executes much more quickly while producing very accurate simulation results.

Figure 3: Dragonfly network topology (p=h=3, a=6).
Dotted lines show global channels connected to other
groups not shown in figure.

We evaluated the strong-scaling characteristics of the dragonfly network model on two massively parallel
architectures: the Argonne Leadership Computing Facility (ALCF) IBM Blue Gene/P system (Intrepid)
and the Computational Center for Nanotechnology Innovations (CCNI) IBM Blue Gene/Q system. We
used three problem sizes of the dragonfly model. The first test case has 4,196,352 nodes and 131,000
routers. The second test case has 10 million nodes and 256,000 routers, and the third test case has 50 mil-
lion nodes and 864,000 routers. Simulations achieve a peak event rate of 1.3 billion events per second,
with total committed events of up to 872 billion on the CCNI Blue Gene/Q.

As part of this activity we also evaluated the impact of various ROSS parameters on the rate of simulation
on the two platforms, identifying specific configurations that lead to higher performance. These parame-
ters will assist us in making most effective use of the platforms for future simulations.

Simulation run time: ROSS vs. Booksim: Simulation run time: ROSS vs. Booksim:
MIN Uniform Random Traffic UGAL Uniforrm Random Traffic
4000 T T T T T T 4000 Y T T T T T
Booksim =——+— Booksim =——+—
3500 RoOss x 3500 Ross
g 3000 £ 3000} .
= 2500 | c 2500 | |
2 2
E 2000 § 2000 1
5 1s00f E 1500} .
g £
& 1000 |- = 1000 f .
500 | 500 | J— . g
0 - 0 . J T L L 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Offered load Offered load

Figure 4: Simulation run time of ROSS Dragonfly model as compared to BookSim for random traffic
using different routing algorithms (MIN vs. UGAL).

3.3 Blue Gene/P 1/0 System BG/P Tree Commodity

. . Network
Simulation
e iDL ™ P \
. ' : 1 File 1 Ent ri
While the system interconnect is a critical ‘ e “":" > JIONST 1 servers storage
' = H '
component to model, the other hardware and : C N o B) i]
: [a8 4R 4 s \
especially software components are also v 48 4R 4 SR
critical pieces. In [Liu2011] we present the § 255\3 §E§ g B
design of and results from simulations of the ; 2o ;:S 4 - i H]
Intrepid Blue Gene/P system at Argonne i a1 . E

National Laboratory. el A L S——

We abstracted the common features of each

Blue Gene/P hardware component into CN,

ION, file server, and DDN models. Our Figure 5: CODES models for the ALCF computing en-
software models approximate the interfaces, vironment, including hardware and software.

protocols, and interactions of the software

components deployed in the ALCF computing environment. At the application layer, our models provide
a POSIX-like I/O interface. Our application-level models translate application I/O requests into CIOD
client requests using a series of CN and ION events. These CN and ION events reflect the interaction be-
tween the CIOD clients and servers. The CIOD server receives the CIOD client requests and generates a
series of ION and storage server hardware requests that approximate the interaction of the CIOD server
and the PVFS file system. The PVES file system then generates a series of storage server and DDN events
that approximate the interactions between the storage server and the DDN storage devices. The accuracy
of these models with respect to the protocols used in the software implementations contributes strongly to
the accuracy of our results.

HL-10 + ClOD PVFS UNIX 10

The model was validated against results from a prior study of this Blue Gene/P system [Lang2009]. Fig-
ure 6 demonstrates our ability to accurately model a variety of workloads and validate them using the IOR
synthetic benchmark.

All the simulations, in this case, ran on an SMP system with a configuration of 8 cores (Intel Xeon x5430,
2.67 GHz) and 32 GiB memory. The largest test case with 128K client processes (represented as LPs in
the simulation) finished within a couple of minutes, showing that our tools are capable of simulating in-
teresting storage system designs while using modest resources.

45 ~#—Sharec file, uralignec, simubited & “+—Shared file. unaligned, simulatec
40 == Sharec file, uralignec, cbserved — _ =4~ Shared fie, unaligned, cbserved
—~35 Shared file, aligned, simulated e AJO Shared file, aligned, simulated
5 Shared file, algned, observed /A . g Shared file, aligned, observed)
=z 30 & File-per-process, simulated * “ -] 40 <@ File-per-process, simulated -
Y13 =+ File-per-process, observed = 9, = File-per-process, observed
=z 7 £ 30
20 -
é I5 g 0
]
[1]
5
[[
1024 2048 4096 8192 16384 32763 65536 131072 1024 2048 4096 BI92 16384 32763 65536 131072
Client Processes Client Processes
(a) write (b) read

Figure 6: Comparison of simulated and observed IOR performance. Discrepancies in read perfor-
mance appear to be due to contention in the external GigE network that was not modeled in our
simulations.

- BG/P Tree Ethernet InfiniBand Serial ATA

I/O Forwarding \“‘\‘~~\“§ L
Software —

— | |

Compute nodes 10 nodes File servers Enterprise storage

Figure 7: Overview of Blue Gene/P computing environment, showing proposed tier of burst buff-
ers integrated into existing I/O nodes.

3.4 Burst Buffer Simulation

The largest-scale high-performance (HPC) systems are stretching parallel file systems to their limits in
terms of aggregate bandwidth and numbers of clients. To further sustain the scalability of these file sys-
tems, researchers and HPC storage architects are exploring various storage system designs. One proposed
storage system design integrates a tier of solid-state burst buffers into the storage system to absorb appli-
cation I/O requests.

Building on the prior BG/P simulation, we integrated a model of a solid-state storage device into the I/O
nodes of the BG/P system [Liu2012]. We then examined application I/O patterns on an existing large-
scale HPC system to identify common burst patterns, and developed a mechanism for reproducing 1/0
patterns for simulation. We identified four write-intensive science applications with significant “bursts”.
We discovered examples of production applications that generated as much as 67 TiB of data in a single
execution. Two of the top four applications (Turbulencel and AstroPhysics) illustrate the classic HPC 1I/O
behavior in which data is written in several bursts throughout the job execution, each followed by a sig-
nificant period of idle time for the I/O system. The PlasmaPhysics application diverged somewhat in that
it produced only two bursts of significant write activity; the first burst was followed by an extended idle
period, while the second burst occurred at the end of execution. The Turbulence2 application exhibited a
series of rapid bursts that occurred nearly back-to-back at the end of execution.

A number of studies were performed, starting with simple synthetic benchmarks and culminating in a
study of multi-application behavior. One of the observations we made from the multi-application experi-
ment is that burst buffers accelerate the application perceived throughput under mixed I/O workloads. A
modest, 400 GiB burst buffer per ION was large enough to buffer the data requests generated by all three
workloads.

Additionally, decreasing the size of the storage system by half while using burst buffers had no noticeable
impact on the mixed I/O workloads performance — a much less capable external I/O system would be just
as effective. For today’s systems this means that storage system costs could likely be significantly re-
duced—fewer file servers, racks of storage, and external switch ports are needed. For systems in the 2020
time frame, burst buffers are likely to be a mandatory component if peak I/O rates are to be attained.

3.5 I/0 Workload Modeling

Accurate analysis of HPC storage system
designs is contingent on the use of I/O
workloads that are truly representative of
expected use. Generally, I/O analyses are
bound to specific workload modeling
techniques such as synthetic benchmarks
or trace replay mechanisms, however, de-
spite the fact that no single workload
modeling technique is appropriate for all
use cases. We have designed IOWA (Fig-
ure 1), a novel I/O workload abstraction
that allows arbitrary workload consumer
components to obtain I/O workloads from
a range of diverse input sources. Using

éNorkmad) CODES 1/0 .
enerator Recorder Language Darshan
Methods
IOWA Component
Workload zty"srtaegn? 1/0 Replay | |I/0 Workload
Consumers Simulation Tool Parser

Figure 1: Interaction of IOWA with different workload
generators and consumers (e.g., CODES simulations).

IOWA, researchers can choose specific I/O workload generators based on the resources they have availa-
ble and the type of evaluation they wish to perform. As part of this research, we also designed three dis-
tinct workload generation methods, based on I/O traces, synthetic I/O kernels, and I/O characterizations.
We analyzed each of these workload generation techniques in the context of storage system simulation
models as well as production storage systems. We found that each generator mechanism offers varying
levels of accuracy, flexibility, and breadth of use that should be considered before performing /O anal-
yses. We also developed a set of best practices for HPC 1I/O workload modeling based on challenges that
we encountered while performing our evaluation.

This work was published in [Snyder2015].

3.6 Preparing CODES for
External Use

One of the goals of this project is to
provide the CODES models to the
larger research community as a tool
for accelerating understanding of ex-
ascale storage systems.

An important step in realizing this
goal is the development of modulari-
zation techniques that allow rapid pro-
totyping and integration of new mod-

els. This is not a capability provided (@ Software module O Hardware module

by the underlying ROSS framework.

(. N

(Triton server

(Triton server

(" Triton server
Traffic Cop
(policy engine)

SWIM Triage
(failure detection) (fault assessment)

Rebuild Request Service
(app. workloads)

¥ Simplenet
model-net

(network) + Torus % to other

Y= wwww? SErvers
« Dragonfly & e
*annnnnnnn? g

L4

Local Storage
(disk)

J

Figure 8: Example of multi-component storage model using

Thus far, modular components for CODES infrastructure.

local storage (disk) and network have

been developed, and the models described earlier in this document are being ported to operate in this new

mode (Figure 8).

Additionally, we have developed functionality for capturing simulation results at runtime using data buff-
ering and collective data aggregation, allowing large output to be quickly stored for subsequent data anal-

ysis.

Finally, we have contributed a number of enhancements and bug fixes back to the ROSS development
team to enhance that framework and ease configuration and build by new users.

3.7 Impact

Impact thus far has been on three fronts. First, in terms of simulation in the context of exascale, we are
pushing the boundaries of what is possible using the Time Warp approach, showing that very high fidelity
models can be executed quickly using current terascale and petascale resources [Barnes2013]. These suc-
cesses have been in part responsible for others using event-driven simulation as a tool for understading
future exascale systems (e.g., the Intel Fast Forward team simulating gossip protocols in this manner, as
we understand it, using ROSS).

Second, we have produced the first quantitative (if simulated) results showing the potential for the burst
buffer approach in HPC systems. An important result of our work wasn’t just that burst buffers are plau-
sible, but that they actually reduce the bandwidth needed from the external I/O system. This is a critical
result.

Third, we are developing infrastructure that can be more broadly applied. Figure 8 shows an example of
using CODES components in the context of future storage architecture simulations being pursued under
external funding. Colleagues at UCSC and elsewhere are similarly interested in deploying CODES in
their own work.

4 Deliverables

4.1 Publications

[Liu2011] N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross, A. Crume, and C. Maltzahn. Modeling a lead-
ership-scale storage system. In Proceedings of the 9th International Conference on Parallel Processing and
Applied Mathematics 2011 (PPAM 2011), October 2011.

[Liu2012] N. Liu, C. Carothers, J. Cope, P. Carns, and R. Ross. Model and simulation of exascale com-
munication networks. Journal of Simulation, March 2012.

[Liu2012] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C. Maltzahn. On
the role of burst buffers in leadership-class storage systems. In Proceedings of the 2012 IEEE Conference
on Massive Data Storage, Pacific Grove, CA, April 2012.

[Mubarak2012] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns. Modeling a million-node dragon-
fly network using massively parallel discrete event simulation. In 3rd International Workshop on Perfor-
mance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS12)
held as part of SC12, November 2012.

[Barnes2013] P. D. Barnes, C. D. Carothers, D. R. Jefferson and J. M. Lapre. Warp Speed: Executing
Time Warp on 1,966,080 Cores. Proceedings of the ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation (PADS). May, 2013. Montreal, CA.

[Mubarak2014a] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “A case study in using massively parallel
simulation for extreme-scale torus network codesign,” in Proc. of the 2nd ACM SIGSIM/PADS Conf. on Principles
of Advanced Discrete Simulation, 2014, pp. 27-38.

[Mubarak2014b] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Using massively parallel simulation for
MPI collective communication modeling in extreme-scale networks,” in Proc. of the 2014 Winter Simulation Conf.,
2014, pp. 3107-3118.

[Snyder2015] S. Snyder, P. Carns, R. Latham, M. Mubarak, R. Ross, C. D. Carothers, B. .B Huong. V. T. Luu and
S. B. Prabhat “Techniques for Modeling Large-Scale HPC I/O Workloads”, In Proceedings of the 5th International
Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS 2015) as part of Supercomputing (SC’15). Austin, TX, November 2015.

5 References

[Adiga2005] Adiga N R, Blumrich M A, Chen D, Coteus P, Gara A, Giampapa M E, Heidelberger P,
Singh S, Steinmacher- Burow B D, Takken T, Tsao M and Vranas P (2005). Blue Gene/L torus intercon-
nection network. /BM J. RES. & DEV. 49: 265-276.

[Bland2009] Bland A S, Kendall R A, Kothe D B, Rogers J H and Ship- man G M (2009). Jaguar: The
world’s most powerful computer. Compute the Future, CUG 2009 Proceedings. Atlanta, Geogia.

[Jefferson1985] Jefferson D R (1985). Virtual time. ACM Trans. Program. Lang. Syst. 7: 404—425.

[Kim2008] J. Kim, W. Dally, S. Scott, and A. D., “Technology-driven, highly- scalable dragonfly topolo-
gy,” ACM SIGARCH Computer Architecture News, vol. 36, no. 3, pp. 7788, 2008.

[Kim2009] J. Kim, W. Dally, S. Scott, and Abts, “Cost-efficient dragonfly topology for large-scale sys-
tems,” Micro, IEEE, vol. 29, no. 1, pp. 33-40, 2009.

[Lang2009] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock. I/O perfor- mance chal-
lenges at leadership scale. In Proceedings of the Conference on High Performance Computing Network-
ing, Storage and Analysis, page 40. ACM, 2009.

