

Model Predictive Control Strategies for Resource Management

Jason Neely

August, 2015

This Presentation Describes MPC and HMPC applications to Resource Management

- Model Predictive Control (MPC) has Three Parts
 - Discrete-Time Prediction model of the system
 - Cost / Value function definition
 - Algorithm for determining a control input at t_{k+1} based on measurement of state at t_k
 - MPC Numerical Example
- Hybrid Model Predictive Control (HMPC)
 - Same three parts
 - Includes discrete-valued decision variables
 - Microgrid Example with Generators that switch ‘on-off’

Consumption of Resources are Modeled Effectively using Classical Methods

- Affine-linear Dynamic Resource Model (DRM)

$$\dot{x} = Ax + Bu + b$$

where

- Non-negative resource quantities: $x \in \mathbb{R}^n : x \geq 0$
- Inputs relating to resource consumption: $u \in \mathbb{R}^m$
- Resource consumption that is linear in time: $b \in \mathbb{R}^n$
- A matrix is negative semidefinite to model “leakage”

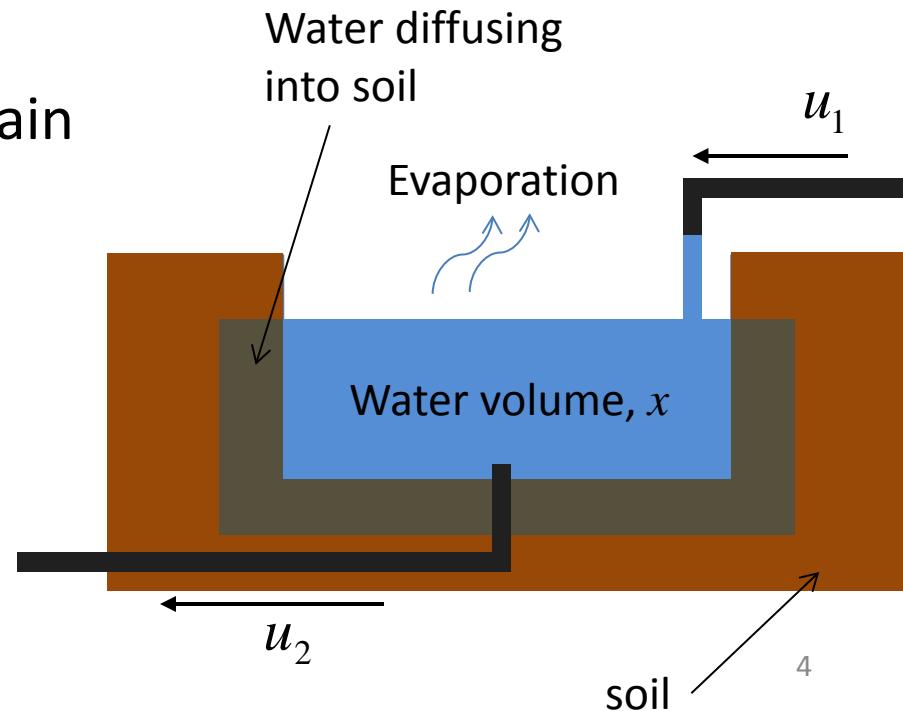
A Water Reservoir Example is Considered to Illustrate

- Example 1 - Water resource modeled as:

$$\dot{x} = Ax + Bu + b$$

- x is water volume in m^3
- u_1 is water added, u_2 is water drained m^3/sec
- A is rate of diffusion into soil
- $b(t)$ is rate of evaporation or rain

$$\dot{x} = [-0.01]x + \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - 0.02$$



A Discrete-Time Model is Created

- A discrete-time (DT) DRM is generated to perform as a prediction model
- A time step: $x_{k+1} = Ax_k + Bu_k + b$

where $x_k = x(t_k)$, $t_k = t_0 + kT$ and A , B , b are reformulated for DT and T is time step

The Discrete-Time Model is used as a Prediction Model

- Multiple time steps may be computed for determining the resource consumption over a time horizon

$$x_{k+1} = Ax_k + Bu_k + b$$

$$x_{k+2} = Ax_{k+1} + Bu_{k+1} + b$$

$$= A^2x_k + ABu_{k+1} + Bu_{k+2} + 2b$$

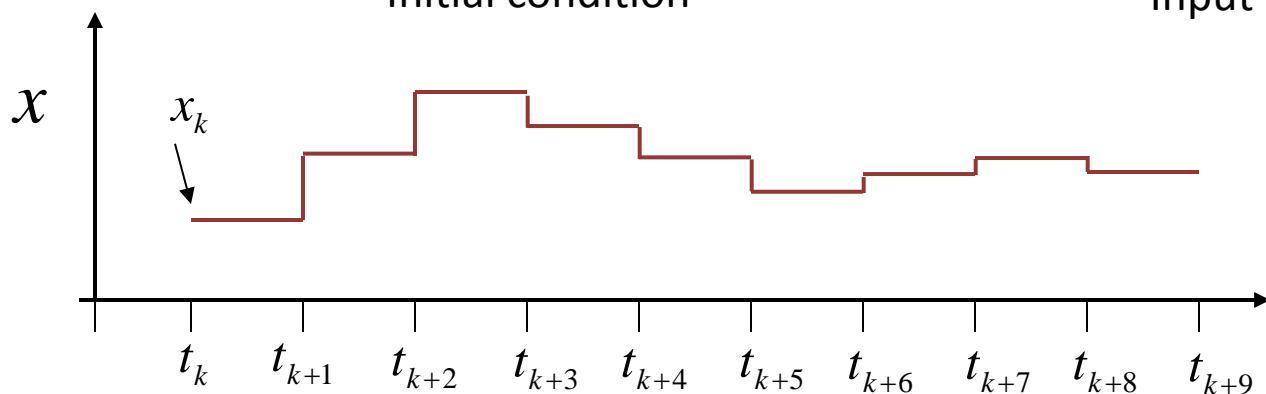
Using algebra, all future outputs are expressed using the initial condition and the inputs

- The MPC model requires knowledge of the Horizon N

$$\begin{bmatrix} x_k \\ x_{k+1} \\ x_{k+2} \\ \vdots \\ x_{k+N} \end{bmatrix} = \begin{bmatrix} I \\ A \\ A^2 \\ \vdots \\ A^N \end{bmatrix} x_k + \begin{bmatrix} 0 & 0 & 0 \\ B & 0 & 0 \\ AB & B & 0 \\ \dots & \dots & \ddots \\ A^{N-1}B & A^{N-2}B & \vdots & B \end{bmatrix} \begin{bmatrix} u_k \\ u_{k+1} \\ \vdots \\ u_{k+N-1} \end{bmatrix} + \begin{bmatrix} 0 \\ b \\ 2b \\ \vdots \\ Nb \end{bmatrix}$$

The Prediction Model and Horizon are Captured in one Expression

- When the initial condition and input sequence is known, this formulation predicts the trajectory



State Reference Values are Easily Incorporated into the Model

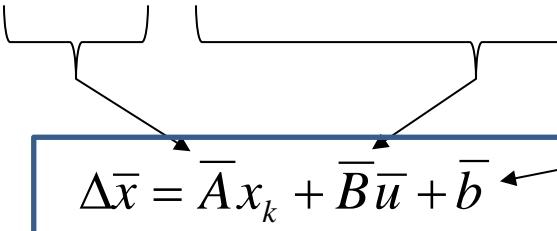
- For some resources, such as battery energy storage, we may have a set point x^* (i.e. keeping a battery at 60% state-of-charge)
- Define error state $\Delta x_k = x_k - x^*$

$$\begin{bmatrix} \Delta x_k \\ \Delta x_{k+1} \\ \Delta x_{k+2} \\ \vdots \\ \Delta x_{k+N} \end{bmatrix} = \begin{bmatrix} x_k - x^* \\ x_{k+1} - x^* \\ x_{k+2} - x^* \\ \vdots \\ x_{k+N} - x^* \end{bmatrix} = \begin{bmatrix} I \\ A \\ A^2 \\ \vdots \\ A^N \end{bmatrix} x_k + \begin{bmatrix} 0 & 0 & 0 \\ B & 0 & 0 \\ AB & B & 0 \\ \dots & \dots & \ddots & \dots \\ A^{N-1}B & A^{N-2}B & \vdots & B \end{bmatrix} \begin{bmatrix} u_k \\ u_{k+1} \\ u_{k+2} \\ \vdots \\ u_{k+N-1} \end{bmatrix} + \begin{bmatrix} -x^* \\ b - x^* \\ 2b - x^* \\ \vdots \\ Nb - x^* \end{bmatrix}$$

A Compact Formulation is Defined

- It is convenient to create a more compact formulation.

$$\begin{bmatrix} \Delta x_k \\ \Delta x_{k+1} \\ \Delta x_{k+2} \\ \vdots \\ \Delta x_{k+N} \end{bmatrix} = \begin{bmatrix} I \\ A \\ A^2 \\ \vdots \\ A^N \end{bmatrix} x_k + \begin{bmatrix} 0 & 0 & 0 & 0 \\ B & 0 & 0 & 0 \\ AB & B & 0 & 0 \\ \dots & \dots & \ddots & \dots \\ A^{N-1}B & A^{N-2}B & \vdots & B \end{bmatrix} \begin{bmatrix} u_k \\ u_{k+1} \\ \vdots \\ u_{k+N-1} \end{bmatrix} + \begin{bmatrix} -x^* \\ b-x^* \\ 2b-x^* \\ \vdots \\ Nb-x^* \end{bmatrix}$$



$$\Delta \bar{x} = \bar{A} x_k + \bar{B} \bar{u} + \bar{b}$$

These matrices
are often big

$$\bar{x} \in \mathfrak{R}^{(N+1)n} : x \geq 0$$

$$\bar{A} \in \mathfrak{R}^{(N+1)n \times n}$$

$$\bar{B} \in \mathfrak{R}^{(N+1)n \times Nn}$$

$$\bar{u} \in \mathfrak{R}^{Nn}$$

$$\bar{b} \in \mathfrak{R}^{(N+1)n}$$

MPC Requires a Performance Index (i.e. a Cost Function)

- The resource use is evaluated using a cost function

$$J = \int_{t_0}^{t_f} F(x, u) d\tau$$

- In discrete time

$$J = T \sum_{k=1}^N F(x_k, u_k)$$

- Typical formulation

$$J = \frac{T}{2} \sum_{k=1}^N (\Delta x_k^T Q \Delta x_k + u_k^T R u_k)$$

Cost Function and Model are Combined to Give Variational Terms

- The resource use is evaluated using a cost function

$$\begin{aligned} J &= \frac{T}{2} \sum_{k=1}^N \left(\Delta x_k^T Q \Delta x_k + u_k^T R u_k \right) \\ &= \frac{T}{2} \left(\Delta \bar{x}^T \bar{Q} \Delta \bar{x} + \bar{u}^T \bar{R} \bar{u} \right) \\ &= \frac{T}{2} \left((\bar{A}x_k + \bar{B}\bar{u} + \bar{b})^T \bar{Q} (\bar{A}x_k + \bar{B}\bar{u} + \bar{b}) + \bar{u}^T \bar{R} \bar{u} \right) \end{aligned}$$

- With gradient

$$[\nabla_u J]_k = \left[\frac{\partial J}{\partial u} \right]_k = T \left(\bar{B}^T \bar{Q} \bar{A} x_k + \bar{B}^T \bar{Q} \bar{B} \bar{u} + \bar{B}^T \bar{Q} \bar{b} + \bar{u}_k^T \bar{R} \right)$$

↑
New measurement
each time step

Variational Terms are Used for Iterative Solution

- And Hessian

$$H_{i,j} = \left[\frac{\partial^2 J}{\partial u_i \partial u_j} \right] = T \bar{B}^T \bar{Q} \bar{B}$$

- Iterative solution in α to compute optimal control sequence each time step k

- Newton's Method:

$${}^{\alpha+1} \bar{u}_k = {}^{\alpha} \bar{u}_k - H^{-1} \cdot [\nabla_u J]_k$$

- Levenberg-Marquardt:

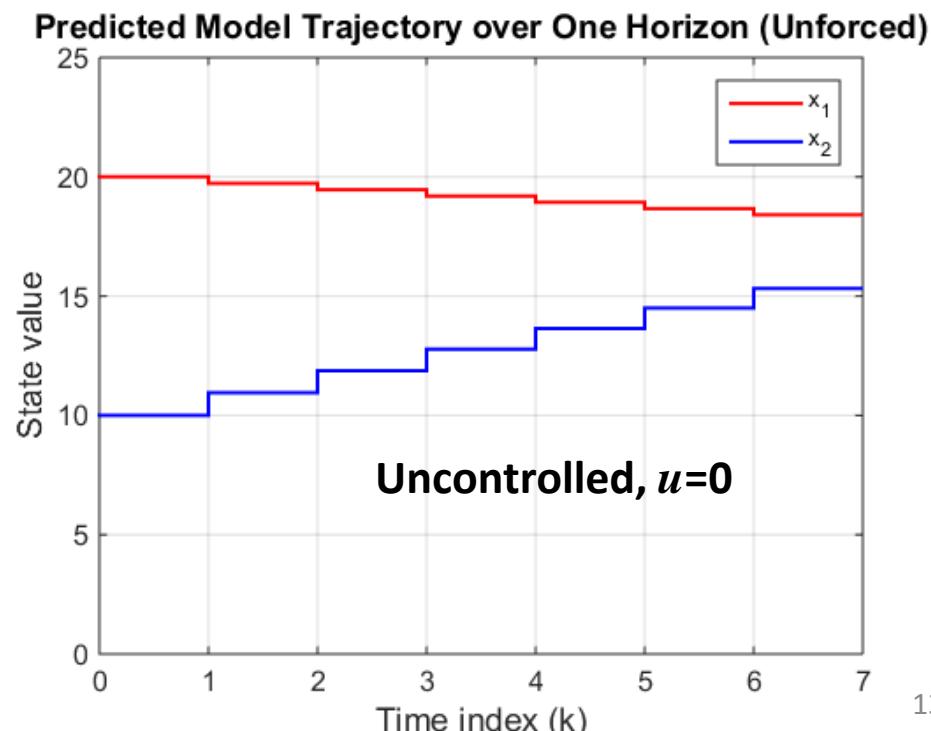
$${}^{\alpha+1} \bar{u}_k = {}^{\alpha} \bar{u}_k - (\beta I + H)^{-1} \cdot [\nabla_u J]_k$$

$$\beta > 0$$

A Simple MPC Example is Shown

- Example 2: $A = \begin{bmatrix} -0.1 & 0 \\ 0.5 & -0.2 \end{bmatrix}$, $B = \begin{bmatrix} 0.5 & 1 \\ 1 & 0.25 \end{bmatrix}$, $b = \begin{bmatrix} -0.7 \\ 1.5 \end{bmatrix}$
 $Q = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, $R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $x^* = \begin{bmatrix} 12 \\ 4 \end{bmatrix}$, $N = 6$, $T = 0.1$

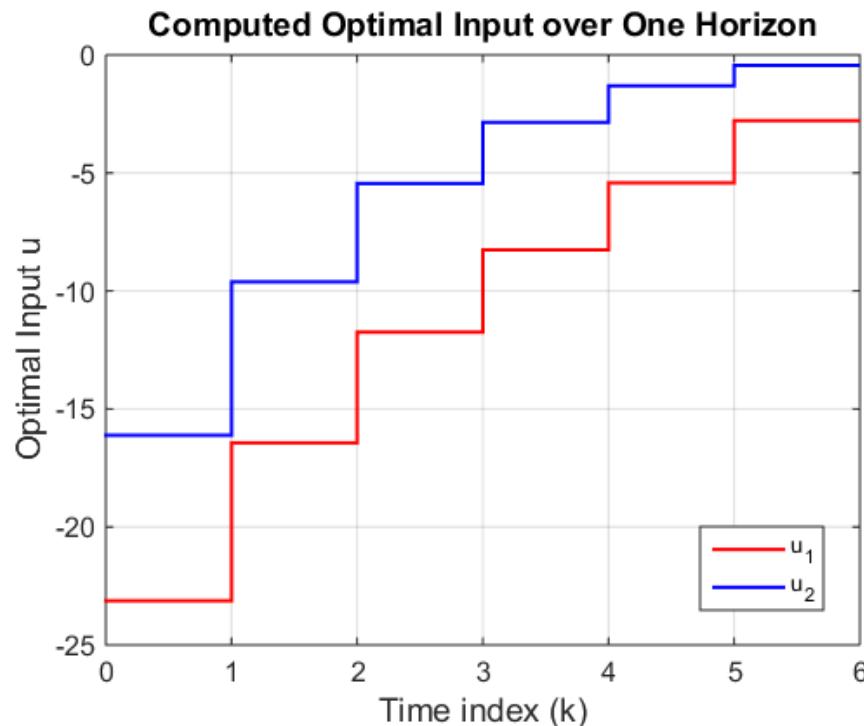
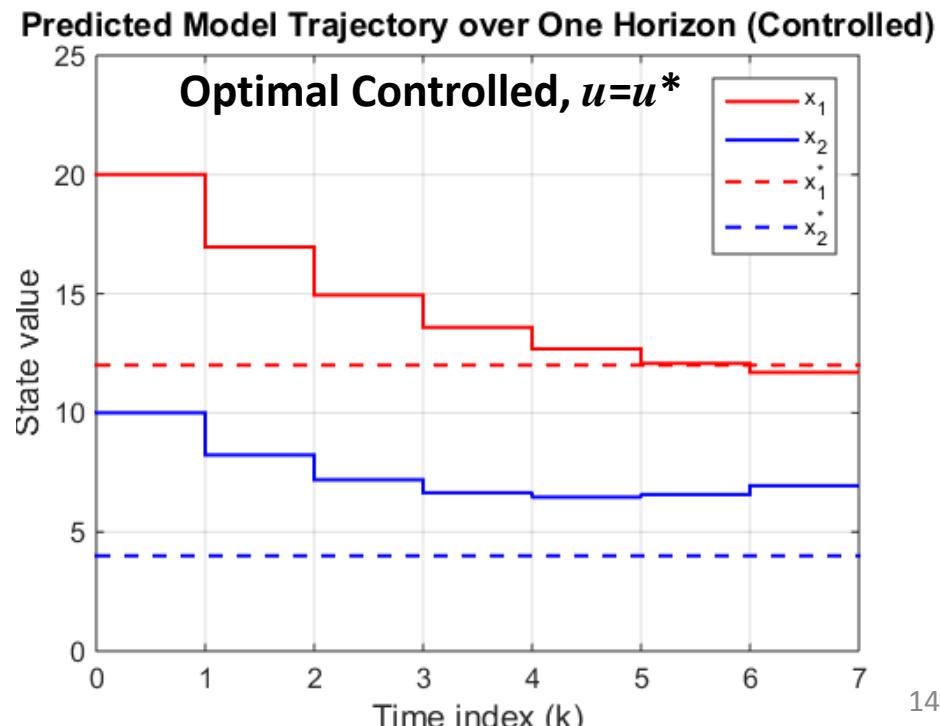
Over one Horizon ... Uncontrolled $J = 919.5$



A Simple MPC Example is Shown

- Example 2: $A = \begin{bmatrix} -0.1 & 0 \\ 0.5 & -0.2 \end{bmatrix}$, $B = \begin{bmatrix} 0.5 & 1 \\ 1 & 0.25 \end{bmatrix}$, $b = \begin{bmatrix} -0.7 \\ 1.5 \end{bmatrix}$
 $Q = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, $R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $x^* = \begin{bmatrix} 12 \\ 4 \end{bmatrix}$, $N = 6$, $T = 0.1$

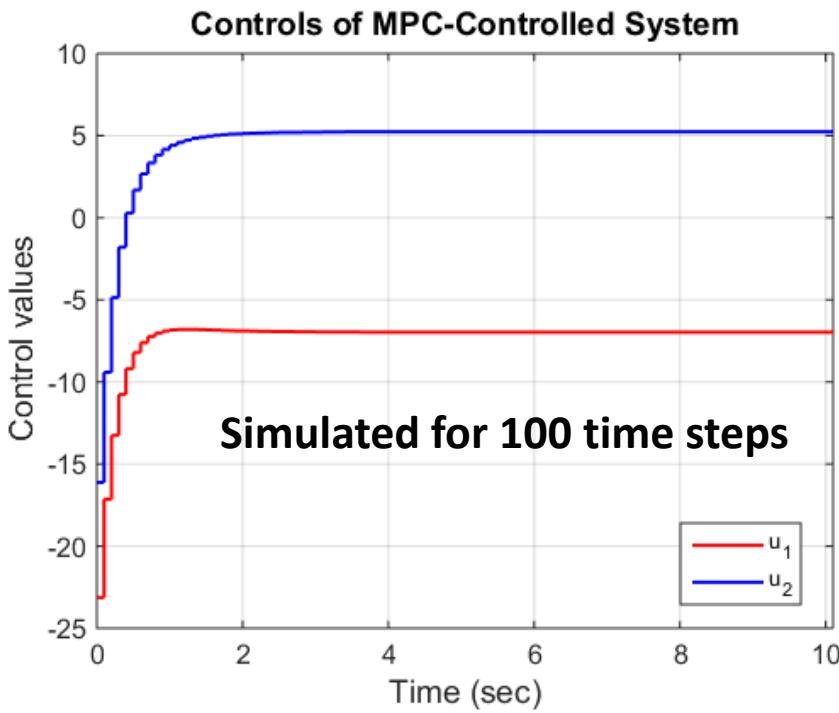
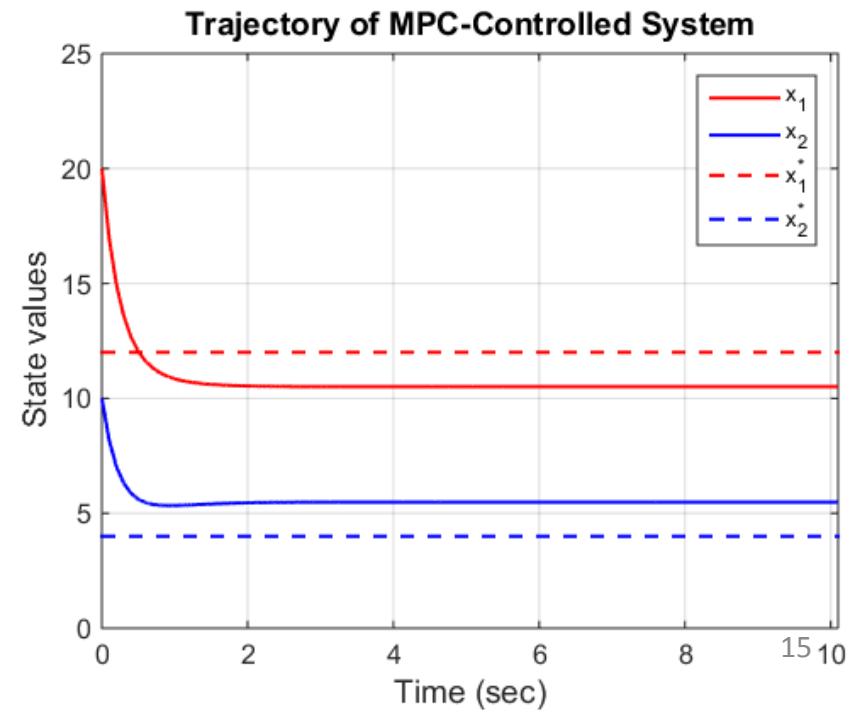
Over one Horizon ... Optimal Control ... $J = 336.8$



A Simple MPC Example is Shown

At each time step:

- x_k is measured
- An optimal control sequence is computed for horizon of 6 time steps
- The first control in the sequence is applied
- k is incremented



Hybrid Models Describe Systems with Continuous and Discrete-Valued Variables

- Hybrid Affine-linear DRM
 - *Generator 'on'* ($s = 1$): $\dot{x} = A_1 x + B_1 u + b_1$
 - *Generator 'off'* ($s = 0$): $\dot{x} = A_0 x + B_0 u + b_0$
- Switched model $\dot{x} = s \cdot (A_1 x + B_1 u + b_1) + (1 - s) \cdot (A_0 x + B_0 u + b_0)$

where $s \in \{0,1\}$