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Abstract

A number of physics problems may be cast in terms of Hilbert-Schmidt integral equations.
In many cases, the integrals tend to be zero over a large portion of the domain of interest. All
of the information is contained in compact regions of the domain which renders their use
very attractive from the standpoint of efficient numerical computation. Discrete representa-
tion of these integrals leads to a system of N elements which have pair-wise interactions
with one another. A direct solution technique requires computational effort which is O(N2 ).
Fast multipole methods (FMM) have been widely used in recent years to obtain solutions to
these problems requiring a computational effort of only O (NInN) or O () . In this paper
we present an overview of several variations of the fast multipole method along with exam-
ples of its use in solving a variety of physical problems.
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Nomenclature

Arbitrary function
Positive constant
Summation index
Summation index
Summation bound
Summation index
Radial coordinate
Coordinate

Vector coordinate
Arbitrary function

Velocity vector

Functions from separation of variables
Coefficients for spherical harmonics
Functions from separation of variables
Pre-computed coefficients

Shifted coefficients

Divergence of the velocity

Hermite polynomials

Bessel function

Integral kernel function (Green’s function)
Arbitrary linear operator

Summation bound

Function

Vector function

Spherical harmonics
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Nomenclature (continued)

Positive constant
Truncation error
Stream-function
Vector potential
Angular coordinate
Angular coordinate
Vorticity vector A
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1 INTRODUCTION

Many problems in science and engineering can be cast in terms of integral equations
of the form:

v(x) = j W(x) K (x, x) dx (1)

for which a discrete form may be written in terms of the summation:

v = Y WE)Kxx). )

For example, Roach [1] shows that the solutions for a large class of linear differential equa-
tigfls given by Lu = f where L is a linear differential operator may be cast in this form when
L~ exists. In this case, the kernel K (x,x") is a Green’s function for the operator L and
W (x) = f. Examples of classical physics problems which may be cast in terms of
Equation 2 as noted by Greengard [2] include N body gravitational problems, electrostatic
fields, magneto-statics, heat conduction, and acoustic fields. Several example kernels
K (x,x") are given in Table 1.

No. K(xx) Physical interpretation of y (x)
1 ' two-dimensional electrostatic potential and
In (I’f =% l) two-dimensional stream-function for vortex
flows
2 x—x! three-dimensional gravitational force, force
. 3 due to charged particles, velocity associated
lgg -X i'| with a field of vorticity, Biot-Savart law
3 ~afx-x temperature due to heat conduction, diffusion
e ~ =
4 eialz -/ three-dimensional acoustic pressure
e -]
5 o o axisymmetric stream-function for vortex
ri'rJ'e y (kr))J, (kr) dk rings
0

Table 1: Example Kernel Functions




The primary interest of the authors in this subject area involves the use of fast algorithms to
facilitate computations associated with gridless vortex methods in fluid mechanics. In these
methods, it is necessary to obtain the velocity vector y (x) in terms of the vorticity vector
® (x') and the divergence of the velocity field D (x') . Use of the Helmholtz decomposition
for a vector field [3] allows us to accomplish this:

4@ = VX [9@WKEYRE) -V [DOKENRE). 3)

©

From Equation 2 one notes that in order to carry out a direct summation for N target points
located at various values of x, a computational effort of order N2 is required. This becomes
very expensive for systems in which N exceeds 103 to 104 . In many cases, one would like to
make calculations with N on the order of 10° to 10° which is not practical using direct sum-
mation.

Howeuver, in the event that Equation 1 is a Hilbert-Schmidt integral equation [4], the kernel
K (x,x';) may be approximated by a degenerate kernel of the form:

p
K(-E,-E'i) = ZAJ'(?Q',')BJ'(-E) ©)
j=1

which produces a discrete problem requiring a computational effort of order Np . This can be
achieved by first substituting Equation 4 into Equation 2 and rearranging the order of summa-
tion to yield:

)4 N
V@ = Y B® Y WE)A (). 5)
j=1 i=1
We now define the coefficients C i () by:
N
Ci@) = Y WE)A ) ()
i=1
so that:
p
v(® = ) B;(0)C;i(x) . Q)
j=1




The coefficients C;(x';) are computed using Equation 6 prior to carrying out the summation
indicated in Equation 7. Computation of C i (x';) requires O (Np) work. Since the summa-
tion in Equation 7 for all N target points at x also requires O (Np) work we see that this
method requires O (Np) work as opposed to O(N~) work associated with the direct solu-
tion of Equation 2. Obviously p must be significantly less than N for this scheme to provide
a significant advantage. '

It should be emphasized that the fast algorithm (Equation 7) is based on the fact that only
information at x' is required to obtain the precomputed coefficients C ; (%';) . This is, in turn,
based on the ability to obtain the “separation of variables™ indicated by the right hand side of
BEquation 4. In many problems of interest, Equation 4 is obtained from a truncated series
which has a limited range of validity for a specified level of accuracy. For example the kernel
K (x,x';) might berepresented by a truncated Laurent series or some other far-field represen-
tation which requires that the target point x be far away or “well separated” from the source
located at x';. On the other hand, the truncated series might be a Taylor series or some other
near-field expansion written about some point near to a set of target points but well separated
from the source points. The term “multipole expansion” has been used by Greengard and
Rokhlin [6] to indicate the far-field series expansion and the term “local expansion” to indi-
cate the near-field series expansion. This terminology will be adopted for the purposes of this

paper.

As indicated, for most problems of interest, Equation 4 will be represented by multipole or
local series expansions which are valid to some specified level of accuracy according to the
relative separation of target and source points. Since the target and source points may, in gen-
eral, be located anywhere within the domain of interest, somewhat elaborate schemes must be
employed to insure that the series expansions are properly used. There are two major classes
of methods which have been developed to accomplish this. The so called “hierarchical” or
“tree code” schemes typified by the Barnes-Hut algorithm [5] use only multipole expansions
while the Greengard Rokhlin algorithm [6] makes use of both multipole and local expan-
sions.

2 SERIES EXPANSIONS

In this section, we will present examples of Equation 4 for several different physical prob-
lems which can be represented by muitipole or local series expansions.

2.1 Multipole

In Figure 1 the geometry associated with the multipole expansion is represented. The source
points are located inside the domain D, at points x';. The multipole expansion is constructed
about the point x . in D; and the target point is located outside of domain D, at the point x.
It is assumed that a series expansion which is accurate to some precision can be obtained at
the point x.

11




X

) S Target Point

Source Points

Figure 1. Multipole Expansion about Point in Source Domain

In order to illustrate the manner in which a multipole expansion may be generated, consider
the simple one-dimensional example given by the equation:

N
v = Y WEK(E-%). ®)
i=1

Our goal is to replace K (x - x';)) with a series expansion in which the variables x and x'; are
separated as in Equation 4. This may be easily achieved by expanding K (x - x';) into a Tay-
lor series about the point x . which is given by:

(x';-x 2

————,—SC)—K" (x-%) — e . 9)

Kx-x)) = K(x-xg) - (x'i—xsc)K'(x—xsc) + 5

We note that if x and x; are replaced by positions in the complex plane z and z'; that we
have a planar two-dimensional multipole expansion. The problem now reduces to finding the
derivatives of K and making sure that the series converges to the desired accuracy in a rea-
sonable number of terms.

For a specific example, consider the case in which K (x) = In (Jx]) . From Equation 9:

K- = (-1, -p)il {%( )’} -o[ll)[ )p] (10)

j=1
We see that the resulting multipole series in x converges for [x'; - x| < |x—xscl to an accu-

racy €.
=0 }- d

)
X=X

X=X

)
XX,

X=X,

]
x]"'xsc

X=X

12




As a second example, consider the axisymmetric vortex flow problem studied by Strickland
and Amos [7]. The contribution to the stream-function at (x,7) from a group of N axisym-
metric vortex rings located at (x';,r';) is given by:
N
v(x,r) = Z WK (x,x';r,1'), (12)
i=1

where

-2}

"
K(x,x,rr) = ri'rje b Iy (kr)J, (kr) dk. (13)
0

A Taylor series expansion can be written for y as:

P n "
n=0m=0 ox org

where

A, ~mm = 'Zl (n-m)!m!
l=
Here again we see that there is a separation of variables with regard to information concern-
ing the source points (x';, 7';) and the target point X, . The most difficult step is to obtain the
mixed partial derivatives of K as indicated in Equation 14. In this particular case, these deriv-
atives were obtained as a function of associated Legendre functions of the second kind. It is
of interest to note that the partial differential equation for the stream-function given by:
2 2
9—5 +?—“2—I = %%"r_’ (16)
ox~ odr
can be used to develop two equations for K. This can be accomplished by noting that each
vortex ring must individually satisfy Equation 16. Since for a single ring y = WK with K
equal to a constant then:

ok ax 10K
K+ K _

= . a7
at ot T Jr
Also, due to the symmetry of the formulation the following is true:
2 2
812(+8K2= ng. (18)
dx  Oor Tsc%Tsc

sc
These relationships can be differentiated to obtain relationships between higher order partial
derivatives. This in effect reduces the number of partial derivatives which have to be calcu-
lated directly from associated Legendre functions. Thus, we see that utilization of the govern-
ing partial equation may be very beneficial.

13




As a third example, consider the three-dimensional vector potential given by: |
Vi
v =Y — (19

Here r is the radial distance to the target point and r; is the radial distance to the source
point. One could write Equation 19 in cartesian coordinates and obtain a Laurent series in X,
y, and z for each component of y. This has in fact been accomplished by Zhao [8]. Since
Equation 19 is a solution to the Laplace equation, there are a number of relationships between
the various partial derivatives associated with the Laurent series expansion which allows a
reduction in the number of terms. An equivalent expansion which involves the use of spheri-
cal harmonics is given by Greengard [9] as:

N p n
yn =Y Y ¥ 4070058

i=1n=0 m=-n ‘r‘rsc

Y7 (0, b)

T 0
m

Here, Y,(6,0) are spherical harmonics which are functions of the polar and azimuthal

angles 0 and ¢ associated with the target point. The radius to the center of expansion is

given by r. Since the coefficients 4;" are only a function of information available at the

source points then we see that a separation of variables in the spirit of Equation 7 has been

achieved.

As alast exanﬁple, we will consider a case in which the derivatives associated with the Taylor
series expansion can be conveniently represented by the use of a special function. The fast
Gauss transform developed by Greengard and Strain [10] has a kernel given by:

2

K(x) = . (21)

2
Direct application of Equation 9 to this problem (differentiation of e ™ ) does not yield par-
ticularly satisfying results. However, if one notes that the derivatives of the kernel K (x) can
be written in terms of Hermite polynomials

n 2 2
K0 =) = D", (o) 22)
then the kernel can be easily expanded to obtain:
' —'(‘x—xsc)z ? 1 ' n
K(x-x) =e Z H[Af&(xi—xsc)] H, J&(x—xsc)). (23)
n=0

Greengard and Strain [10] further extend this one-dimensional fast Gauss transform to multi-
dimensions.

In summary, the far-field or multipole expansions allow one to separate variables such that
O (N) computations may be made. These expansions may be obtained by writing a Taylor
series in a chosen coordinate system. The resulting series may be further simplified by mak-
ing use of the governing differential equation along with perhaps a set of special functions.

14




2.2 Translation of Source Domain Center

An essential requirement for virtually all of the fast solution techniques it is to be able to shift
the center of the multipole expansion x . in domain D; to a new center located at x'; . in
domain D, as indicated by Flgure 2. Th1s allows one to efficiently obtain multipole expan-
sions in large domains by summing the contributions from shifted multipole expansions asso-

ciated with a number of sub-domains.

%

\ - Target Point

Source Points

Figure 2. Translation of Source Domain Center

For the sake of brevity, we will not present shifted multipoles for all of the examples in the
previous section but only consider the simplest case given by Equations 8 and 9 in order to
illustrate the basic concept. From Equations 8 and 9 the function y (x) may be written as:

p dn
v(x) = Z [Cn (x'i)—nK(x—xSC)] +¢€,

n=0 dx

where

S
C,(x) = Z [;n!-——W(x'i) (x'i—xsc)"].

i=1

In order to shift the expansion to the new center x' .. we rewrite Equation 24 as:

p n
v =Y {cn (x',-)-(}"—,,K[(x—x'sc) - (xsc—x'sc)]} +e.

n=0 x

This can be written in terms of a new Taylor series given by:

p dn
y(x) = Z [C‘n (x'i)—nK(x—x'SC)] +¢,

n=0 dx

15
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where
n q
c,@) =Y I:(;ql’)—cn_ S () "]. (28)
g=0" "

Thus if we have expansions for several groups of sources about several centers in domain
D, , then we can simply add their shifted coefficients C', (x";) together to form a new far
field expansion. The basic concept may be extended to multi-dimensional problems by using
multi-dimensional Taylor series expansions. Various kernel functions may be used but they
must always produce a convergent series and of course, one must be able to differentiate
them if the series are formed using a Taylor series approach.

2.3 Local Expansion About Point in Target Domain

For many of the fast solution techniques, the far field or multipole expansion along with the
ability to shift the expansion to a new center is all that is required. Greengard and Rokhlin [6]
also take advantage of a local expansion about a point %, in a target domain D, which is
well separated from the source domain D, . This local expansion allows one to obtain the
influence of a group of sources on a target point as a function of the relative position between
the target point at x and the center of the local expansion at x, .. This is sometimes referred to
as a group-to-group interaction whereas the multipole expansion is a group-to-point interac-
tion.

Target Point

Source Points

Figure 3. Local Expansion About Point in Target Domain

We can rewrite Equation 24 in the following form.

n

p
Y@ =Y [c,, @) f,;K [(x-x,) - @, —x,m] ‘e. (29)

n=0 X

1t should be noted that Equation 27 can also be written in this form if we simply let the shifted
center of expansion for the multipole be relabeled as x,. . Equation 29 can be expanded and

16




rewritten in terms of a local series given by:

p
v =Y [D,(x) (x-x,)"] += (30)
n=0
where
p-nrc (=) an+q
' - q 1

We note that Equation 30 is a power series in (x -x,.) . Typically, for higher dimensional
problems a power series containing products of the independent variables will result.

2.4 Translation of Target Domain Center

Finally, for the Greengard Rokhlin method we must be able to shift the local expansion as
indicated in Figure 4 from a center at x,_ to a center at x, .

Target Point

Source Points

Figure 4. Translation of Target Domain Center

We first rewrite Equation 30 by inserting the center of the new target domain x', .

p
y@ = Y [D, ) [G-2,) - (-2, )1"] +e. (32)
n=0
This can be rearranged to obtain a local power series in x - x',. given by:
P n
y() = Y [D,@) (x-x,)"] +e, (33)
n=0

17




where
p-n

D, (xy) = Z [Dn+ ¢ (2:g)] (¥ = %) q] : (34)

nlqg!
g=0 1

3 SPATIAL PARTITIONING

As discussed previously, the fast solution technique is predicated on the ability to separate
variables into those containing information associated with the sources and those containing
information associated with the target points. In order to accomplish this, the kernel is written
in terms of truncated series expansions which are valid only under certain conditions. These
conditions are generally associated with the separation between sources and target points. In
order to insure that these conditions are met, one is required to develop some sort of scheme
to quantify the relative separation between groups of sources and target points. Virtually all
of the methods which have been developed thus far possess a tree structure or hierarchy pro-
duced by the division of the space containing source and target points into progressively
smaller regions. In the following two sections we will present an overview of such schemes.
The methods will be divided into two broad classes which we will loosely categorize as Bar-
nes-Hut schemes and Greengard-Rokhlin schemes. The distinguishing difference between
the two methods is that the Barnes-Hut scheme utilizes only far-field expansions while the
Greengard-Rokhlin scheme utilizes both near-field and far-field expansions.

3.1 Barnes-Hut Schemes

Barnes and Hut [5] developed a fast algorithm to study the interaction of two spherical galax-
jes which are moving relative to each other and which are made up of several thousand parti-
cles. Their work was based in part on that of Appel [11] who also developed a fast algorithm
to study the interaction of particles in a gravitational force field. Barnes and Hut improved the
tree structure of Appel by regularizing the spatial partitioning and were thereby able to pre-
dict and improve the accuracy of the method. In both cases, the force on a target point was
calculated using the gravitational force produced by the total mass of a source cluster
assumed to be located at the cluster centroid. In essence, they used a far-field multipole
expansion in which only the first two terms were retained. Translation of the source domain
centers was achieved by calculating the centroid of the sources in the domain.

The tree-structure of Barnes and Hut was obtained by first surrounding the source and target
points by a square (cube in three-dimensions) as indicated in Figure 5. This box is further
subdivided into four squares (eight cubes in three-dimensions). Subdivision of parent boxes
is continued until there is only one particle per box. Empty boxes are discarded. Each box is
tagged with the total mass contained in the box and the center of gravity. This includes all of
the parent boxes as well. The force on any particle is obtained by sequentially examining the
boxes starting with the largest. The ratio of the source box size to the distance between the
box center of gravity and the target point is checked to see if it is below a certain value or if
there is only one particle in the box. This, of course, insures that a certain minimum accuracy
will be maintained. If the error criteria is met, the contribution from that box is computed. If

18




not, the children of that box are examined to see if they in turn meet the error criteria. This
process is carried out in such a manner so as to include the effect of every source in the field.

Figure 5. Barnes-Hut Hierarchical Boxing [5]

It should be pointed out, that the adaptive domain meshes which are generated here are not to
be confused with the adaptive meshes which are generated for conventional CFD formula-
tions. In the present case, the meshes represent a domain decomposition which is very simple
when compared to meshes generated for conventional CFD formulations. Mesh generation
for conventional CFD formulations is for the purpose of writing difference or element equa-
tions which satisfy the governing differential flow equations whereas the domain meshes gen-
erated here are for the purpose of grouping sources or target points. The domain meshes in
the present case do not have to conform to any flow boundaries, they extend only to regions
where sources or target points reside, and they are generated using a very simple algorithm.
Generation of adaptive domain meshes is achieved using a very small amount of CPU time
whereas adaptive mesh generation for conventional CFD problems can be quite CPU time
intensive.

The Barnes-Hut algorithm, in its original form, is very simple. The multipole algorithm
which they used and the associated translation operation were simple but only of first order.
The hierarchical box structure had to have a large number of levels in order to insure that
each particle would eventually be isolated. One obvious improvement to the original Barnes-
Hut algorithm is to use higher order multipoles which improves the accuracy and decreases
the number of levels in the box hierarchy. For example, McMillan and Aarseth [12] applied
the Barnes-Hut algorithm to a stellar dynamics problem in which they used up to 8 terms in
the multipole expansion.

19




Van Dommelen and Rundensteiner [13] developed an algorithm in which they used high
order multipoles with 13 to 23 terms to model vortex interactions. They found that in order to
optimize the procedure, each childless box should contain about 100 particles (vortices).
They also used a binary box numbering scheme which had the position and size of the box
encrypted into it.

Clarke and Tutty [14] found that with the number of multipole terms equal to 25, approxi-
mately 30 vortices in a box was optimum. However, the spatial decomposition used by
Clarke and Tutty was different than that used in the original Barnes-Hut algorithm. As shown
in Figure 6, the original box is divided into only two smaller boxes with half of the particles
in each box. The boxes are rectangular and extend only far enough to capture half of the par-
ticles. At each step, the rectangular parent boxes are subdivided along their major axis in
order to form relatively square child boxes. This method is very efficient in that the number
of particles in each box at each level is essentially constant. This also allows one to start out
with a rectangular box of any aspect ratio instead of a square one.
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Figure 6. Clarke and Tutty Spatial Decomposition [14]

Another variation of the binary tree spatial decomposition is presented in the work of
Draghicescu [15], [16]. In this method, the original box may be square or rectangular with an
aspect ratio equal to two. As each box is divided into two halves, a pair of rectangles with
aspect ratio equal to two or a pair of squares will result. While this approach is not as adap-
tive as the Clarke and Tutty method with regard to maintaining a uniform number of particles
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in each box at a given level, it is somewhat less complex. It is certainly more adaptive than
the quad or oct trees associated with the original Barnes-Hut method.

We close this section by noting that there are a large number of possible variations with
regard to spatial decomposition. For example, in an interesting paper by Niedermeier and
Tavan [17] on the dynamics of proteins produced by electrostatic interactions, the spatial
decomposition is based on the structural features of the proteins themselves. The structural
features of a certain protein allows them to develop an electrostatic model for individual pro-
tein molecules which may then be used in a dynamic analysis of a system of molecules.

3.2 Greengard-Rokhlin Schemes

As mentioned previously, the distinguishing difference between the two methods which have
come to be known as the Barnes-Hut and Greengard-Rokhlin schemes is that in addition to
utilizing far-field expansions the Greengard-Rokhlin scheme also takes advantage of near-
field or local expansions. This idea is clearly presented in a paper by Rokhlin [18] which pre-
dates the work by Barnes and Hut and no doubt formed the basis for the ensuing work by
Greengard and Rokhlin [6], [19] as well as that of Carrier, Greengard, and Rokhlin [20]. The
Greengard and Rokhlin method allows one to compute the influence of a cluster of source
points on a cluster of target points in a very efficient manner. The Barnes-Hut method, on the
other hand, allows one to compute the influence of a cluster of sources on a single target point
in an efficient manner.

In the original Greengard-Rokhlin schemes [6], [19], the domain decomposition is non-adap-
tive, meaning that the domain is broken up into a set of uniform squares or cubes. The two-
dimensional adaptive domain decomposition used in the work of Carrier, Greengard, and
Rokhlin [20] is identical to that shown in Figure 5 except that there are typically more than
one source point per box. For the adaptive scheme, a somewhat involved procedure is used to
define the separation condition between a particular target box and each of the source boxes.
This procedure determines the way in which sources in a particular source box influence the
target points in a particular target box. In general, each target box at each level has five possi-
ble relationships with each source box in the mesh. A formal description of these “box lists”
will not be given here, but in general, the five lists produce the following types of restrictions
on the use of the series expansions:

1. Direct calculations must be made. Multipole and local series expansions cannot be used.

2. Both multipole and local series expansions can be used.

3. Multipole series expansions can be used, local series expansions cannot.

4, Local series expansions can be used, multipole expansions cannot.

5. Contributions from distant source boxes reside in the parent of the target box.

These lists are illustrated in Figures 7 and 8 for the cross-hatched target boxes. It is assumed
that there are sources in all boxes. In Figure 7a, the list 1, 2, 3, and 4 source boxes are shown
for the 2x2 target box. Figures 7b, 8a, and 8b illustrate how information from other parts of
the domain is brought in through ancestors of the target box in Figure 7a.
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Figure 8. Box List Example (continued)
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The Greengard-Rokhlin algorithm is significantly more complex than the Barnes-Hut algo-
rithm especially when applied in an adaptive manner. It is perhaps for this reason that there
have not been very many extensions to the basic concept. Schmidt and Lee [21] developed an
algorithm for including periodic boundary conditions for the purpose of evaluating Coulomb
potentials in a three-dimensional non-adaptive scheme. Strickland and Amos [7] used the
adaptive technique of Carrier, Greengard, and Rokhlin [20] with a new kernel to solve for the
stream function associated with axisymmetric vortical flow fields. Strickland and Baty [22]
have written an adaptive three-dimensional code for the vector potential. In order to allow the
source and target points to be different sets, hierarchical meshes for both the source and target
points are constructed by this algorithm. The authors report that this code is under further
development to include the FFT fast shift algorithms of Greengard and Rokhlin [23]. Aluru
[24] has conceptualized a method which should make this and other hierarchical schemes
more efficient by effectively removing redundant nodes in the tree which contain information
about the same set of particles.

3.3 Comparison of Methods

In this section we provide a brief comparison of the methods. As noted previously, the Green-
gard-Rokhlin algorithm is significantly more complex than the Barnes-Hut algorithm and is
more memory intensive. The apparent advantage of the Greengard-Rokhlin algorithm is its
execution time of O (N) whereas the Barnes-Hut method executes in O (N1nN) .

There is some dispute in the literature about the O (N) dependance for the Greengard-Rokh-
lin algorithm. For instance, Aluru [24] has hypothesized that both methods will execute in
O (NInN) but only after redundant nodes in the hierarchical tree structures are removed. His
argument is based in part on the fact that creation of the tree structure requires O (NInN)
work. However, experience has shown that the amount of time required to create the tree
structure for the Greengard-Rokhlin algorithm is trivial compared to the rest of the calcula-
tion. The major portion of the calculation, on the other hand, tends to scale like O (N)
depending on the distribution of the particles. Simulations in which the particle distributions
tend to be non-uniform (especially concentrated along lines or surfaces) generally execute in
O (N) time. While creation of the tree may indeed require O (NInN) operations, the con-
stant of proportionality apparently is relatively small.

Blelloch and Narlikar [25] made a direct comparison for the potential problem between the
three-dimensional Barnes-Hut and Greengard-Rokhlin methods. They found that at a high
level of accuracy (RMS-error < 10 ), the Greengard-Rokhlin method was faster than the
Barnes-Hut method for N> 10, assuming a random distribution of points. At a lower level
of accuracy (RMR-error < 10"), the Greengard-Rokhlin method did not outperform Barnes-
Hut until N> 10" . Both algorithms were implemented on parallel machines. Thus, we see
that the choice of methodology is a function of the number of particles in the field and the
" error requirements.

We also note that memory requirements may also play a role. The Greengard-Rokhlin

method requires more memory than the Barnes-Hut algorithm since both the far-field and
local expansions for each box at each level must be retained.
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4 PARALLELIZATION

This section discusses briefly two approaches which have been developed to parallelize the
numerical evaluation of the discrete N-body problem given by Equation 2. The paralleliza-
tion of the N-body problem is currently a very active area of computational research; there-
fore, a general discussion is beyond the scope of the present paper.

Over the last several years, a significant amount of research has been directed toward devel-
oping and implementing algorithms to evaluate efficiently the discrete N-body problem on
parallel computers. While some of this work has focused on general parallelization methods,
a great deal of it has emphasized specific computer architectures and codes. Two techniques
applied commonly are hierarchical methods and direct methods. Most parallelizations of the
N-body problem utilize one or both of these methods. In a general sense, the hierarchical
methods include both the tree method of Barnes and Hut [5] and the fast multipole method of
Greengard and Rokhlin [6] discussed in this paper. .

Greengard and Gropp [26] have developed a parallel two-dimensional non-adaptive fast mul-
tipole method for the Encore Multimax 320 computer. In this work, Greengard and Gropp
parallelized the computation of the initial moments and the evaluation of the local series
expansions and found that the main limitation was the coordination of the processors required
in passing information between the different mesh levels. For the details of the performance
of this scheme see [26]. Work on a parallel version of an adaptive fast multipole method has
presented in Singh et al. [27], while Zhao and Johnsson [28] have developed a parallel three-
dimensional multipole method for the Connection CM-2 computer. Work on a parallel ver-
sion of the tree method of Barnes and Hut has also been presented, for example see
Salmon [29] and Grama et al. [30].

Parallel versions of the direct method have also been developed. This approach makes no
attempt to simplify or reduce Equation 2 before it is parallelized. An example of this
approach is given in the recent technical note of Stiller et al. [31]. In this work, some simple
coding procedures are given which have been shown to speed up the direct method an order
of magnitude on the massively parallel computer CM-200. A further example of a parallel-
ized direct method and its application to vortex methods is given by Sethian et al. [32].

5 EXAMPLE CALCULATIONS

In the following examples, we present a mixture of model problems and physical simulations.
In the model problems, the distributions of source and target points are prescribed. These
problems allow one to carefully benchmark the performance of the various methods in terms
of CPU time, accuracy, and the specified geometry. Most of the physical simulations repre-
sent an evolutionary process in which the sources and targets may be moving at each time
step.

5.1 A Two-Dimensional Fast Adaptive Multipole Code

Carrier, Greengard, and Rokhlin [20] developed a two-dimensional adaptive code which is an
extension of the two-dimensional non-adaptive code of Greengard and Rokhlin [6]. This code
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was used to obtain the potential and electrostatic field due to a distribution of charged parti-

cles. The precision was set so as to yielgl an Rl\éIS error roughly equal to single precision on a
VAX-8600 which they were using (10 "to 10 ).

a) Uniform distribution b) Non-uniform distribution = c) Distribution on a curve

Figure 9. Benchmark Distributions

Three benchmark source and target distributions which they studied are indicated in Figure 9.
For a benchmark problem in which 25,600 sources and targets were uniformly distributed in
a square, the direct solution required 9694 seconds while the non-adaptive algorithm required
138 seconds, and the adaptive algorithm required 97 seconds. For a highly non-uniform dis-
tribution in a square, the direct and adaptive methods performed essentially as before while
the non-adaptive algorithm required 2318 CPU seconds. For all of the points distributed
along a curve, the direct solution performed as before, the non-adaptive algorithm required
152 seconds, while the adaptive algorithm required only 48 seconds. It should be noted that
the adaptive algorithm performed as an O (N) algorithm for this case but not for the other
two distributions.

5.2 A Three-Dimensional Fast Adaptive Multipole Code

Strickland and Baty [22] developed an extended version of the three-dimensional Greengard
algorithm [9]. This algorithm is adaptive and features a box hierarchy for the sources which
may be different from that of the targets. In this code, each component of the vector potential
is first obtained. For the case where the vector potential is used to represent a blob of vortic-
ity, the curl of the vector potential yields the velocity vector. Thus we see that this code is
required to do more than three times as much work as one which calculates a simple scalar
potential. Three different sets of source and target point distributions used to benchmark the
method are shown in Figure 10. In each case, the number of sources and targets were both
equalto N.

26




uniform distribution of
source and target
point positions

Cube 10:1:1 Parallelepiped

target points
(uniform distribution)

source positions i /
(uniform distribution) b

Separated Cube Domains

Figure 10. Benchmark Configurations

The code was run at a precision such that the RMS error in the magnitude of the velocity vec-
tor would be on the order of 0.1%. The RMS error in the magnitude of the vector potential
was one to two orders of magnitude less than that associated with the velocity vector. All runs
were made on a SUN Sparc 10 workstation. For the cube domain the fast solver was faster
than direct calculations for N>5000 and was an order of magnitude faster for
N = 100, 000. Computation time for the fast solver was about 8,000 seconds. For the paral-
lelepiped configuration, the break-even point occurred slightly earlier at N = 3000 but the
CPU times for N = 100, 000 were essentially the same as for the cube configuration. For the
separated cube domain configuration, the break-even occurred at N = 1000 with the fast
solver requiring only 800 seconds of CPU time for N = 100, 000. In this later case, the fast
solution technique truly performed as an O (N) algorithm,

5.3 Fast Gauss Transform

Greengard and Strain [10] used their fast Gauss transform (case number 3 in table 1) to make
calculations for N sources at N target points for the two geometries shown in Figure 11. The
source and target point locations are congruent. In Figure 11a the points are distributed uni-
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formly in a unit square while in Figure 11b the points are distributed uniformly on a unit cir-
cle. Computations using several different levels of precision and numbers of source and
target points were made. For N = 102, 400 the direct solution required more than 8 days of
CPU time on a Sun-4 workstation. Using the fast method, the solution for the square was
obtained in only 9 minutes and the solution for the circle was obtained 1{1 only 5 minut_elsi.
Errors normalized by the total source strengths were approximately 5X 10 ~ and 4 x 10
for the square and circle respectively.

EFSORVTTTVO

* T o lag

a) uniform distribution in a unit box b) uniform distribution on a unit circle

Figure 11. Example Fast Gauss Transform Source and Target Distributions

5.4 An Axisymmetric Bluff-Body Flow

The stream function and velocity components produced by axisymmetric ring vortices are
much more expensive to compute than for those produced by vortices associated with the
two-dimensional planar case. As mentioned previously, Strickland and Amos [7] developed a
fast multipole algorithm based upon the adaptive Carrier, Greengard, and Rokhlin method
[20] but utilizing the kernel associated with the stream function for axisymmetric ring vorti-
ces. This algorithm breaks even for N = 100 and is about 30 to 100 times faster than the
direct solver for N = 10, 000. Precisions for the velocity calculations were set to produce
RMS errors on the order of 0.1%. Errors associated with the stream function were one to two
orders of magnitude lower. The original benchmark studies were run on a VAX-8600. The
CPU time required to compute the field for N = 10, 000 ranged from about 400 seconds to
about 1350 seconds. Present runs on a SUN Sparc 10 are roughly an order of magnitude
faster.

Strickland [33] developed an axisymmetric vortex code to study the flow over parachutes and

other axisymmetric shells which utilizes this fast solver. In the work of Higuchi, Balligand,
and Strickland [34] unsteady flow over a disk was simulated and compared with experimental
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results. The disk was first accelerated to a constant velocity, held at that velocity for about
three diameters of travel, and then decelerated to rest. In Figure 12, experimental flow visual-
ization of the wake is shown just after the disk begins to decelerate and just prior to its com-
ing to rest. Also, the experimental drag coefficient C,; versus non-dimensional tome T is
shown along with simulation data obtained from the fast vortex method (FVM).

Higuchi Disk Flow

Loyl "
L1 L2 111 L1 1 L

_4 (I ] l Il 1.1 l I S 1 ' [ l it 2 I L1 1.1 I 1 31
-1 0 1 2 3 4 5
T

Simulation versus experimental results

N

Figure 12. Simulation of Unsteady Flow over a Disk

5.5 An Astrophysics Simulation

Salmon, Warren, and Winckelmans [35] present a gravitational simulation of the formation of
large scale structures in the universe. The particles in their simulation “represent the so-called
“Dark Matter” which is believed to dominate the mass of the universe.” The region which
they simulated was “a sphere containing 1,099,135 bodies.” Each of these bodies had a mass
of 3.3 x 10" solar masses. A snapshot of the simulation is shown in Figure 13 at a late period
in the evolution after significant clumping has occurred.

They used a Touchstone Delta system to perform the computations. The original Barnes-Hut
scheme was used in which the three-dimensional space was divided into an adaptive oct-tree
and the mass and center of mass provided a two-term multipole. They describe in some detail
the methodology which they used in parallelizing the code. For 512 processors, approxi-
mately 50 seconds was required to compute a single time step with 1 X 10" bodies. With 32
processors the time increased to approximately 400 seconds per time step.
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Figure 13. Clumping of Dark Matter in the Universe

5.6 Flow Past a Pitching Airfoil

The Barnes-Hut method of Van Dommelen and Rundensteiner [13] was used to reduce the
CPU time for a vortex simulation produced by Shih, Lourenco, Van Dommelen, and Kroth-
apalli [36] of flow over a pitching airfoil. In Figure 14, the vorticity which has been generated
at the airfoil surface is shown as discrete points along with the instantaneous streamlines. In
Figure 15 the calculated streamlines are compared with experimentally obtained iso-vorticity
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t=2.56

t=3.84

t=4.70

Calculated Measured

Figure 15. Calculated Streamlines and Measured Iso-Vorticity Lines

Reportedly, this simulation required up to 32,000 vortices at the later time steps. The CPU
time for these later steps would have been on the order of several minutes per time step when
running on a CYBER 205 had the fast solver not been used. According to [13], the computa-
tion using the fast solver should be between 13 and 28 times faster.

6 CONCLUSIONS

We have presented an overview of several fast multipole methods and several simulations
which rely upon their use. We believe that these fast algorithms and their extensions represent
a very important numerical tool for the following reasons:

1. There are a very large number of physical and numerical problems which may be cast in
terms of Equations 2 and 4.

2. Many of these problems are intractable without the efficiencies afforded by these fast
methods.

3. In the future, the solution of much larger “N-body” problems will be required in order, to
advance numerical simulation capabilities. The difference between an O(N ),
O (NInN) , and O (N) simulation will become even more important.
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