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Model Predictive Control Strategies
for Resource Management



This Presentation Describes MPC and HMPC
applications to Resource Management

e Model Predictive Control (MPC) has Three Parts

— Discrete-Time Prediction model of the system
— Cost / Value function definition

— Algorithm for determining a control input at t, ., based
on measurement of state at t,

— MPC Numerical Example

e Hybrid Model Predictive Control (HMPC)

— Same three parts
— Includes discrete-valued decision variables
— Microgrid Example with Generators that switch ‘on-off’



Consumption of Resources are Modeled
Effectively using Classical Methods

e Affine-linear Dynamic Resource Model (DRM)

X=AXxX+Bu+Db
where

— Non-negative resource quantities: XeR":x>0
— Inputs relating to resource consumption: U e€R"
— Resource consumption that is linear in time: b e R"
— A matrix is negative semidefinite to model “leakage”



A Water Reservoir Example is Considered to
lllustrate
e Example 1 - Water resource modeled as:

X=AX+Bu+b

— X is water volume in m?
— Uy is water added, U, is water drained m3/sec

— A'is rate of diffusion into soil Water diffusing
into soil U1

— b(t) is rate of evaporation or rain

Evaporation

% =[-0.01]x + 1 —1]{32} ~0.02




A Discrete-Time Model is Created

e Adiscrete-time (DT) DRM is generated to
perform as a prediction model

* A time step: X1 = AXk + BUk +b

where x, =x(t, ), t =t,+kT andA, B, b are
reformulated for DT and T is time step



The Discrete-Time Model is used as a Prediction
Model

 Multiple time steps may be computed for determining

the resource consumption over a time horizon

X = AXk + Buk +b Using algebra, all future outputs
are expressed using the initial

X2 = AX|<+1 T Buk condition and the inputs

e The MPC model requires knowledge of the Horizon N
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The Prediction Model and Horizon are Captured
In one Expression

When the initial condition and input sequence is
known, this formulation predicts the trajectory
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State Reference Values are Easily Incorporated

into the Model

 For some resources, such as battery energy storage,
we may have a set point X* (i.e. keeping a battery at
60% state-of-charge)

e Define error state Ax, =X, —X
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A Compact Formulation is Defined

e |tis convenient to create a more compact formulation.
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MPC Requires a Performance Index
(i.e. a Cost Function)

 The resource use is evaluated using a cost function

J :jF(x,u)dr

* |n discrete time

N
J=T> F(X:U)
k=1

e Typical formulation

= TEZN:(AXIQAXK +U, Ruk)

k=1



Cost Function and Model are Combined to Give
Variational Terms
 The resource use is evaluated using a cost function
J :%ZN:(AXEQAX,( +u, Ruk)

k=1

(Ax QAX+U Ru)

il
2
:%((Axk +BU +b) Q(ka + §U+5)+UT§U)
e With gradient

v,3] - Bﬂ _7(8"QAx, +B'QBU+B'Qb +1R)
k
New melsurement
each time step



Variational Terms are Used for Iterative Solution

e And Hessian

0°J

Hi ;= =TB'QB

’ OU;0U;

* |terative solution in o to compute optimal control
sequence each time step k
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A Simple MPC Example is Shown
e Example 2: A:__O'l 0 } 52{0'5 1 } b:{_oq
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A Simple MPC Example is Shown
e Example 2: A:'—o.l 0 } B:{0.5 1 } b{—oq
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A Simple MPC Example is Shown

At each time step:
— X, IS measured

— An optimal control sequence is computed for horizon of 6

times steps

— The first control in the sequence is applied

— kis incremented
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Hybrid Models Describe Systems with
Continuous and Discrete-Valued Variables

 Hybrid Affine-linear DRM
— Generator on’ (s =1): X = A1X + Blu + bl
— Generator ‘off’ (s = 0): X = AOX + BOU + bo

* Switched model X= S-(A1X+ B,u+ b1)
+(1-s)-(Ax+B,u+h,)

where S e {O,l}
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