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Background
• CASL Program Goals and Challenges

– Deploy software for advanced Simulation of PWR and BWR
• Coupled high-fidelity Thermal Hydraulics, Neutronics, CHT 

• UQ, Parameter Sensitivities, Optimization

– Objectives for Thermal Hydraulics (TH)
• Full reactor core coupled physics simulations

• Fuel rod performance on existing systems and new designs

• Grid-to-rod-fretting, mechanical wear due to flow induced vibration

• Corrosive residual unidentified deposits "hot spots"

• QoI dictate level of fidelity for simulations

– “Extensive application of computational fluid dynamics (CFD) in the last two decades 
has clearly revealed turbulence modeling to be the weakest link in the development of 
a reliable numerical methodology.” – Emilio Baglietto, MIT, CASL/THM Lead 

• Near wall turbulence behavior Identified as area of concern

– Wall damping or wall functions or both?

– Accurate prediction of wall gradients desired
• Map variability along a rod spacer span

• High fidelity skin friction and heat flux to improve lower-fidelity zonal based TH models 
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Computational Tools
• Hydra-TH

– Hydra-TH is a hybrid finite-volume/finite-element 
incompressible/low-Mach number CFD code

– Multi-physics CHT toolkit being developed for turbulent 
reactor core simulations.  

– surface-based output.   

– Linear algebra is handled through an abstract interface 
that permits use of popular libraries such as PetSC and 
Trilinos ML  

– The toolkit supports semi- and fully-implicit solvers for 
time-dependent and steady-state 

– Incompressible Navier-Stokes equations with heat 
conduction and transport on heterogeneous unstructured 
meshes. 
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Assessment of Turbulence Models
• RANS Eddy Viscosity Models

– Spalart-Allmaras Eddy Viscosity Model with wall damping
• Requires normal-distance to walls at every integration cell

• Integrate to the wall y+<=5

• Simple wall boundary condition \tilde{nu}=0

• Surface gradients computed using finite-differences

– k-ε Eddy Viscosity Models with y* insensitive wall function
• Requires normal distance in wall adjacent cells

• First cell in log layer, y+=20-40

• nut, eps, tke production modified in wall adjacent cells

• Surface gradients and temperature inferred from wall function

• Turbulence Sub-System Test Problems

– Detailed examination of model accuracy and robustness

– Known expected outcomes

– Contain important flow features present in reactor cores

– Simple to complex
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Background Cont.

• From simple to complex
– Flow structures

– geometry

– coupled physics
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Torture Test:  Grid Turbulence Geometry
• Elems: 50x5x1, 100x10x1, 200x20x1

• Domain: 1.0 x 0.1 x 0.01

• rho=1

• mu=1.5e-6

• C2=1.92 for STD k-eps model

•

• Analytical Solution:  Mohammadi and 
Pironneau, “Analysis of the K-Epsilon 
Turbulence Model,” Wiley New York, 
(1993).

• What’s tested:  time evolution, advection, 
diffusion, production, dissipation

• What’s not tested:  near wall behavior
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Torture Test:  Grid Turbulence:  STD k-eps
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Wall Functions y* insensitive Model
(Launder&Spalding, 1974; Grotjans&Menter, 1989; Craft et al. 2002)
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Wall Functions Cont. – Post Processing 
(Defraeye, Blocken and Carmeliet JIHMT, 2010)
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Theory (y*)

• Two different velocity scales

Theory (y+)
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Wall Functions Cont. 
Hydra surface delegates, H&L 2011
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Theory – output delegates

• Desire an estimate of wall shear
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Fully Developed Pipe Flow

Test Conditions
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Fully Developed Pipe Flow
• Domain: L/D=20

• Same mesh for all three cases

• ReD=19,743; 42,269; 82,291  
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Fully Developed Pipe Flow
• Domain: L/D=20

• ReD: 18,100; 39,200; 78,300

• y*-insensitive wall model makes computing 
tau_w difficult due to coarse wall normal grid 
spacing
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Fully Developed Pipe Flow

• Domain: L/D=20

• Entry Length: L/D=20

• ReD=19,743; 42,269; 82,291  
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Fully Developed Pipe Flow

• Domain: L/D=20

• ReD: 18,100; 39,200; 78,300
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Impinging Jet 
Post Processing using Law of the Wall
(with E. Baglietto and B. Magolan,MIT) 

Test Conditions
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Elmahdi-3x3 Spacer-Grid Problem

• Three estimates of heat flux from hot rods

– BC value in cntl file

– Post process using finite-difference to compute grad T

– Hydra-TH delegate "nheatflux"

• Boundary conditions

– ss3 – inflow (Hss3)

– ss2 – outflow (Hss2)

– ss9 center rod (qss9)

– ss10 outer rods (qss10)

• Quantities of Interest

– SST energy balance – rate of energy coming in equals the rate 
of energy leaving the domain

– Heat flux – Is the right amount of energy being exchanged into 
the flow from the rods
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3x3 Rod/Spacer Grid Sub-Assembly-Energy Balance 

qw_BC qw_delegate
(hydra)

qw_in (fd)
rods

H_in total H_out %diff

KE 1.0E6 ??? 1,655 1,019,647 1,021,302 1,038,597 1.7

SA 1.0E6 ??? 23,769 1,056,631 1,080,400 1,084,112 0.3

ReD=218,025
Pr=1
Prt=0.9
Tin=150.0
uin=5
qwin=1.0e6
A_rod=0.047679
A_channel=0.000358497
L=0.40132
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Summary
• Enhanced turbulence model development is required for predictive core reactor 

flows

• Special attention needs to be devoted to near wall behavior modeling 

• Low Re K-epsilon models are under development

• Development plan and execution of the plan can be found in CASL documents

– “Multi-Year Plan for Enhancing Turbulence Modeling in Hydra-TH,” 
(L3.THM.CFD.P10.02), 2014

– Findings from this first year will be reported later this year - “Enhanced 
Turbulence Model Capabilities in Hydra-TH,” (L3.THM.CFD.P11.04), 2014

Helicity - SA with CC
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Backup Slides
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Turbulence Torture Tests
Test Dimensions Objectives Meshes Status Documented Regression

Back Step 2D Reattachment Cubit regression Some yes

Channel 2D Law-of-wall Cubit SA, RNG Verification no

Grid Turbulence 2D Decay rate 3 Levels RNG, STD Verification yes

Couette Flow 2D Mean Velocity profiles Cubit SA, RNG, STD, NL Some no

Mixing Layer 2D Scale Similarity Cubit SA, RNG, STD Some no

Jets 2D-3D Spreading Rate none Not Started None no

Pipe Flow 3D Law-of-wall, Nu Cubit SA, RNG, STD Some no

U-Channel 2D Curvature effects Cubit SA, RNG, STD L3.THM.CFD.P.06 no

Circ. Cylinder 2D Strouhal No. Cubit Not Started none no

Tri. Cylinder 2D Strouhal No. none Not started none no

Sq. Cylinder 2D Strouhal No. none Not started none no

Asym Diffuser 2D Separation none Not Started none no

Impinging Jet 2D Stagnation point none Not Started none no

Jet in Crossflow 2D Complex vortex none Not started none no

Mounted Cube 3D Mass. Separation none Not Started none no

Natural Conv. 2D Buoyancy effects none Not started none no

Sub-Channel 3D Secondary flow Cubit Extensive NL Some no

3x3 Rod/Spacer 3D Pressure drop Hexpress, 
Cubit

SA, RNG, LES L2.THM.CFD.P4.01 no

T-Junction 3D Velocity Profiles ??? Some LES Some no
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Spalart-Allmaras Rotation and Curvature Correction:  
U-Channel (Dacles-Mariani et. al, 1999) 

2D U-Channel 
mesh:  204x111x1
Re=1.0E6
Uniform inflow profile

• Eddy-Viscosity models predict un-naturally high eddy viscosity 
when vorticity is larger than strain (e.g., swirling flows)

• Correction applied to production term
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Torture Test:  Free Shear Layer   
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Torture Test:  Grid Turbulence Geometry

• Elems: 50x5x1, 100x10x1, 200x20x1

• Domain: 1.0 x 0.1 x 0.01

• rho=1

• mu=1.5e-6

• C2=1.92 for STD k-eps model

•

• Analytical Solution:  Mohammadi and 
Pironneau, “Analysis of the K-
Epsilon Turbulence Model,” Wiley 
New York, (1993).

• What’s tested:  time evolution, 
advection, diffusion, production, 
dissipation

• What’s not tested:  near wall
behavior
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Torture Test:  Grid Turbulence
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Wall Functions(2) General 
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Wall Functions Cont. (2) - y*
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Wall Functions Cont. (3) 
Defraeye, Blocken and Carmeliet JIHMT, 2010
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Theory

• Desire an estimate of wall shear
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Wall Functions Cont. (5) 
Zhang, Zhou and Wang, Building and Envirionment, 2013
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Theory

• Desire an estimate of wall shear
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Torture Test:  Fully Developed Pipe Flow
• Domain: L/D=20

• ReD: 18,100; 39,200; 78,300

• y*-insensitive wall model makes computing 
tau_w difficult due to coarse wall normal grid 
spacing

30
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Summary of THM at Sandia During 
Phase I
(Shadid, Pawlowski, Cyr and Wildey) 

• Description of Drekar (L3.THM.CFD.P4.02) 

– Drekar::CFD - A Turbulent Fluid-flow and Conjugate Heat Transfer 
Code: Theory Manual (Version 1.0)

– Contains discretization, model formulations and verification

• 3x3 rod/spacer LES for GTRF

– A summary of this work was provided referencing previous milestone 
reports and review presentations (L3:THM.CFD.P2.01, 
L2:THM.CFD.P4.02, “CASL THM CFD Review: FY12 
Accomplishments” )

• Reynolds Average Navier-Stokes (RANS) Turbulence 
Modeling

– Progression from previous isothermal work: L2:THM.CFD.P4.02, 
L3:THM.CFD.P5.01, L3.THM.CFD.P5.02

• Thermal Hydraulics

– Demonstration of CHT on 3x3 rod/spacer grid model: 
L3:VRI.PSS.P4.02

• Adjoint Based Error Estimation and Sensitivities

– Investigation using swirling flow through an axisymmetric sudden 
expansion tube (CASL benchmark #2, Pannala and Stagg, 2012) 
L3:THM.CFD.P4.02, L3:THM.CFD.P5.02

– Builds on previous CASL VUQ work: L3:VUQ.SAUQ.P5.05, 
L3:VUQ.SAUQ.P6.01
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Torture Test:  Fully Developed Pipe Flow

• Domain: L/D=20

• ReD: 18,100; 39,200; 78,300
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Fully Developed Pipe Flow Nusselt Number:  RNG KE
• Domain: L/D=20

• ReD=19,612; 42,268; 84,522
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CASL
Consortium for Advanced Simulation of LWRs

 3x3 Rod Bundle

 Isothermal

 Fluid: Water 

 T: 394K

 Viscosity: 2.32x10-4 Pa sec

 Density: 924 kg/m3

 Re ~ 2x10^5

 Periodic on sides

 No slip (v=0) on rods

 Inflow on bottom

 5 m/sec

 Uniform inflow

 Outflow on top: 
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Elmahdi-3x3 Problem
• Three estimates of heat flux from hot rods

– BC value in cntl file

– Post process using finite-difference to compute grad T

– Hydra-TH delegate "nheatflux"

• Boundary conditions

– ss3 – inflow (Hss3)

– ss2 – outflow (Hss2)

– ss9 center rod (qss9)

– ss10 outer rods (qss10)

• Quantities of Interest

– SST energy balance – rate of energy coming in equals the rate of energy leaving the domain

– Heat flux – Is the right amount of energy being exchanged into the flow from the rods

• Dilemma

– Energy balances when I use compute heat flux from finite difference

– Energy does not balance when I use cntl value

– Note that Pr=1
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Final Year of Drekar Development (FY2013) 
(Shadid, Pawlowski, Cyr and Wildey) 

• Demonstration of Isothermal RANS Capabilities

• Demonstration of Thermal Hydraulics

– Fully developed laminar and turbulent pipe flow heat transfer validation

– 3x3 rod/spacer grid model with specified heat flux and wall temperature

– Conjugate heat transfer on one span of a 3x3 rod/spacer grid model

• Demonstration of Adjoint Based Error Estimation and Parameter 
Sensitivities

– Validation of methodology by way of comparison with analytic solution to Navier-
Stokes in square duct

– Investigation using high Re swirling flow through an axisymmetric sudden 
expansion tube

• Demonstration of Direct-to-Steady-State Solutions

• Contained in L3.THM.CFD.P7.05 milestone and SAND Report

• The milestone work was submitted to CASL special issue of JCP
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Moving Forward in THM with Hydra-TH:  Enhanced 
Turbulence Modeling

• Planning Activities (L3.THM.CFD.10.02)

– Maturation of “standard” and “nonlinear” k-epsilon models

– New model development: “Realizable” k-epsilon requested by WEC, k-
omega SST

– Closure models for buoyancy driven flows

– A fresh look at near wall models

– Turbulence Torture Tests
• Fundamental examination of model accuracy and robustness

• “Building Block” tests

• Simple to complex

• Development Activities this year (L3.THM.CFD.P11.04)

– Maturation of “standard” and “nonlinear” k-eps models is proceeding and 
“standard” model should be promoted to the master branch soon

– Many torture tests have already been run and are producing useful 
information
• Hydra-TH has proved to be robust/efficient solving these building block flows

• Spalart-Allmaras model performs well in situations for which it is designed

• For unbounded flows, k-epsilon models perform well

• For wall bounded flows, these tests demonstrate the need to enhance near wall treatment

• Need to take a closer look at how derived quantities are computed
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www.casl.gov


