ASCR Project Final Report

“A Fault-oblivious Extreme-scale Execution Environment’
OSU PI: Ponnuswamy Sadayappan

OSU Project #: DE-SC0005034

Project Start: 09/01/2010

Project End: 08/31/2013

Total Funding Received at OSU: $225,000

External Partners: Ronald Minnich, Sandia National Laboratory (LEAD), Sriram
Krishnamoorthy, Pacific Northwest National Laboratory

Statement of Work/Abstract:

Exascale computing systems will provide a thousand-fold increase in parallelism and a
proportional increase in failure rate relative to today's machines. Systems software for exascale
machines must provide the infrastructure to support existing applications while simultaneously
enabling efficient execution of new programming models that naturally express dynamic,
adaptive, irregular computation; coupled simulations; and massive data analysis in a highly
unreliable hardware environment with billions of threads of execution.

We propose a radically new approach to the data and work distribution model provided by
system software based on the unifying formalism of an abstract file system. The proposed
hierarchical data model provides simple, familiar visibility and access to data structures through
the file system hierarchy, while providing fault tolerance through selective redundancy. The
hierarchical task model features work queues whose form and organization are represented as
file system objects. Data and work are both first class entities. By exposing the relationships
between data and work to the runtime system, information is available to optimize execution
time and provide fault tolerance. The data distribution scheme provides replication (where
desirable and possible) for fault tolerance and efficiency, and it is hierarchical to make it
possible to take advantage of locality. The user, tools, and applications, including legacy
applications, can interface with the data, work queues, and one another through the abstract file
model. This runtime environment will provide multiple interfaces to support traditional Message
Passing Interface applications, languages developed under DARPA's High Productivity
Computing Systems program, as well as other, experimental programming models. We will
validate our runtime system with pilot codes on existing platforms and will use simulation to
validate for exascale-class platforms.

In this final report, we summarize research results from the work done at the Ohio State
University towards the larger goals of the project listed above.

Significant Studies and Results:

Load balancing via Resource Sharing Barriers: A new load balancing mechanism called a
resource-sharing barrier (RSB) was implemented in the GA (Global Arrays) framework, and its
use was demonstrated in improving the performance of a production Monte Carlo application in
the NWCHEM computational chemistry suite - Dynamic Nucleation Theory Monte Carlo
(DNTMC). The DNTMC application utilizes two levels of parallelism: i) concurrent “walkers”

independently progress through a number of steps before a barrier synchronization across
walkers, and ii) each walker uses a process group with several GA processes to perform energy
calculations in parallel. Load imbalance between different walkers often results since the total
work performed by different walkers can be different. The Resource Sharing Barrier is a novel
mechanism to temporarily allocate processor resources from process groups waiting at a barrier
to other groups that are still active. The RSB-based implementation of DNTMC demonstrated
significant performance improvement on a full computation chemistry application, requiring
minimal change to existing code. The work was published at IPDPS 2012 [1].

Optimization of Distributed Tensor Contraction Expressions

General matrix multiplication or tensor contractions are an integral part of various computational
methods used for modeling problems in science. In ab initio computational quantum chemistry,
correlation methods such as CC, Cl, EOM-CCSD, MRCC, MBPT, active space methods all rely
heavily on being able to calculate well-defined sequences of tensor contractions. Similar
methods in nuclear physics are emerging. Hence, it is important to develop efficient algorithm
for performing sequences of tensor contractions. Two complementary aspects in this regard
were addressed in our research:

1. Given a single large tensor contraction, how can it be efficiently executed on a
distributed-memory computer system?

2. Given a tensor contraction expression involving a large collection of tensor contractions
with inter-contraction dependences, how can the collection of contractions be efficiently
executed on a distributed-memory computer system?

Below we summarize our contributions in addressing the above two problems:

RRR framework for distributed tensor contraction: We developed a framework with three
fundamental communication operators to generate communication-efficient contraction
algorithms for arbitrary tensor contractions: reduction, recursive broadcast, and rotation. We
showed that for a given amount of memory per processor, the framework is communication
optimal for all tensor contractions. Given any distribution of tensors, a contraction can begin
immediately using a suitable combination of rotation, reduction, and recursive SUMMA. We
proposed various algorithms for contracting distributed tensors of arbitrary dimensions based on
their distribution. We developed a cost-driven model to obtain highly efficient algorithms based
on memory constraints and interconnect topology. Tensors that appear in aforementioned areas
of science are also symmetric in nature. We introduced a novel approach that avoids data
redistribution in contracting symmetric tensors while avoiding redundant storage and
maintaining load balance. We presented results for several contractions that appear in CCSD
methods and compare the results with Cyclops Tensor Framework (CTF). Some representative
results showing improvement over an NWChem proxy (a stand-alone application that
implemented the distributed tensor contraction scheme employed by NWChem) is shown below
for the contraction CJi,j,m,n] = A[l,j,k,I]*"B[k,l,m,n].

Cores | NWChem Proxy RRR RRR
(No Replication) (With Replication)

4096 36.89 32.63 20.43

16384 19.94 13.072 6.63

65536 9.07 4.87 2.023

262144 9.22 2.63 0.84

This research was described in a paper published at SC’14 [3]. Open source software for the
RRR framework for distributed tensor contraction is available at
https://github.com/samyam/DTCF/

Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning: The
second issue listed above was addressed by developing the DLTC (Dynamic Load-balanced
Tensor Contractions framework, a domain-specific library for efficient task parallel execution of
tensor contraction expressions. The framework decomposes each contraction into smaller units
of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of
parallelism by having tasks across independent contractions executed concurrently through a
dynamic load balancing run- time. We demonstrated the improved performance, scalability, and
flexibility for the computation of tensor contraction expressions on distributed-memory parallel
computers using examples from Coupled Cluster (CC) methods. A representative example of
the improvement obtained by using DLTC over the production NWChem software suite is shown
below, for a coupled-cluster modeling of the Uracil molecule.

60

T I I
—a— NWCHEM
—— DLTC-T

50

Execution time (sec)

| | | | | |
016 32 48 64 80 96 112 128

Number of cores

More results are presented in a publication describing this research, which was published at
SC’13 [2]. Open source software for DLTC is available at
https://github.com/samyam/DTCF/tree/master/DLTC

Research Impact: Both the RRR framework and the DLTC framework are of significant interest
to the NWChem team, and are planned to be incorporated into NWChem in the future.

[1]1 H. Arafat, J. Dinan, S. Krishnamoorthy, T. Windus, and P. Sadayappan, “Load
Balancing of Dynamical Nucleation Theory Monte Carlo Simulations Through Resource
Sharing Barriers,” International Parallel and Distributed Processing Symposium
(IPDPS’12).

[2] P.-W. Lai, K. Stock, S Rajbhandari, S Krishnamoorthy, and P Sadayappan, "A
Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task
Partitioning" In Proceedings of International Conference for High Performance Computing,
Networking, Storage and Analysis (SC'13).

[3] S Rajbhandari, A. Nikam, P.-W. Lai, K. Stock, S Krishnamoorthy, and P Sadayappan.,
"A Communication-Optimal Framework for Contracting Distributed Tensors,” In
Proceedings of International Conference for High Performance Computing, Networking,
Storage and Analysis (SC'14).

