
Tpetra	Project	Overview
HPCOR	Workshop,	September	2015

Mark	Hoemmen,	Sandia	National	Laboratories1

Introduction
Tpetra,	a	C++	library	that	lives	in	the	Trilinos	software	project,	implements	parallel	
linear	algebra	objects and	parallel	data	(re)distribution.		“Linear	algebra	objects” include	
sparse	graphs and	matrices and	dense	vectors.		Many	applications	and	other	Trilinos	
packages	use Tpetra’s	linear	algebra	objects,	or	depend	on	its parallel	data	
redistribution	facilities.		Tpetra	was	based on	Trilinos’	popular	Epetra	package,	and	
extends	it	with	the	following	design	goals:

1. Permit	graphs,	matrices,	and	vectors	with	huge	dimensions	and	numbers	of	
entries.		“Huge”	means	“not	limited	by	32-bit	integer	indices.”		Let	users	choose	
smaller	integer types	for	performance	reasons.

2. Support	matrices	and	vectors	with	entries	of	many	different	types,	including	
different	precisions,	complex	arithmetic,	and	other	types	for	embedded	analysis	
(e.g.,	automatic	differentiation	and	uncertainty	quantification).

3. Enable	both	distributed- and	shared-memory	parallelism,	in	both	coarse-grained	
computational	kernels	(like	sparse	matrix-vector	multiply)	and	fine-grained	data	
access	by	users.		Do	this	in	as	platform-independent	a	way	as	possible.

Development	Team
About	ten	developers	have	contributed	to	Tpetra	over	its lifetime.		It	has	one	package	
lead	and	full-time	core	developer,	another	part-time	core	developer,	and	two	to	three	
core	contributors.		The	latter	develop	other Trilinos	packages	that	depend	heavily	on	
Tpetra,	in	particular	the	algebraic	multigrid	package	MueLu.		The	largest	single	
concentration	of	developers	is	at	Sandia	National	Laboratories	in	Albuquerque,	NM	and	
Livermore,	CA.		Additional	contributors	and	advanced	users	are	at	Oak	Ridge	National	
Laboratory	and	various	universities	and	research	laboratories	in	the	United	States	and	
Europe.		Team	members	include	staff	and	faculty	at	these	institutions	as	well	as	postdocs	
and	graduate	students.		Tpetra	accepts	contributions	from	many	other	communities.		All	
software	is	open	source and	uses	Trilinos’	distribution	mechanism.

Other	statistics
1. Languages: Tpetra	is	written	entirely	in	C++,	with	configuration	logic	using	the	

open-source	TriBITS	CMake	library	(like	most	other	Trilinos	packages).
2. Lines	of	code:		Tpetra contains	about	250k C++	lines	and	about	4k CMake	lines.
3. Primary	methods:		Tpetra	provides	parallel	sparse	linear	algebra	data	structures	

and	computational	kernels,	and	parallel	data	distribution	and	communication.
4. Types	of	problems/domains/science	application	problems: Tpetra’s	capabilities	

enable	linear	solvers	(iterative	and	direct),	preconditioners,	nonlinear	solvers,	
optimization,	graph	analytics,	embedded	analysis	(automatic	differentiation	and	
stochastic	PDE	discretizations),	and	many	other	numerical	methods.

																																																							
1 Sandia	National	Laboratories	is	a	multi-program	laboratory	managed	and	operated	by	Sandia	Corporation,	a	wholly	owned	

subsidiary	of	Lockheed	Martin	Corporation,	for	the	U.S.	Department	of	Energy’s	National	Nuclear	Security	Administration	under	
contract	DE-AC04-94AL85000.

SAND2015-7037C



5. Scale	of	resources	commonly	used	for	production	runs:	 Applications	based	on	
Tpetra run	on	systems	from	laptops	to	all	of	the	largest	computing	systems	in	the	
world.		Some	applications	have	used	Tpetra at	full	scale	on	leadership	systems (e.g.,	
512k	cores	of	BlueGene/Q).

6. Supercomputers	regularly	used:		All	DOE	systems,	all	European	supercomputing	
systems,	several	Japanese	systems.		Tpetra	comes	with	Trilinos,	which	is	packaged	as	
part	of	the	Cray	LIBSCI	product.

7. Libraries/tools	for	prototyping: Tpetra’s	generic	parallel	data	distribution	and	
redistribution	facilities	make	it	easy	for	developers	to	move	data	between	different	
libraries.		Projects	like	CASL’s	Data	Tool	Kit	(DTK)	build	on	this.		Tpetra	lets	users	
wrap	their	own	data	structures,	or	wrap	a	solver	in	a	third-party	library;	for	example,	
this	lets	us	use	PETSc	sparse	matrices	in	Trilinos’	solvers, and	SuperLU	resp. Hypre	
to	solve	resp.	precondition Tpetra	linear	systems.

8. Libraries/tools	for	production	science	campaigns:		Many	production	science	
campaigns	built	on	Trilinos’	Epetra	data	structures.		Tpetra	offers	them	a	path	
forward	for	exploiting	maximum	parallelism	on	current	and	future	architectures.		
Several NNSA	integrated	codes	efforts either	already	use or	plan	to	start	using
Tpetra.		The	Albany	finite-element	analysis	application	and	the	CASL	project	depend	
on	Tpetra	as	well.

Performance	Portability
Tpetra	serves	as	the	basis	for	applications	to	begin	adopting	performance	portability.		It	
provides	the	fundamental	scalable	data	classes	and	computational	kernels	on	which	
applications	and	other	Trilinos	packages	can	build.		Applications	that	do	not	yet	use
shared-memory	parallelism	can	start	with	Tpetra’s	parallel	computational	kernels,	and
then	use	Tpetra’s	data	structures	and	the	Kokkos	programming	model	to	expand	
parallelism	into	their	own	code.		Tpetra	has	a	history	of	early	adoption	of	abstractions	
over	different	shared-memory	parallel	programming	models,	using	standard	C++	
technology.	 In	fact,	in	2008	its	lead	developer	at	the	time	came	up	with	an	abstraction
that	later	inspired	the	Kokkos	shared-memory	parallel	programming	model.		Over	the	
past	two	years,	we	have	gradually	refactored	Tpetra	to	make	more	use	of Kokkos.		This	
also	makes it	compatible	with	OpenMP,	CUDA,	and	all	back-ends	that	Kokkos	supports.

Exascale	challenges
Exascale	introduces	uncertainty	about	distributed-memory	parallel	programming	
models.		First,	the	increased	likelihood	of	component	failure	may	force	models	that
replace	the	MPI	/	PGAS	idea	of	a	fixed	number	of	parallel	processes	with	permanent	
unique	identifiers,	with	a	“key-value	store”	that	hides	data	ownership.		Tpetra	abstracts	
over	MPI	itself,	but	its	data	distribution	abstractions	will need	revision	in	this	case.		
Second,	Tpetra	currently	assumes	uses	an	MPI + threads	approach	where	only	one	
thread	per	MPI	process	communicates.		If	running	one	MPI	process	per	node,	this	
approach	does	not	exploit	all	the	available	network	bandwidth,	but	the	current	
MPI_THREAD_MULTIPLE	model	does	not	scale.		Tpetra	will	need	to	track	and	even	
contribute	to	ongoing	MPI	developer	discussions.		Tpetra	mitigates	these	challenges	by	
its	strong	connections	to	programming	model	efforts	at	Sandia	National	Laboratories	in	
both	areas	of	uncertainty.


