
ASCR Project Final Report

“A Fault-oblivious Extreme-scale Execution Environment”

OSU PI: Ponnuswamy Sadayappan

OSU Project #: DE-SC0005034
Project Start: 09/01/2010
Project End: 08/31/2013
Total Funding Received at OSU: $225,000
External Partners: Ronald Minnich, Sandia National Laboratory (LEAD), Sriram
Krishnamoorthy, Pacific Northwest National Laboratory

Statement of Work/Abstract:

Exascale computing systems will provide a thousand-fold increase in parallelism and a
proportional increase in failure rate relative to today's machines. Systems software for exascale
machines must provide the infrastructure to support existing applications while simultaneously
enabling efficient execution of new programming models that naturally express dynamic,
adaptive, irregular computation; coupled simulations; and massive data analysis in a highly
unreliable hardware environment with billions of threads of execution.

We propose a radically new approach to the data and work distribution model provided by
system software based on the unifying formalism of an abstract file system. The proposed
hierarchical data model provides simple, familiar visibility and access to data structures through
the file system hierarchy, while providing fault tolerance through selective redundancy. The
hierarchical task model features work queues whose form and organization are represented as
file system objects. Data and work are both first class entities. By exposing the relationships
between data and work to the runtime system, information is available to optimize execution
time and provide fault tolerance. The data distribution scheme provides replication (where
desirable and possible) for fault tolerance and efficiency, and it is hierarchical to make it
possible to take advantage of locality. The user, tools, and applications, including legacy
applications, can interface with the data, work queues, and one another through the abstract file
model. This runtime environment will provide multiple interfaces to support traditional Message
Passing Interface applications, languages developed under DARPA's High Productivity
Computing Systems program, as well as other, experimental programming models. We will
validate our runtime system with pilot codes on existing platforms and will use simulation to
validate for exascale-class platforms.

In this final report, we summarize research results from the work done at the Ohio State
University towards the larger goals of the project listed above.

Significant Studies and Results:

Load balancing via Resource Sharing Barriers: A new load balancing mechanism called a
resource-sharing barrier (RSB) was implemented in the GA (Global Arrays) framework, and its
use was demonstrated in improving the performance of a production Monte Carlo application in
the NWCHEM computational chemistry suite - Dynamic Nucleation Theory Monte Carlo
(DNTMC). The DNTMC application utilizes two levels of parallelism: i) concurrent “walkers”

independently progress through a number of steps before a barrier synchronization across
walkers, and ii) each walker uses a process group with several GA processes to perform energy
calculations in parallel. Load imbalance between different walkers often results since the total
work performed by different walkers can be different. The Resource Sharing Barrier is a novel
mechanism to temporarily allocate processor resources from process groups waiting at a barrier
to other groups that are still active. The RSB-based implementation of DNTMC demonstrated
significant performance improvement on a full computation chemistry application, requiring
minimal change to existing code. The work was published at IPDPS 2012 [1].

Optimization of Distributed Tensor Contraction Expressions

General matrix multiplication or tensor contractions are an integral part of various computational
methods used for modeling problems in science. In ab initio computational quantum chemistry,
correlation methods such as CC, CI, EOM-CCSD, MRCC, MBPT, active space methods all rely
heavily on being able to calculate well-defined sequences of tensor contractions. Similar
methods in nuclear physics are emerging. Hence, it is important to develop efficient algorithm
for performing sequences of tensor contractions. Two complementary aspects in this regard
were addressed in our research:

1. Given a single large tensor contraction, how can it be efficiently executed on a
distributed-memory computer system?

2. Given a tensor contraction expression involving a large collection of tensor contractions
with inter-contraction dependences, how can the collection of contractions be efficiently
executed on a distributed-memory computer system?

Below we summarize our contributions in addressing the above two problems:

RRR framework for distributed tensor contraction: We developed a framework with three
fundamental communication operators to generate communication-efficient contraction
algorithms for arbitrary tensor contractions: reduction, recursive broadcast, and rotation. We
showed that for a given amount of memory per processor, the framework is communication
optimal for all tensor contractions. Given any distribution of tensors, a contraction can begin
immediately using a suitable combination of rotation, reduction, and recursive SUMMA. We
proposed various algorithms for contracting distributed tensors of arbitrary dimensions based on
their distribution. We developed a cost-driven model to obtain highly efficient algorithms based
on memory constraints and interconnect topology. Tensors that appear in aforementioned areas
of science are also symmetric in nature. We introduced a novel approach that avoids data
redistribution in contracting symmetric tensors while avoiding redundant storage and
maintaining load balance. We presented results for several contractions that appear in CCSD
methods and compare the results with Cyclops Tensor Framework (CTF). Some representative
results showing improvement over an NWChem proxy (a stand-alone application that
implemented the distributed tensor contraction scheme employed by NWChem) is shown below
for the contraction C[i,j,m,n] = A[I,j,k,l]*B[k,l,m,n].

This research was described in a paper published at SC’14 [3]. Open source software for the
RRR framework for distributed tensor contraction is available at
https://github.com/samyam/DTCF/

Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning: The
second issue listed above was addressed by developing the DLTC (Dynamic Load-balanced
Tensor Contractions framework, a domain-specific library for efficient task parallel execution of
tensor contraction expressions. The framework decomposes each contraction into smaller units
of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of
parallelism by having tasks across independent contractions executed concurrently through a
dynamic load balancing run- time. We demonstrated the improved performance, scalability, and
flexibility for the computation of tensor contraction expressions on distributed-memory parallel
computers using examples from Coupled Cluster (CC) methods. A representative example of
the improvement obtained by using DLTC over the production NWChem software suite is shown
below, for a coupled-cluster modeling of the Uracil molecule.

More results are presented in a publication describing this research, which was published at
SC’13 [2]. Open source software for DLTC is available at
https://github.com/samyam/DTCF/tree/master/DLTC

Research Impact: Both the RRR framework and the DLTC framework are of significant interest
to the NWChem team, and are planned to be incorporated into NWChem in the future.

By substituting r = r′ + f , Lemma 6.1 shows that there is
an algorithm within RRR that achieves this communication
bound for the given M . We note that if r′ ≥ d−f

3 , then

Ω

(
|A|

pα/2p
d+f+r′

2

)
≤M , i.e., the contraction must be possible

without any input communication. If r is substituted with r′+f
for r′ = d−f

3 in Lemma 6.2, the memory term reduces to
M . Hence, Lemma 6.2 shows that such an algorithm can be
constructed within RRR.

The proof shows that RRR is communication optimal for
any arbitrary tensor contraction, where |A| = pα|B| and
α > 1. When B ≥ A , a similar proof can be constructed
by substituting A with B. Therefore, our proof of optimality
is fully general. We note that the proof assumes a perfectly
square torus of size p on each dimension and allows replication
of tensors by factors of form pr only. These are not restrictions
of the framework, rather simplifications used in an attempt to
keep the proof simpler and shorter.

VII. EXPERIMENTAL EVALUATION

In this section, we present experimental results evaluating
distributed algorithms developed using the RRR framework.
We perform comparisons with the Cyclops Tensor Framework
(CTF) v1.1 [15] and an NWChem Proxy.

An NWChem Proxy was constructed that models the
computation, communication, and dynamic load-balancing pat-
tern used for tensor contractions in the NWChem Tensor
Contraction Engine (TCE) module [16], [5]. All tensors are
decomposed into tiles, where each contraction is broken into
get-compute-accumulate tasks on these tiles. The application
utilizes a lock-based dynamic load-balancing scheme. Similar
proxy applications for modeling the NWChem TCE can be
found in [17], [18]. The proxy application is implemented
using Global Arrays (GA) 5.2 [19] and ARMCI-MPI, an
implementation of the ARMCI one-sided communication in-
terface using MPI RMA [20].

The experiments were performed on the IBM Blue Gene/Q
(BG/Q) Mira system at Argonne National Laboratory. The
Mira system uses a 5D torus interconnect and consists of
48 racks, with 1024 nodes per rack. Each node contains 16
1.6 GHz cores and 16 GB memory. The implementation of
the RRR framework is written in C/C++ and uses MPI for
communication and BLAS for computation. Computationally
expensive routines are threaded using OpenMP.

A. Scalability of RRR

Scalability results are shown for five different contractions
chosen to reflect variations in sizes of tensors and arithmetic
intensity:

1 C[i, j,m, n] =A[i, j, k, l] ×B[k, l,m, n]

2 C[h, i, j,m, n, o] =A[h, i, j, k] ×B[k,m, n, o]

3 C[i,m] =A[i, k, l, h] ×B[m, k, l, h]

4 C[i, j,m, n] =A[i, j,m, k] ×B[k, n]

5 C[i, j,m] =A[i, j, k, l] ×B[k, l,m]

For each of the tensor contractions shown, RRR can
produce multiple contraction algorithms based on different

TABLE III: Scalability of Contraction 1 for N=256 on BG/Q
in Seconds

Cores NWChem Proxy RRR RRR
(No Replication) (With Replication)

4096 36.89 32.63 20.43
16384 19.94 13.072 6.63
65536 9.07 4.87 2.023
262144 9.22 2.63 0.84

iteration space mappings and compatible input distributions.
The algorithms used for this experiment were the ones with the
lowest communication cost, chosen based on the cost model.
No assumptions about the initial distribution of tensors were
made (refer to Section IV-H), and the redistribution times to
distribute input tensors into compatible distributions required
by the algorithm were included in the time reported. Fig. 7
shows that both RRR and CTF have good strong scalability
on BG/Q. For Contraction 1 and 5, the absolute performance
for both RRR and CTF are similar. RRR is faster than CTF
on Contractions 2 and 3, while CTF is faster on Contraction
4. With RRR, the communication time for Contraction 4 is
very small relative to the total time. However, local data
rearrangement operations required for this contraction, such
as packing, unpacking, and local transpose, dominated the
total time – efficient implementation of these local operations
(orthogonal to the main developments in this paper) have not
been addressed in the current implementation. Further details
may be found in a technical report [21].

B. Comparison with NWChem Proxy

Table III shows scalability of RRR and NWChem Proxy
for Contraction 1, which is one of the most computationally
dominant contractions in Coupled Cluster Singles and Doubles
(CCSD) equations. Columns 3 and 4 show contraction time for
two algorithms generated by RRR. The former does not take
advantage of extra available memory, while the latter does.
From column 2 and 3, it can be seen that NWChem Proxy and
RRR have similar contraction times on 4096 cores, but RRR
has better strong scalability as the number of cores increases.
The communication reducing algorithm in Column 4 is faster
and scales better. Both RRR and NWChem store tensors as
tiles. This compatibility makes RRR a viable replacement for
distributed contractions in the Tensor Contraction Engine.

VIII. RELATED WORK

Due to the prominent role of tensors in quantum chemistry,
efficient execution of tensor contraction expressions has been
extensively studied [16]. Efforts to minimize the number of
operations in chains of tensor contraction expressions [22],
minimize their memory requirement [23], and trade off in-
creased computation cost to reduce space [24] have been
considered. None of these efforts directly attempted to min-
imize communication costs. Minimizing the communication
volume using Cannon’s algorithm in the context of multiple
tensor contractions under memory constraints was considered
by Cociorva et al. [25]. Gao et al. [26] extended this algorithm
by accounting for disk input/output costs. These algorithms
only employed a 2D processor grid.

Widely used implementations of tensor contractions, such
as in the NWChem [5] computational chemistry suite, employ

384

60 70 80 90 100
0

30

60

90

120

150

180

Problem size (N)

E
x
ec
u
ti
on

ti
m
e
(s
ec
)

BASE-G
CTF
DLTC-T
DLTC-G

Figure 5: CCD running time (number of cores=512).

60 70 80 90 100
0

50

100

150

200

250

300

Problem size (N)

E
x
ec
u
ti
on

ti
m
e
(s
ec
)

BASE-G
CTF
DLTC-T
DLTC-G

Figure 6: CCSD running time (number of cores=512).

128 256 384 512 640 768 896 1,024
0

1

2

3

4

5

6

7

8

Number of cores

S
p
ee
d
u
p

DLTC-G
DLTC-T
CTF
BASE-G

Figure 7: CCD strong scaling.

128 256 384 512 640 768 896 1,024
0

1

2

3

4

5

6

7

8

Number of cores
S
p
ee
d
u
p

DLTC-G
DLTC-T
CTF
BASE-G

Figure 8: CCSD strong scaling.

16 32 48 64 80 96 112 128
0

10

20

30

40

50

60

Number of cores

E
x
ec
u
ti
on

ti
m
e
(s
ec
)

NWCHEM
DLTC-T

Figure 9: URACIL.

64 128 192 256 320 384 448 512
0

50

100

150

200

250

300

350

400

Number of cores

E
x
ec
u
ti
on

ti
m
e
(s
ec
)

NWCHEM
DLTC-T

Figure 10: GFP.

[1] H. Arafat, J. Dinan, S. Krishnamoorthy, T. Windus, and P. Sadayappan, “Load
Balancing of Dynamical Nucleation Theory Monte Carlo Simulations Through Resource
Sharing Barriers,” International Parallel and Distributed Processing Symposium
(IPDPS’12).

[2] P.-W. Lai, K. Stock, S Rajbhandari, S Krishnamoorthy, and P Sadayappan, "A
Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task
Partitioning" In Proceedings of International Conference for High Performance Computing,
Networking, Storage and Analysis (SC'13).

[3] S Rajbhandari, A. Nikam, P.-W. Lai, K. Stock, S Krishnamoorthy, and P Sadayappan.,
"A Communication-Optimal Framework for Contracting Distributed Tensors,” In
Proceedings of International Conference for High Performance Computing, Networking,
Storage and Analysis (SC'14).

