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Abstract 

 Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a 

functional form for the second order adsorption isotherms on two commonly investigated crystal 

surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric 

symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all 

values of the equilibrium constant by a shift along the pressure axis.  Functions have been 

determined for estimating the pressure at which a desired coverage would be achieved and for 

estimating the coverage at a certain pressure. The generalized form has been calculated by 

investigating the surface adsorbate coverage across a range of thermodynamic equilibrium 

constants that span the range 10-26 to 1013. The equations have been shown to be general for any 

value of the adsorption equilibrium constant. 

Keywords: Molecular Adsorption, Dissociative Adsorption, Adsorption Isotherm, Perovskite, 

Fluorite 

I. Introduction 

 Adsorption isotherms are functions which relate the coverage, 𝜃, to the pressure, P, or other 

measure of the adsorbate’s activity at a given pressure.  Prior to the 20th century, adsorption 

isotherms were only obtainable via empirical data. The first analytical approximations for 

adsorption isotherms were developed by Langmuir in the early 20th century, but the underlying 

assumptions such as an adsorbate species that behaves like an ideal gas, no lateral interactions of 

adsorbates and a simple first order adsorption process, are valid for only the most elementary and 

controlled reactions [1].  Langmuir’s approximations have been extended, in an analytical way, to 

include lateral interactions and higher order adsorption reaction processes [2-13], but currently, 

there are many adsorption processes and surface geometries which do not have an analytical 

solution, such as molecular adsorption of a polar molecule on a polar substrate. Thus, obtaining an 

adsorption isotherm for a particular gas adsorbing or reacting on a surface with a particular 

geometry would require experimentation or accurate simulation/modeling [14-22]. 
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 Lattice kinetic Monte Carlo (KMC) simulations are a tool for simulating chemical reactions 

on surfaces that can take into account the local configuration [23-27].  The probability of a 

particular reaction occurring in a given time period is based on the reaction rate, which is fixed by 

its rate constant and thus, the stochastic simulation technique is capable of mimicking the statistical 

occurrence of real-world reaction processes in a way that is exact, assuming that the model is 

accurately parameterized.  As a result, performing lattice KMC simulations with adsorption and 

desorption processes allows an effective empirical method for determining adsorption isotherms 

with increased accuracy when compared to analytical approximations. 

 There is one historical case that is similar to the current study. Roberts and Miller [28]  

were able to derive an analytical form based on the Bethe approximation for dissociative 

adsorption of a dimer on a square lattice surface (such as H2 or O2 on a metal surface). Roberts 

and others [29, 30] also performed Monte Carlo simulations to derive an isotherm, and the 

analytical equation derived by Roberts and Miller deviated very strongly from the Monte Carlo 

simulations. Vette and others later [30, 31]used similar arguments to derive a more accurate 

expression that matched the Monte Carlo simulations very well. Monte Carlo simulations have 

also been performed in order to investigate dimer adsorption on substrates with varying geometries 

and energetic landscapes [32-34].  However, to the authors’ knowledge, no studies on related 

isotherms for adsorption processes with orientation dependent behavior have been previously 

published (i.e., dissociation of molecules where the two halves are not equivalent and the two 

corresponding adsorption sites do not have competitive adsorption between them).  In the current 

work, lattice KMC simulations have been used to determine a functional form for the adsorption 

isotherm across the entire parameter space on two different surface geometries of widespread 

interest; the (111) fluorite surface and the (100) perovskite surface.  The isotherms for the (100) 

perovskite surface also apply to (100) surfaces for the NaCl structure, as these have the same 

geometric symmetry. For each surface, the general functional forms derived are capable of being 

used to determine the coverage as a function of pressure, or vice-a-versa, for any value of the 

equilibrium constant, and thus at any pressure. The same packing (and thus isotherms) should 

apply for cases of liquid to surface adsorption, as well. 

II. Theoretical Background and Computational Setup 

A. Theoretical Background for Analytical Solutions and KMC of Adsorption Isotherms 

To understand the relationship between all adsorption isotherms for a given surface 

geometry, we first consider the analytical solution for an adsorption isotherm based on the 

Langmuir adsorption model (this is unrelated to how the kinetic Monte Carlo simulations are 

performed).  First we define an adsorption process of a polar molecular species, M, on a polar 

substrate (i.e. a surface with two unequal sites, A and B, where the adsorption process results in a 

bridging occupation of both A and an adjacent B): 

M (g) + A + Badjacent → A – Mbridging (ads) – B 
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or for a dissociative adsorption process: 

M (g) + A + Badjacent → M+– A + M-– B 

In these types of adsorption processes, multiple molecular orientations are possible 

between A and B sites (during adsorption, an A site is filled along with only one of the N 

neighboring B).  In the mean field approximation where local configurations are ignored, the rates 

of adsorption and desorption are proportional to the concentrations of the sites and surface species 

involved, allowing us to write: 

𝑟𝑎𝑑𝑠 = 𝑘𝑎𝑑𝑠  𝑃[𝐴][𝐵] (1) 

𝑟𝑑𝑒𝑠 = 𝑘𝑑𝑒𝑠  𝜃 (2) 

 

where P is the pressure, 𝜃 is the relative surface coverage, [A] is the fraction of open A sites, and 

[B] is the fraction of open B sites.  The concentrations of the open sites and the surface coverage 

([A], [B], 𝜃) are each bound by [0,1]. 𝑘𝑎𝑑𝑠 and 𝑘𝑑𝑒𝑠 are the rate constants for adsorption and 

desorption and are defined as: 

𝑘𝑎𝑑𝑠 =
𝑆0

√2𝜋𝑘𝐵𝑇𝑚
𝑒

−𝐸𝑎
𝑅𝑇 𝒜𝑈 

(3) 

𝑘𝑑𝑒𝑠 = 𝛼𝑒
−𝐸𝑑
𝑅𝑇  

(4) 

 

where 𝑆0 is the steric factor from collision theory (see page 221 of reference [35]), kB is the 

Boltzmann constant, T is the temperature, m is the molecular mass of the gas phase molecule, Ea 

is the activation energy, 𝒜𝑈 is the area corresponding to an A site along with one adjacent B site, 

R is the gas constant and 𝛼 is the pre-exponential factor (typically with units of s-1).   

When considering the impacts of local configurations, analytical solutions to the isotherm 

for this situation can be derived for the low coverage cases.  In this case, the adsorption rate 

requires having an open B site next to an open A site, and we can write: 

𝑟𝑎𝑑𝑠 = 𝑘𝑎𝑑𝑠  𝑃[𝐴] [𝐵]𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 (5) 

 

where [B]adjacent reflects the probability of an open B site adjacent to an open A site. The 

expression for the desorption rate does not include site concentrations and remains unchanged. 

Note that  [𝐵] ≠ [𝐵]𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡:  The former is the global concentration of B, while the latter is the 

concentration of B directly adjacent to a particular A site.   

At very low coverages (e.g. 𝜃 ≤ 0.01), we can say that to a very good approximation any 

unoccupied A is neighboring an unoccupied B.  Thus, the rate of adsorption can be simplified 

based on the approximation that all B sites are unoccupied (i.e. [B]adjacent = 1) which gives: 
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𝑟𝑎𝑑𝑠 = 𝑘𝑎𝑑𝑠  𝑃[𝐴] [𝐵]𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 = 𝑘𝑎𝑑𝑠 𝑃[𝐴] = 𝑘𝑎𝑑𝑠  𝑃 (1 − 𝜃) (6) 

 

At equilibrium, the forward and reverse rates are equal, so we can set the forward and reverse 

rates equal followed by rearranging to obtain an expression for the isotherm.  Using eq. 6 for the 

rate of adsorption and eq 2 for the rate of desorption, setting rads = rdes, we find that the very low 

coverage isotherm can be approximated by: 

𝜃𝑖 =  
𝐾𝑃

1 + 𝐾𝑃
 𝑤ℎ𝑒𝑟𝑒 𝐾𝑖 =

𝑘𝑎𝑑𝑠

𝑘𝑑𝑒𝑠
 

(7) 

where 𝐾 is the equilibrium rate constant of adsorption and desorption for a specific isotherm (i.e., 

specific temperature and surface), and K has units of inverse pressure.   

 For medium coverages (e.g. 0.1 ≤ 𝜃 ≤ 0.3), the approximation that all B sites are 

uncovered no longer holds.  Instead, the odds of finding an unoccupied B site adjacent to an 

unoccupied A site is approximately the same as the odds of finding an unoccupied A site to begin 

with (i.e. [B]adjacent ≈ [A] ).  Using this approximation, the rates of adsorption and desorption are 

defined as: 

𝑟𝑎𝑑𝑠 = 𝑘𝑎𝑑𝑠  𝑃[𝐴] [𝐵]𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 = 𝑘𝑎𝑑𝑠 𝑃[𝐴][𝐴] = 𝑘𝑎𝑑𝑠 𝑃 (1 − 𝜃)2 (8) 

𝑟𝑑𝑒𝑠 = 𝑘𝑑𝑒𝑠  𝜃 (9) 

 

and again, setting rads = rdes, the equilibrium coverage for a given isotherm is: 

𝜃𝑖 =  
2𝐾𝑃 − √4𝐾𝑃 + 1 + 1

2𝐾𝑃
 

(10) 

 At high coverages (e.g. 𝜃 ≥ 0.3), we can no longer analytically determine the surface 

concentration of B sites because it is uncertain how increasing the occupation of A sites affects the 

concentration of B sites adjacent to unoccupied A sites.  Thus, a numerical method, such as KMC, 

is necessary in order to determine the equilibrium coverage for the high coverage regimes. 

 Lattice kinetic Monte Carlo simulations within the KMOS framework [36] have been used 

to determine a functional form for all coverage regimes of the adsorption isotherm of a polar 

adsorption process.  Within the lattice KMC framework, the surface stochastically evolves through 

time along a trajectory of configuration space that is probabilistically defined by the transition 

frequencies, w, for the processes considered.  While KMC is often utilized to investigate the time 

evolution of a kinetic system, the steady-state kinetics can be understood based on an average 

across simulation steps in which steady-state has been achieved.  The KMC algorithm used for the 

current work uses the variable step size method, which is described in reference [36]. The 

simulations began with bare surfaces (no adsorbates) and were run for 106 KMC steps. For all 

KMC simulations, 106 KMC steps were more than sufficient to reach equilibrium, and the 
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equilibrium concentrations used to develop the functional forms were taken from the arithmetic 

average across the final 2 x 105 KMC steps. 

 The link between KMC and the analytical solutions for the equilibrium coverage of a 

specific adsorption isotherm is made by the fact that the probability of the system transitioning 

(i.e. transition frequency, w) from configuration u to a subsequent configuration v via reaction 

process q is defined by the same kinetic parameters (activation energy and pre-exponential) as the 

chemical kinetics reaction rate constant for that reaction.  However, the probability of a reaction 

occurring within KMC is also defined by the surface configuration (as opposed to surface 

concentration in the analytical formulations).  That is, if the surface configuration is such that 

process q can occur, the reaction process’s transition frequency is w.  If the configuration is such 

that process q cannot occur, the reaction process’s transition frequency is 0 until a configuration 

arises where the process can occur.  Thus, on a particular site, s, the rate at which a particular 

reaction, q, transitions the system to a new configuration is proportional to the number of times 

that the local configuration exists where process q is available to occur.  That is: 

𝑟𝑞
𝑠 = 𝑤𝑞𝐶𝑜 (11) 

 

where 𝐶𝑜 is 0 or 1, depending on whether or not the configuration exists.  From this, the net rate 

of reaction q is: 

𝑟𝑞
𝑛𝑒𝑡 = ∑ 𝑤𝑞𝐶𝑜

𝑁

1

 

(12) 

 

where N is the total number of a particular site type on which reaction process q can occur. 

If we define configuration u to be the surface with N adsorbates and configuration v to be 

the surface with N-1 adsorbates, the reaction process, q, is desorption and w is defined by: 

𝑤𝑑𝑒𝑠
𝑢→𝑣 = 𝛼𝑒

−𝐸𝑑
𝑅𝑇  

(13) 

 

Alternatively, if the initial configuration, u, is the surface with N adsorbates and configuration v 

is the surface with N+1 adsorbates, the reaction process q is adsorption and w is defined by: 

𝑤𝑎𝑑𝑠
𝑢→𝑣 =

𝑃 ∗ 𝒜𝐶 ∗ 𝑆0

√2𝜋𝑘𝐵𝑇𝑚
𝑒

−𝐸𝑎
𝑅𝑇  

(14) 

where 𝑆0 is the steric factor, P is the pressure and 𝒜𝐶  is the area corresponding to the KMC cell 

for which the transition is being defined (which can be larger than a single site). In our simulations, 

𝒜𝐶  corresponds to a single KMC unit cell, which can be larger than one crystallographic primitive 

unit cell. 
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 From this, the evolution of the surface concentration in a KMC simulation containing 

adsorption and desorption processes is given by: 

𝑑𝜃

𝑑𝑡
= 𝑟𝑎𝑑𝑠

𝑛𝑒𝑡 − 𝑟𝑑𝑒𝑠
𝑛𝑒𝑡 

(15) 

 

The equilibrium surface coverages depend upon the balance of the rates of adsorption and 

desorption, which in turn depend upon the adsorption and desorption transition frequencies (i.e. 

𝑊𝐸𝑞 =
𝑤𝑎𝑑𝑠

𝑤𝑑𝑒𝑠
 ). To find a functional form that extends across the entire realistic parameter space for 

the ratio of wads to wdes, realistic upper and lower bounds of adsorption equilibrium constants were 

determined and KMC simulations covering equilibrium constants spanning the entire realistic 

parameter space have been investigated. Realistic ranges for the kinetic parameters are shown in 

Table I, and were used to determine realistic bounds for the equilibrium constant.  Based on the 

boundaries in Table I, the lower and upper bounds for realistic thermodynamic equilibrium 

constants for gas-solid adsorption are 10-26 and 1013 respectively, with 1 bar as the reference 

pressure (P). We do not include the reference states for the surface states explicitly, which implies 

that they cancel, in line with common practice for the thermodynamic analysis of adsorption on 

surfaces [37, 38]. The molecular mass of methanol (32 atomic mass units) was used in the 

adsorption rate constant: all phase molecules under standard conditions have masses within 1 order 

of magnitude of methanol, so the bounds here are broad and realistic. The isotherms obtained are 

applicable to all molecules. 

TABLE I. Upper and lower bounds for all relevant parameters in kads and kdes  

 Lower Bound Upper Bound 

P 10-8 bar 10 bar 

𝑆0 10-6 1 

T 5 K 1000 K 

Ed 10 kJ/mol 200 kJ/mol 

Ea 0 kJ/mol N/A 

𝛼 109 s-1 1018 s-1 

 

 The adsorption isotherms for a polar molecule have been investigated on two distinct, 

multi-species surfaces:  the fluorite (111) surface (e.g. CeO2) and the perovskite (100) surface (e.g. 

CaTiO3), shown in Figure 1. Below, we consider the sites corresponding to A and B in Equations 

16 and 17 to be a cation and an anion, though the work is general enough to apply to other surfaces. 

Within this context, the adsorption process has been investigated for the situations of non-

dissociative adsorption and dissociative adsorption in the absence of diffusion limitations:  

1) Non-dissociative Adsorption (a.k.a. Molecular Adsorption) occurs where there is a 

bridging of a polar molecule between the two distinct surface species (e.g. molecular adsorption 
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of CH3OH bridging between a cation and an anion with the CH3O end occupying the cation site 

and the H end occupying the anion site), but no dissociation of the molecule occurs. 

2) Dissociative adsorption occurs where immediately upon adsorption, the molecule 

dissociates (e.g. dissociative adsorption of CH3OH that results in CH3O
- occupying the cation site 

and the H+ occupying the anion site).   

The conditions that must be satisfied for the adsorption processes to occur are: an 

unoccupied cation site and at least one unoccupied first nearest neighbor anion site.  As can be 

seen in Figure 1, this gives a maximum of three molecular orientations for each cation site on the 

fluorite (111) surface and four molecular orientations on the perovskite (100) surface.  If more 

than one of the neighboring anion sites are unoccupied, the orientation of the adsorbate is randomly 

selected with an equal probability defined by the adsorption transition frequency.  Within the KMC 

simulation of this study, the simulation size contains on the order of 400 unit cells and periodic 

boundary conditions are applied in the x and y directions, where this simulation size is large enough 

to provide sufficient KMC statistics and avoid simulation-size related artifacts. We have also 

performed simulations with 50 site pairs, and we have not observed differences between the two 

sizes. Additionally, if there were long-range finite size effects (such as ordering), these would 

appear as kinks in the isotherm -- as seen in the figures of this work, no such kinks were observed.   

The surface unit cell for each structure investigated is indicated by the black box in Figure 

1.  There are two distinct anion sites and two distinct cation sites in each structure.  Each orientation 

on each surface site has its own transition frequency, w, though in reality, the kinetics of each is 

defined by the same energetics.  As a result of this, the net transition frequency for adsorption 

processes on each cation site is: 

𝑤𝐴𝑑𝑠
𝑛𝑒𝑡,𝐹𝑙𝑢𝑜𝑟𝑖𝑡𝑒 = 𝑤𝑎𝑑𝑠

𝐴−𝐵1 + 𝑤𝑎𝑑𝑠
𝐴−𝐵2 + 𝑤𝑎𝑑𝑠

𝐴−𝐵3 
 

(16) 

𝑤𝐴𝑑𝑠
𝑛𝑒𝑡,𝑃𝑒𝑟𝑜𝑣𝑠𝑘𝑖𝑡𝑒 = 𝑤𝑎𝑑𝑠

𝐴−𝐵1 + 𝑤𝑎𝑑𝑠
𝐴−𝐵2 + 𝑤𝑎𝑑𝑠

𝐴−𝐵3+𝑤𝑎𝑑𝑠
𝐴−𝐵4 

 

(17) 

where 𝑤𝑎𝑑𝑠
𝐴−𝐵1 would indicate the transition frequency for an adsorption process to occur where the 

molecule is bridging (or dissociating) between the cation site, A, and the neighboring anion site, 

B1, as shown for each surface configuration in Figure 1.  In a more generalized form, the net 

transition frequency of adsorption on a cation site that has multiple possible orientations between 

surrounding anion sites is given as: 

𝑤𝐴𝑑𝑠
𝑛𝑒𝑡 = ∑ 𝑤𝑎𝑑𝑠

𝑖

𝑀

𝑖=1

 

 

(18) 

where M is the number of possible orientations on all sites within the kinetic Monte Carlo 

simulation cell (𝒜𝐶), and 𝑤𝑎𝑑𝑠
𝑖  is the adsorption rate constant for a specific A-B orientation, i.  The 

rate constants from Eq. 2 and 3 are different from the transition frequencies in KMC, since the 
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former depends on concentrations and the latter depends on configurations.  To understand the 

relationship between the chemical kinetics rate constant for adsorption and the KMC transition 

frequency for adsorption, we need to look at the net rate of adsorption. To compare the net rate of 

adsorption from KMC to the net rate of adsorption from the analytical solution for a given surface 

area, we must convert the relative rate from Eq. 6 to an absolute rate (i.e. 
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

𝑚2𝑠
) by dividing 

Eq. 6 by area 𝒜𝑢 and then multiplying by the area considered in the KMC simulation,  𝒜𝐶 . In 

doing so, comparing the absolute rates of adsorption from Eqs. 6 and 18 (for an area of 𝒜𝐶): 

𝑘𝑎𝑑𝑠  𝑃[𝐴]

𝒜𝑈
𝒜𝐶   𝑣𝑒𝑟𝑠𝑢𝑠 ∑ 𝑤𝑎𝑑𝑠

𝑖 𝐶𝑜

𝑀

𝑖=1

 

 

(19) 

For our simulations, 𝒜𝐶  = 2𝒜𝑈  , because our KMC unit cells encompassed 2 cations and 2 anions. 

We can find a relationship between kads and wads with the use of a symmetry factor, X, that 

corresponds to the presence of equivalent configurations in the KMC that are not separated 

explicitly in the mean-field equations. For the case when [𝐴] = 𝐶𝑜: 

𝑋(2𝑘𝑎𝑑𝑠 𝑃) = ∑ 𝑤𝑎𝑑𝑠
𝑖

𝑀

𝑖=1

 

 

(20) 

where X is the factor that accounts for the number of possible adsorption orientations in the area 

𝒜𝑈. In this case, the number of orientations comes from the symmetry, and we find that X= 3 for 

the fluorite (111) structure and X=4 for the perovskite (100) structure. In our simulations, the 

fluorite structure has 6 orientations in within a KMC unit cell (𝒜𝐶  = 2.534x10-19 m2), and the 

perovskite structure has 8 orientations within a KMC unit cell (𝒜𝐶  = 1.46x10-19 m2).  

 

FIG. 1. (Left) Flourite (111) Structure and (Right) perovskite (100) structure.  The black box 

indicates a single surface KMC unit cell. A and B labels indicate surface cation and anion sites 

respectively. 

The surface coverage for the upper and lower bounds of the equilibrium transition 

frequency ratio was calculated across a range of pressures that corresponds to coverages in the 
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range of [0,1].  The calculated functional form is general for each surface geometry and each 

adsorption type and thus, the atomic surface species are less important than the geometry of the 

surface which defines the way in which the adsorption process occurs. 

B. Generalization of the adsorption isotherms 

The isotherms for low and medium coverages (Eqs. 7 and 10) can be extended to any value 

of the equilibrium constant based on a shift along the log(P) axis, since K appears as a coefficient 

of P.  That is, to determine the coverage of a different isotherm, 𝜃2(𝑃), where K1 is related to K2 

by a constant, c, we have: 

𝑐𝐾1 = 𝐾2 (21) 

𝜃2 =
𝑐𝐾1𝑃

1 + 𝑐𝐾1𝑃
 

(22) 

Which can be rewritten as: 

𝜃2 =
10𝐿𝑜𝑔(𝑐𝐾1)10𝐿𝑜𝑔(𝑃)

1 + 10𝐿𝑜𝑔(𝑐𝐾1)10𝐿𝑜𝑔(𝑃)
=

10𝐿𝑜𝑔(𝐾1)+𝐿𝑜𝑔(𝑃)+𝐿𝑜𝑔(𝑐)

1 + 10𝐿𝑜𝑔(𝐾1)+𝐿𝑜𝑔(𝑃)+𝐿𝑜𝑔(𝑐)
 

(23) 

 

This shows that when changing the equilibrium constant from K1 to K2, the isotherm has the same 

functional form, with the new coverage 𝜃2, shifted along the log(P) axis by a factor of c.  The same 

can be shown for the medium coverage case from eq. 10.  It is clear that the most important factor 

for determining any given isotherm is the equilibrium constant and also that a generalized 

functional form exists for all isotherms with respect to a given surface geometry, provided that K 

appears as a coefficient of P in the form of the isotherm that is solved for  coverage.  If the KMC 

derived isotherms also have this attribute (that K can be treated as a coefficient of P when the 

isotherm is solved for coverage) then the KMC derived isotherms will also be generalizable for 

arbitrary values of K.  

III.  Results 

 In the current section, we present functional forms for the adsorption isotherms 

for both the (111) fluorite and (100) perovskite surface geometries (with either the pressure or 

coverage being the dependent variable).  The generalizability of the functional forms for any 

value of K will be shown. In all equations of this manuscript, “log” implies the logarithm with 

base 10. We use a factor of (P/P) to obtain unitless quantities for separation of the log terms, 

utilizing KP x (P/P) = (KP) x (P/P).  The KMC simulations started with bare surfaces (no 

adsorbates) and were run until equilibrium was reached. The equilibrium coverages from the 

KMC simulations, which were used to obtain the functional forms for each of the adsorption 

isotherms, is provided in the supplemental material (available online) [39] Tables SI – SIV. 

A. Perovskite (100) surface geometry 
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1. Non-Dissociative Adsorption (Molecular Adsorption) 

 To obtain an isotherm functional form for molecular adsorption on the (100) perovskite 

surface geometry, 100 different pressures in the range 0.0014 to 1606525 bar were applied to an 

adsorption isotherm with KP = 0.018001.  This corresponds to 100 KMC simulations which were 

used to calculate the steady-state surface coverage at each pressure.  The functional dependence 

of the coverage on the log of pressure for the adsorption isotherm is described by piecewise fitting 

applied to two regions (fit to KMC data shown in Figure 2):   

𝑭𝒐𝒓 𝑳𝒐𝒈(
𝑷

𝑷°
) 𝝐 [– 𝟐. 𝟖𝟓𝟓𝟏, 𝟏. 𝟒𝟎𝟑𝟓],     

𝜽 = 𝟎. 𝟏𝟏𝟖𝟑𝟔𝟔 + 𝟎. 𝟐𝟐𝟓𝟒𝟎𝟐 (𝑳𝒐𝒈 (
𝑷

𝑷°
) − 𝑳𝒐𝒈 (

𝑲𝑷°

0.072004
))

+ 𝟎. 𝟏𝟒𝟎𝟑𝟏𝟕 (𝑳𝒐𝒈 (
𝑷

𝑷°
) − 𝑳𝒐𝒈 (

𝑲𝑷°

0.072004
))

𝟐

+ 𝟎. 𝟎𝟎𝟔𝟒𝟖𝟒𝟎𝟐(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))𝟑

− 𝟎. 𝟎𝟏𝟗𝟖𝟑𝟐𝟗(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))𝟒

− 𝟎. 𝟎𝟎𝟒𝟓𝟏𝟑𝟐(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))𝟓 

(24) 

𝑭𝒐𝒓 𝑳𝒐𝒈(
𝑷

𝑷°
) 𝝐 [𝟏. 𝟒𝟎𝟑𝟓, 𝟔. 𝟐𝟎𝟓𝟖𝟖𝟕], 

𝜽 = −𝟎. 𝟐𝟕𝟎𝟔𝟓𝟏 + 𝟎. 𝟗𝟖𝟏𝟎𝟓𝟗 (𝑳𝒐𝒈 (
𝑷

𝑷°
) − 𝑳𝒐𝒈 (

𝑲𝑷°

0.072004
))

− 𝟎. 𝟑𝟎𝟐𝟕𝟖 (𝑳𝒐𝒈 (
𝑷

𝑷°
) − 𝑳𝒐𝒈 (

𝑲𝑷°

0.072004
))

𝟐

+ 𝟎. 𝟎𝟒𝟓𝟕𝟖𝟑𝟔(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))𝟑

− 𝟎. 𝟎𝟎𝟑𝟑𝟎𝟐𝟒𝟔(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))𝟒

+ 𝟎. 𝟎𝟎𝟎𝟎𝟖𝟔𝟓𝟕𝟏𝟗(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))𝟓   

(25) 
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FIG. 2. Functional (red line) dependence of coverage on pressure from KMC simulations (black 

symbols) of molecular adsorption on the perovskite (100) surface, fitted with a piecewise 

function. 

 The inverse function, which is the functional dependence of the log of pressure on the 

coverage is described using piecewise fitting applied to four regions as follows functions (fit to 

KMC data in Figure 3): 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟎𝟎𝟎𝟐𝟓, 𝟎. 𝟏𝟐𝟒𝟔𝟐𝟓], 

𝑳𝒐𝒈 (
𝑷

𝑷°
) = (𝟎. 𝟗𝟒𝟒𝟒𝟑𝟗 + 𝟎. 𝟒𝟔𝟑𝟎𝟎𝟓 ∗ 𝑳𝒏(𝜽)) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
) 

 
 

(26) 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟏𝟐𝟔𝟒𝟓, 𝟎. 𝟖𝟕𝟏𝟕𝟓], 

𝑳𝒐𝒈 (
𝑷

𝑷°
) = (−𝟎. 𝟔𝟏𝟐𝟎𝟏𝟗 + 𝟔. 𝟎𝟎𝟒𝟐𝟖𝜽 − 𝟖. 𝟑𝟔𝟏𝟑𝟔𝜽𝟐 + 𝟔. 𝟐𝟏𝟓𝟑𝟐𝜽𝟑)

− 𝑳𝒐𝒈(
𝑲𝑷°

0.072004
) 

 
 
 
 
 

(27) 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟖𝟕𝟏𝟕𝟓, 𝟎. 𝟗𝟗𝟏], 

𝑳𝒐𝒈 (
𝑷

𝑷°
) = (−𝟓𝟖𝟎. 𝟒𝟑𝟑 + 𝟐𝟎𝟎𝟏. 𝟏𝟐𝜽 − 𝟐𝟐𝟗𝟒. 𝟐𝟔𝜽𝟐 + 𝟖𝟕𝟖. 𝟑𝟗𝟒𝜽𝟑)

− 𝑳𝒐𝒈(
𝑲𝑷°

0.072004
) 

 
 

(28) 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟗𝟗𝟏, 𝟎. 𝟗𝟗𝟕𝟐𝟓], 

𝑳𝒐𝒈 (
𝑷

𝑷°
) = (−𝟏𝟏𝟒𝟕𝟔𝟕 + 𝟑𝟓𝟑𝟏𝟎𝟕𝜽 − 𝟑𝟔𝟐𝟏𝟓𝟎𝜽𝟐 + 𝟏𝟐𝟑𝟖𝟏𝟔𝜽𝟑)

− 𝑳𝒐𝒈(
𝑲𝑷°

0.072004
) 

(29) 
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FIG. 3. Functional dependence (red line) of pressure on coverage from KMC simulations (black 

symbols) of molecular adsorption on the perovskite (100) surface, fitted with a piecewise 

function. 

In order to illustrate the generalizability of the adsorption isotherm across an entire 

parameter space of equilibrium rate constants, multiple adsorption isotherms have been simulated 

and the shift along the log(P) axis has been investigated.  Figure 4 shows that the adsorption 

isotherms are shifted along the pressure axis by a factor of 𝑐 = 𝐿𝑜𝑔(
𝑊2

𝑊1
).  The central line is the 

generalized fit to the original isotherm and the curves on the left and right are the lower and upper 

bound with the shifted fit functional form.  The markers indicate the actual output of the adsorption 

isotherm from the KMC simulation. 

 

 

FIG. 4. Illustration of the generalization of the functional form for any isotherm between the 

upper and lower bounds.  The central data set corresponds to the location along the log(P) axis of 

the original fit and the markers are the KMC data.  The data sets to the left and right of the 

central data set are the extremes close to the upper bound (KP = 1.656x1012) and lower bound 

(KP = 1.656x10-25) of the equilbrium parameter space. The data is plotted with the piece-wise 

function from Eqs 24 and 25.  As can be seen, this single piecewise function matches all of the 

KMC simulations. 
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2. Dissociative Adsorption 

Dissociative adsorption was investigated across the same range of pressures for the same 

value of K. The functional dependence of coverage on the log of pressure is described by piecewise 

fitting applied to two regions as follows (fit to KMC data shown in Figure 5): 

𝑭𝒐𝒓 𝑳𝒐𝒈(
𝑷

𝑷°
) 𝝐 [−𝟐. 𝟖𝟓𝟓𝟏𝟖𝟑𝟑, 𝟏. 𝟏𝟑𝟏𝟔𝟗], 

𝜽 = 𝟎. 𝟏𝟔𝟏𝟓𝟓𝟔 + 𝟎. 𝟏𝟓𝟖𝟖𝟖𝟑 (𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))

+ 𝟎. 𝟎𝟔𝟎𝟒𝟔𝟐𝟒 (𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))

𝟐

+ 𝟎. 𝟎𝟎𝟒𝟒𝟖𝟑𝟎𝟖 (𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))

𝟑

− 𝟎. 𝟎𝟎𝟑𝟑𝟐𝟓𝟔 (𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))

𝟒

− 𝟎. 𝟎𝟎𝟎𝟕𝟎𝟓𝟐(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))𝟓   

(30) 
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𝑭𝒐𝒓 𝑳𝒐𝒈(
𝑷

𝑷°
) 𝝐 [𝟏. 𝟏𝟑𝟏𝟔𝟗, 𝟔. 𝟐𝟎𝟓𝟖𝟖𝟕], 

𝜽 = 𝟎. 𝟏𝟕𝟑𝟗𝟗𝟕 + 𝟎. 𝟎𝟓𝟒𝟒𝟗𝟐𝟕 (𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))

+ 𝟎. 𝟐𝟐𝟒𝟐𝟒𝟔 (𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))

𝟐

− 𝟎. 𝟎𝟖𝟔𝟔𝟐𝟏𝟏 (𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))

𝟑

+ 𝟎. 𝟎𝟏𝟐𝟑𝟒𝟐𝟗 (𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))

𝟒

− 𝟎. 𝟎𝟎𝟎𝟔𝟐𝟓𝟕(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
))𝟓   

(31) 

 

 

FIG. 5. Functional dependence (red line) of coverage on pressure from KMC simulations (black 

symbols) of dissociative adsorption on the perovskite (100) surface, fitted with a piecewise 

function. 

The functional dependence of the log of pressure on the coverage can be described using 

piecewise fitting applied to four regions as follows (fit to KMC data shown in Figure 6): 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟎𝟎𝟗𝟔𝟐𝟓, 𝟎. 𝟎𝟕𝟐𝟓𝟔𝟐𝟓], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (𝟏. 𝟕𝟒𝟕𝟗𝟑 + 𝟎. 𝟗𝟓𝟎𝟖𝟑𝟖 ∗ 𝑳𝒏(𝜽) ) − 𝑳𝒐𝒈(

𝑲𝑷°

0.072004
) 

 

 

(32) 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟎𝟕𝟐𝟓𝟔𝟐𝟓, 𝟎. 𝟖𝟏𝟒𝟐𝟓], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (−𝟏. 𝟒𝟎𝟐𝟎𝟓 + 𝟏𝟎. 𝟔𝟕𝟗𝟑𝜽 − 𝟏𝟓. 𝟐𝟓𝟔𝟑𝜽𝟐 + 𝟏𝟎. 𝟑𝟏𝟖𝟕𝜽𝟑 )

− 𝑳𝒐𝒈(
𝑲𝑷°

0.072004
) 

 

 

(33) 
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𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟖𝟏𝟒𝟐𝟓, 𝟎. 𝟗𝟖𝟒𝟑𝟏], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (−𝟐𝟕𝟒. 𝟐𝟑𝟔 + 𝟗𝟕𝟒. 𝟑𝟓𝟔𝜽 − 𝟏𝟏𝟒𝟕. 𝟕𝟒𝜽𝟐 + 𝟒𝟓𝟐. 𝟗𝟗𝟏𝜽𝟑 )

− 𝑳𝒐𝒈(
𝑲𝑷°

0.072004
) 

(34) 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟗𝟖𝟒𝟑𝟏, 𝟎. 𝟗𝟗𝟒𝟖𝟕𝟓], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (−𝟏𝟑𝟏𝟕𝟎. 𝟐 + 𝟒𝟒𝟑𝟎𝟓. 𝟔𝟎𝜽 − 𝟒𝟗𝟐𝟖𝟎. 𝟓𝜽𝟐 + 𝟏𝟖𝟏𝟓𝟐𝜽𝟑 )

− 𝑳𝒐𝒈(
𝑲𝑷°

0.072004
) 

(35) 

  

 

 

 

FIG. 6. Functional dependence (red line) of pressure on coverage from KMC simulations (black 

symbols) of dissociative adsorption on the perovskite (100) surface, fitted with a piecewise 

function. 

 In the dissociative case, the horizontal shift again reproduces the adsorption isotherms 

across the entire parameter space K in a similar fashion to the molecular adsorption case. 

B. Fluorite (111) surface geometry 

1. Molecular Adsorption 

To obtain a functional form for molecular adsorption on the (111) fluorite surface 

geometry, 100 KMC simulations were run with pressures in the range 1.1x10-9 to 1.262 (bar) with 

KP = 916313.5.  The functional dependence of coverage on the log of pressure for this isotherm 

is described by piecewise fitting applied to two regions as follows (fit to KMC data shown in 

Figure 7): 

𝑭𝒐𝒓 𝑳𝒐𝒈(
𝑷

𝑷°
) 𝝐 [−𝟖. 𝟗𝟓𝟗𝟗, −𝟓. 𝟔𝟎𝟕𝟐𝟕], 

(36) 
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𝜽 = −𝟏𝟖𝟕. 𝟒𝟎𝟖 − 𝟏𝟑𝟎. 𝟔𝟗𝟓(𝑳𝒐𝒈 (
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))

− 𝟑𝟓. 𝟔𝟒𝟓𝟖(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟐

− 𝟒. 𝟕𝟖𝟎𝟐𝟐(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟑

− 𝟎. 𝟑𝟏𝟔𝟑𝟖𝟒(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟒

− 𝟎. 𝟎𝟎𝟖𝟐𝟖𝟗𝟑(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟓   

𝑭𝒐𝒓 𝑳𝒐𝒈 (
𝑷

𝑷°
) 𝝐 [−𝟓. 𝟔𝟎𝟕𝟑, 𝟎. 𝟏𝟎𝟏𝟐𝟎𝟑],  

𝜽 = 𝟎. 𝟗𝟗𝟗𝟒𝟏𝟗 − 𝟎. 𝟎𝟎𝟎𝟒𝟎𝟏𝟓(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))

− 𝟎. 𝟎𝟎𝟐𝟗𝟓𝟐𝟒(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟐

− 𝟎. 𝟎𝟎𝟎𝟖𝟕𝟒𝟔(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟑

+ 𝟗. 𝟕𝟕𝟐𝟐𝒙𝟏𝟎−𝟓(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟒

+ 𝟗. 𝟔𝟖𝟎𝟏𝒙𝟏𝟎−𝟓(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟓 

(37) 

 

 

FIG. 7. Functional dependence (red line) of coverage on pressure from KMC simulations (black 

symbols) of molecular adsorption on the fluorite (111) surface, fitted with a piecewise function. 

The functional dependence of the log of pressure on the coverage for a particular isotherm 

is described using piecewise fitting applied to four regions as follows (fit to KMC data shown in 

Figure 8): 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟎𝟎𝟐𝟏𝟐𝟓, 𝟎. 𝟎𝟓𝟕𝟐𝟓], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (−𝟓. 𝟖𝟖𝟔𝟕𝟏 + 𝟎. 𝟒𝟗𝟓𝟖𝟓𝟖 ∗ 𝑳𝒏(𝜽) ) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
) 

(38) 
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𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟎𝟓𝟕𝟐𝟓, 𝟎. 𝟕𝟗𝟖𝟓], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (−𝟕. 𝟔𝟎𝟑𝟕𝟓 + 𝟔. 𝟎𝟖𝟐𝟎𝟏𝜽 − 𝟖. 𝟔𝟗𝟗𝟐𝟕𝜽𝟐 + 𝟔. 𝟓𝟏𝟎𝟐𝜽𝟑)

− 𝑳𝒐𝒈(
𝑲𝑷°

916313.5
) 

 
 

(39) 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟕𝟗𝟖𝟓, 𝟎. 𝟗𝟕𝟐𝟐𝟓], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (−𝟏𝟏𝟐. 𝟗𝟖𝟑 + 𝟑𝟖𝟔. 𝟑𝟐𝜽 − 𝟒𝟔𝟓. 𝟗𝟑𝜽𝟐 + 𝟏𝟖𝟗. 𝟕𝟓𝟐𝜽𝟑 )

− 𝑳𝒐𝒈(
𝑲𝑷°

916313.5
) 

 
 

(40) 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟗𝟕𝟐𝟐𝟓, 𝟎. 𝟗𝟗𝟐], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (𝟕𝟓𝟔𝟒. 𝟓𝟏 − 𝟐𝟐𝟏𝟒𝟏. 𝟔𝜽 + 𝟐𝟏𝟒𝟗𝟗. 𝟗𝜽𝟐 − 𝟔𝟗𝟐𝟒. 𝟓𝟒𝜽𝟑)

− 𝑳𝒐𝒈(
𝑲𝑷°

916313.5
) 

 

(41) 

 

 

FIG. 8. Functional dependence (red line) of pressure on coverage from KMC simulations (black 

symbols) of molecular adsorption on the fluorite (111) surface, fitted with a piecewise function. 

 Once again, the functional form is shifted along the log(P) axis and shows that a different 

surface geometry does not affect the ability of the function to represent the entire parameter space 

in a general form. 
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FIG. 9. Illustration of the generalization of the functional form for any isotherm between the 

upper and lower bounds.  The central data set corresponds to the location along the log(P) axis of 

the original fit and the markers are the KMC data.  The data sets to the left and right of the 

central data set are the etremes close to the upper bound (KP = 1.248x1014) and lower bound 

(KP = 1.248x10-23) of the equilbrium parameter space. The data is plotted with the piece-wise 

function from Eqs 36 and 27.  As can be seen, this single piecewise function matches all of the 

KMC simulations. 

2.  Dissociative Adsorption 

The generalized functional form of the adsorption isotherm for dissociative adsorption on 

the Fluorite (111) surface geometry has been investigated for the same adsorption isotherm as the 

molecular adsorption case.  The functional dependence of coverage on the log of pressure for 

isotherm is described by piecewise fitting applied to two regions as follows (fit to KMC data shown 

in Figure 10): 

𝑭𝒐𝒓 𝑳𝒐𝒈(
𝑷

𝑷°
) 𝝐 [−𝟖. 𝟗𝟓𝟗𝟗, −𝟓. 𝟏𝟓𝟒𝟐𝟐], 

𝜽 = −𝟏𝟗. 𝟓𝟓𝟓𝟖 − 𝟏𝟒. 𝟔𝟐𝟑𝟔(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))

− 𝟑. 𝟗𝟖𝟐𝟑𝟖(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟐

− 𝟎. 𝟓𝟏𝟒𝟓𝟐𝟐(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟑

− 𝟎. 𝟎𝟑𝟐𝟏𝟐𝟔(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟒

− 𝟎. 𝟎𝟎𝟎𝟕𝟖𝟐𝟗𝟐𝟔(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟓   

(42) 
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𝑭𝒐𝒓 𝑳𝒐𝒈(
𝑷

𝑷°
) 𝝐 [−𝟓. 𝟏𝟓𝟒𝟐𝟐, 𝟎. 𝟏𝟎𝟏𝟐𝟎𝟑], 

𝜽 = 𝟎. 𝟗𝟗𝟗𝟔𝟏𝟐𝟑 − 𝟎. 𝟎𝟎𝟒𝟑𝟑𝟖𝟑(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))

− 𝟎. 𝟎𝟎𝟖𝟔𝟔𝟐(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟐

− 𝟎. 𝟎𝟎𝟒𝟐𝟕𝟎𝟕(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟑

− 𝟎. 𝟎𝟎𝟏𝟏𝟕𝟐𝟕(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟒

− 𝟐. 𝟖𝟎𝟓𝟒𝟗𝒙𝟏𝟎−𝟓(𝑳𝒐𝒈(
𝑷

𝑷°
) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
))𝟓 

(43) 

 

 

FIG. 10. Functional dependence (red line) of pressure on coverage from KMC simulations (black 

symbols) of dissociative adsorption on the fluorite (111) surface, fitted with a piecewise 

function. 

The functional dependence of the log of pressure on coverage is described by piecewise 

fitting describing four regions (fit to KMC data shown in Figure 11): 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟎𝟐𝟑, 𝟎. 𝟏𝟐𝟕𝟖𝟕𝟓], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (−𝟓. 𝟑𝟓𝟎𝟓𝟗 + 𝟎. 𝟗𝟔𝟏𝟏𝟏𝟖 ∗ 𝑳𝒏(𝜽)) − 𝑳𝒐𝒈(

𝑲𝑷°

916313.5
)   

 
 

(44) 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟏𝟐𝟕𝟖𝟕𝟓, 𝟎. 𝟕𝟗𝟓𝟖𝟏𝟑], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (−𝟖. 𝟑𝟏𝟖𝟒 + 𝟗. 𝟏𝟏𝟔𝟒𝟗𝜽 − 𝟏𝟏. 𝟒𝟖𝟎𝟏𝜽𝟐 + 𝟕. 𝟓𝟖𝟏𝟓𝟏𝜽𝟑)

− 𝑳𝒐𝒈(
𝑲𝑷°

916313.5
) 

 
 

(45) 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟕𝟗𝟓𝟖𝟏𝟑, 𝟎. 𝟗𝟕𝟓𝟕], (46) 
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𝑳𝒐𝒈(
𝑷

𝑷°
) = (−𝟏𝟗𝟐. 𝟕𝟕𝟕 + 𝟔𝟔𝟒. 𝟔𝟎𝟏𝜽 − 𝟕𝟖𝟕. 𝟖𝟓𝟒𝜽𝟐 + 𝟑𝟏𝟒. 𝟏𝟎𝟏𝜽𝟑)

− 𝑳𝒐𝒈(
𝑲𝑷°

916313.5
) 

𝑭𝒐𝒓 𝜽 𝝐 [𝟎. 𝟗𝟕𝟓𝟕, 𝟎. 𝟗𝟗𝟔], 

𝑳𝒐𝒈(
𝑷

𝑷°
) = (𝟐𝟒𝟏𝟎𝟔. 𝟔 − 𝟕𝟑𝟕𝟐𝟑. 𝟗𝜽 + 𝟕𝟓𝟏𝟎𝟎. 𝟓𝜽𝟐 − 𝟐𝟓𝟒𝟖𝟒. 𝟔𝜽𝟑)

− 𝑳𝒐𝒈(
𝑲𝑷°

916313.5
) 

(47) 

 

 

FIG. 11. Functional dependence (red line) of pressure on coverage from KMC simulations (black 

symbols) of dissociative adsorption on the fluorite (111) surface, fitted with a piecewise 

function. 

 Again the shift along the log(P) axis can be utilized to determine all adsorption isotherms 

for dissociative adsorption on the Fluorite (111) surface geometry. 

IV.  Discussion 

 By fitting to data obtained from KMC simulations, functional forms for the isotherms have 

been calculated for the coverage as a function of the log of pressure and the log of pressure as a 

function of coverage for molecular and dissociative adsorption processes on two distinct surface 

geometries. The functional form is general, where all adsorption isotherms can be determined by 

a horizontal shift of  𝑐 =
𝑊2

𝑊1
  along the log(P) axis as shown for the analytical solutions in Section 

2.2.  Interestingly, it was found, for both geometries and adsorption processes, that there was no 

cutoff coverage for this surface (i.e. that the coverage always reached 100 percent).  In previous 

adsorption studies involving a second order dissociative molecular adsorption process on equal 

sites, it was found that there was a maximum coverage that the surface would reach that was close 

to 90 percent coverage [1, 40].  

 In Figure 12 the KMC isotherms versus the analytical approximations in Eqs. 7 and 10 

have been plotted.  These plots give insights into what governs the functional forms of the 

isotherms, and similar qualitative behavior is observed for both surface geometries.  At very low 
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coverages (i.e. ϴ < 0.01), there is nearly perfect agreement between the KMC simulations and the 

analytical solution.  This shows that at very low coverages, the approximation that the “adjacent 

anion sites” are always unoccupied is sufficiently accurate.  For low coverages (i.e. 0.01< ϴ < 

0.1), the KMC data for both non-dissociative and dissociative adsorption processes begin to 

deviate from the analytical solutions. The deviation for the case of dissociative adsorption is more 

extreme and results from an increasing concentration of isolated dissociated species occupying the 

surface: these are cases where an isolated M+ species is left behind after the M- species originally 

associated with it combines with a different M+ and leaves behind the original M+ as the remnant. 

Such isolated dissociated species have a longer residence time while they wait to find a new partner 

for leaving, and thus lead to an underestimation of the coverage from Eqs. 7 and 10.  From low to 

high coverage (i.e. ϴ > 0.1), the KMC data for molecular adsorption falls between the analytical 

solutions from Eq. 7 and 10: this is because in molecular adsorption, the filling of sites is correlated 

such that the odds of finding an open B site adjacent to an open A site are higher than the odds 

implied by Eq. 10. In contrast, for coverages greater than ~0.25 on both surface geometries, the 

KMC data for dissociative adsorption falls below both Eqs. 7 and 10.  This results from an 

increased accumulation of dissociated species.  As the concentration of dissociated species 

increases, the surface contains an increasing number of isolated sites associated with isolated 

species -- and paired sites are necessary for adsorption to occur, causing the analytical solutions to 

overestimate the coverage.  Ultimately, we find that the KMC simulations for the non-dissociative 

adsorption cases are fairly well described by Eq. 10, though the piecewise fitting from this work 

is more accurate than Eq. 10.  We find that the dissociative adsorption cases deviate significantly 

from both analytical solutions, and are thus only well described by the piecewise fitting from this 

work. 

 

FIG. 12. Comparison of KMC adsorption isotherms to analytical solutions in Equations 7 and 10 

for a) the Fluorite structure KP= 916313.5 and b) the perovskite structure for KP = 0.072004. 

 The KMC simulations that have been performed in the current study do not consider any 

coverage dependence (or molecular interactions) for adsorption, however, the same functional 

forms used here can be used when a coverage dependence is involved simply by using a coverage 

dependent equilibrium constant (i.e. K(ϴ)). Thus, the equations in this work can be used for cases 
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with molecular interactions when their interactions can be described as a function of coverage. If 

a coverage dependent K is being considered, it is recommended to use the piecewise fits which 

have been solved for the log of pressure (e.g., Eqs 44-47) since in this case an explicit function is 

formed, with all terms depending on ϴ appearing on the right side of the equation.  Whereas, using 

the piecewise fits which have been solved for the coverage (e.g., Eqs. 42-43) in the context of a 

coverage dependent rate constant results in an implicit function which is harder to solve.  

During our study, we found that the functional forms which were solved for coverage (e.g., 

Eqs. 42-43) were prone to numerical errors when using arbitrary values of K: this was due to 

machine rounding errors arising from the K terms with exponents of degree >1 (such numerical 

errors are more likely when using a program such as Excel rather than a program with less 

rounding, such as Mathematica). The functional forms solved for the log of pressure (e.g.,  44-47) 

avoid such numerical errors, since in these expressions the K terms do not have any exponents of 

degree >1. 

V.  Conclusions 

 Generalized functional forms for adsorption isotherms have been obtained from fitting 

KMC simulated data for polar non-dissociative adsorption as well as polar dissociative adsorption 

processes on the perovskite (100) surface and fluorite (111) surface using KMC simulations.  The 

results for the perovskite (100) surface are also applicable to cases with the NaCl (100) structure, 

since the geometry is the same. The functional forms provided give accurate values for the 

coverage as a function of pressure, or pressure as a function of coverage.  In addition, they are 

applicable for any values of the equilibrium constant, and can even be used in cases where the 

equilibrium constant varies as a function of coverage, i.e. K(ϴ). Thus, the equations in this work 

can be used for cases with molecular interactions when their interactions can be described as a 

function of coverage. The functional forms which have been solved for the log of pressure (e.g., 

Eqs. 42-43) are less prone to numerical errors when using arbitrary values of K, and are also easier 

to solve when using a coverage dependent K.  

Supplementary Material 

 See supplementary material for the complete data tables, obtained from KMC simulations, 

used to obtain the adsorption isotherm functional forms. 
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