

Exceptional service in the national interest

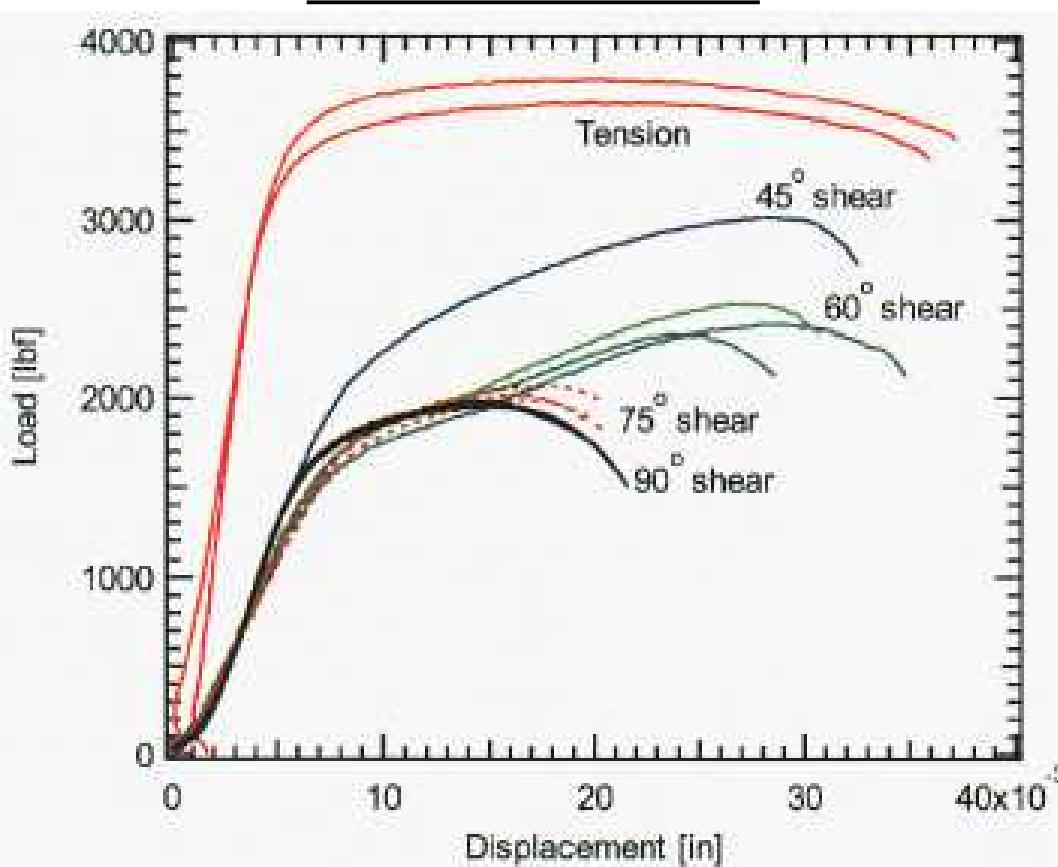
Fastener Failure Modeling

Keegan Moore

Mentor: Matt Brake

Introduction: Project Overview

Bolt Failure Curves



Motivation – Lack a fundamental understanding of force displacement relationship for fasteners, but this information is needed in structural simulations.

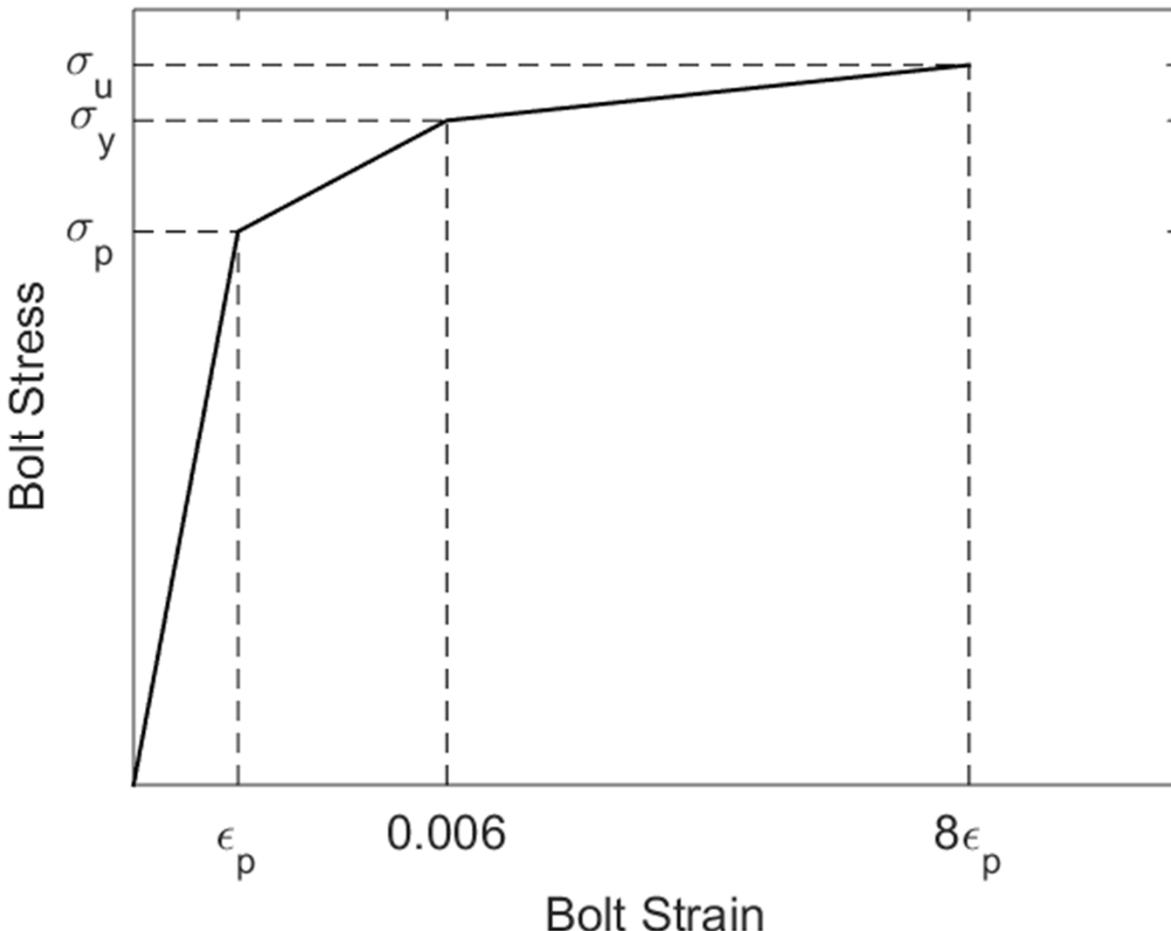
High fidelity fastener models are not feasible in large assemblies.

Goal – Develop reduced order model that reproduces the force vs. displacement curves for pure tension loading.

1. S. Lee *et al.*, *Experimental Results of Single Screw Mechanical Tests: a follow-up to SAND2005-6036, SAND2006-3751*, Sandia National Laboratories, Livermore, CA

Introduction: Past Models

Trilinear Bolt Material Model³



Bolt Stress

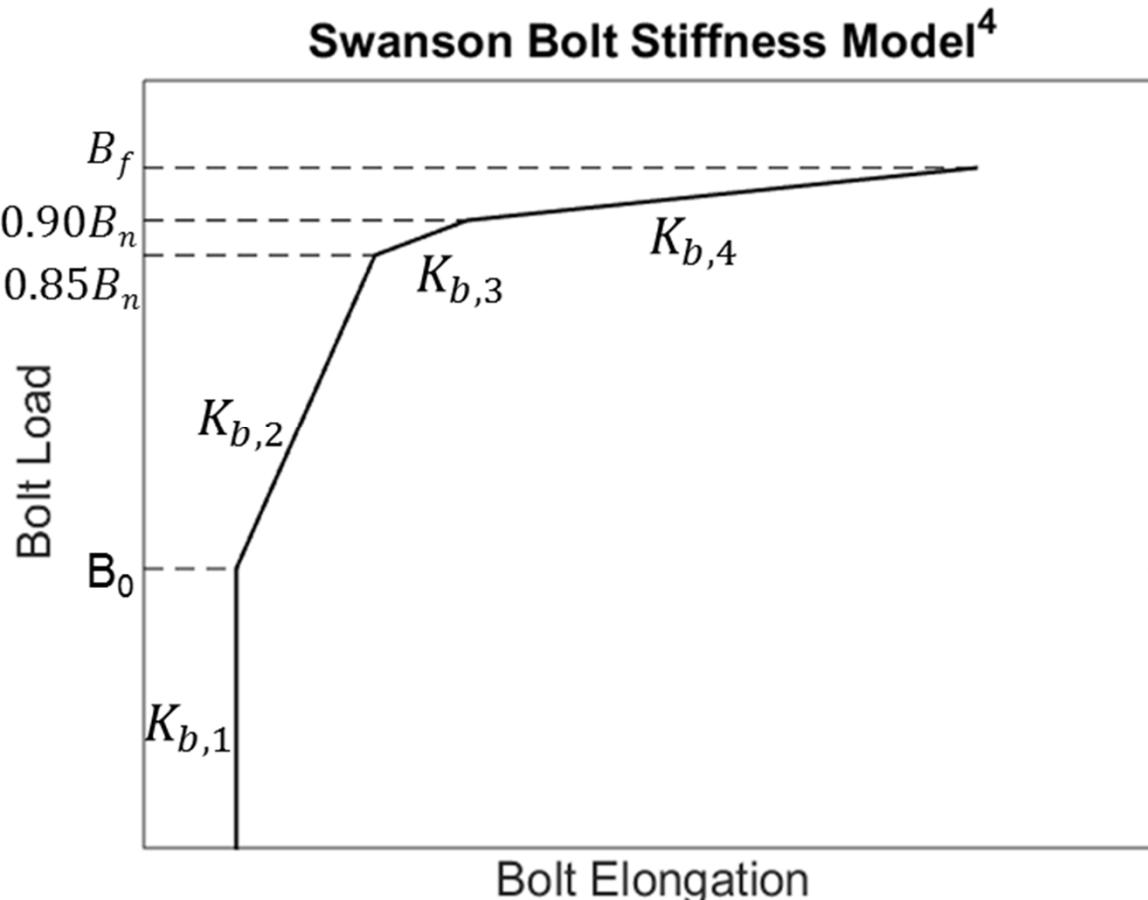
σ_p \equiv proof stress
 σ_y \equiv yield stress
 σ_u \equiv ultimate stress

Bolt Strain

ϵ_p \equiv proof strain
 $\epsilon_y \equiv 0.006$
 $\epsilon_u \equiv 8\epsilon_p$

3. Sherbourne, Archibald N., Bahaari, Mohammed R. (1997). "Finite Element Prediction of End Plate Bolted Connection Behavior. I: Parametric Study," *Journal of Structural Engineering*, American Society of Civil Engineers, Vol. 123, No. 2, 157-164.

Introduction: Past Models



Bolt Force

$B_0 \equiv$ pretension
 $B_n \equiv$ tensile capacity
 $B_f \equiv$ fracture load

Bolt Stiffness

$K_b = K_{elastic}$
 $K_{b,1} = 1000K_b$
 $K_{b,2} = K_b$
 $K_{b,3} = 0.10K_b$
 $K_{b,4} = 0.05K_b$

- Predicts yield and ultimate loads, but requires knowledge of fracture strain for a given material.

4. Swanson, James A. (1999). "Characterization of the Strength, Stiffness, and Ductility Behavior of T-Stub Connections," *Ph.D. Dissertation*, Georgia Institute of Technology, Atlanta, Georgia.

Introduction: Test Matrix

- Five different grade bolts tested in tension to fracture.
- Diameters vary from very small (< 1/4 in) to very large (1.25 in).

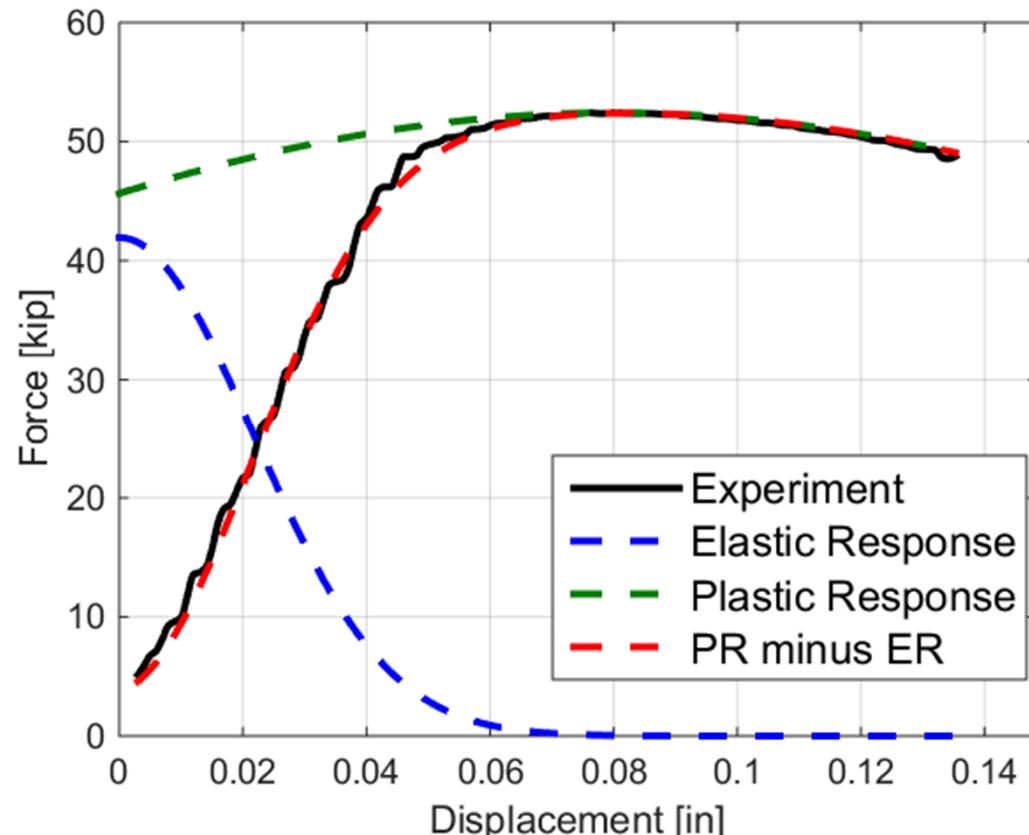
Alloy/Grade	AISI 8740 ¹	302HQ ¹	ASTM A286 ¹	ASTM A325 ²	ASTM A490 ²
Bolt Size	#8-32 UNC	#10-32 UNF	#8-32 UNC #10-32 UNF	3/4"-10 UNC 1"-8 UNC	3/4"-10 UNC 1 1/4"-7 UNC
Bolt Lengths [in]	5/8	5/8	5/8	1.75, 2, 2.25, 3, 3.75, 6	1.75, 2, 2.25, 3, 3.75, 5, 6
Gage Lengths [in]	0.125, 0.28, 0.375	0.25, 0.375	0.25	0.6, 0.75, 1, 1.2, 2.5	0.6, 0.75, 1, 1.2, 2, 3.5, 4, 4.5
Speed [in/s]	0.0002	0.0002, 2	0.0002, 0.01, 1, 2	0.0003, 0.0006	0.0003, 0.0006

1. Lee, Sangwook (Simon) et al. (2006). *Experimental Results of Single Screw Mechanical Tests: a follow-up to SAND2005-6036*. Tech. rep: SAND2006-3751, Livermore, CA: Sandia National Laboratories.

2. Wade, Patrick M. (2006). "Characterization of High-Strength Bolt Behavior in Bolted Moment Connections". MSc. North Carolina State University.

Model Development

Model force as $F(\delta) = \phi_1(\delta)F_{elastic} + \phi_2(\delta)F_{plastic}$



For response functions choose,

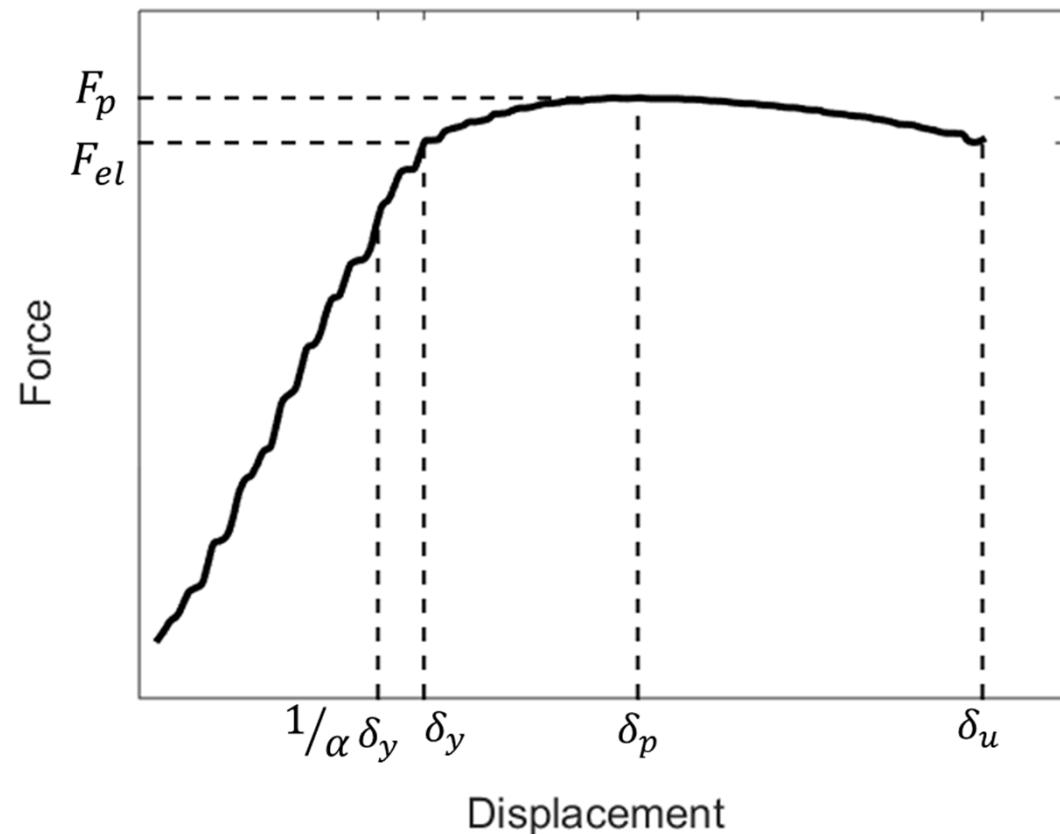
$$\phi_1(\delta) = -e^{-\left(\frac{\delta}{\delta_{el}}\right)^2}$$

$$\phi_2(\delta) = e^{-\left(\frac{\delta-\delta_{pl1}}{\delta_{pl2}}\right)^2}$$

$$F(\delta) = -F_{el}e^{-\left(\frac{\delta}{\delta_{el}}\right)^2} + F_{pl}e^{-\left(\frac{\delta-\delta_{pl1}}{\delta_{pl2}}\right)^2}$$

Model Development

$$F(\delta) = -F_{el}e^{-\left(\frac{\delta}{\delta_{el}}\right)^2} + F_{pl}e^{-\left(\frac{\delta-\delta_{pl1}}{\delta_{pl2}}\right)^2}$$



- The majority of the elastic portion must occur before the yield point, thus,

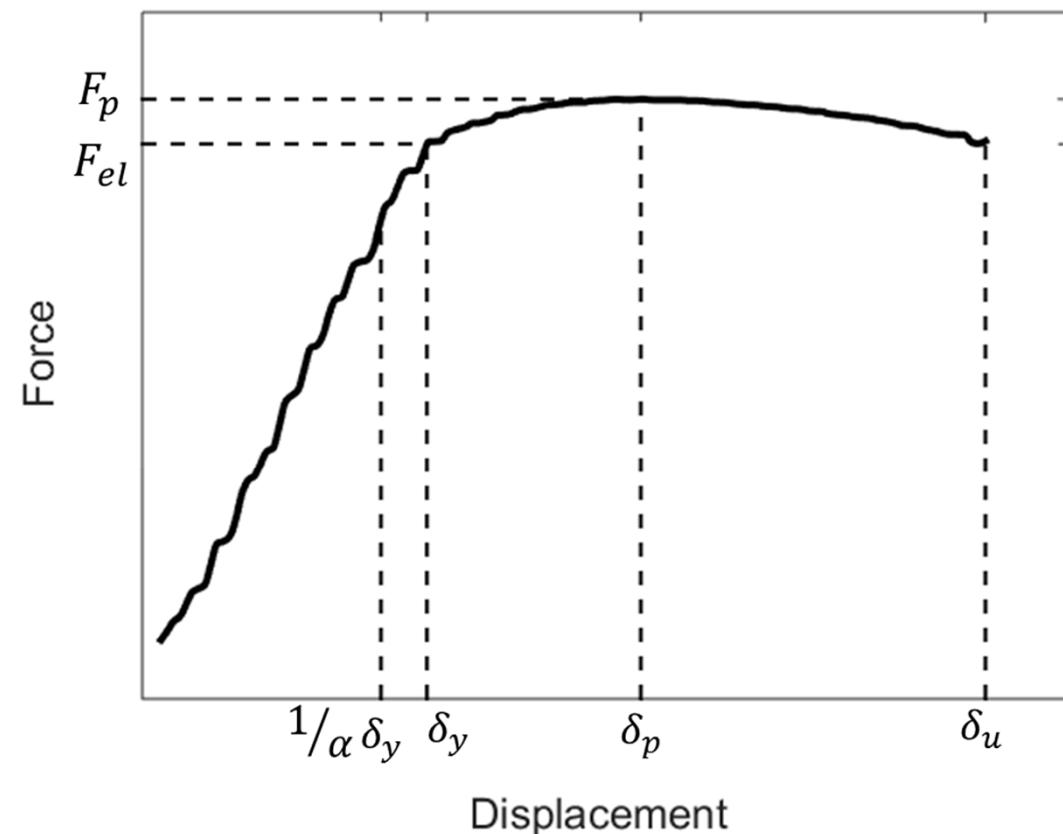
$$\delta_{el} = \frac{1}{\alpha} \delta_y, \quad \alpha > 1$$

- F_{el} remains a free variable, but assume that

$$F(\delta_y) \equiv F_{el}$$

Model Development

$$F(\delta) = -F_{el}e^{-\left(\alpha \frac{\delta}{\delta_y}\right)^2} + F_{pl}e^{-\left(\frac{\delta - \delta_{pl1}}{\delta_{pl2}}\right)^2}$$



- Plastic response centered at peak displacement and peak force:

$$\delta_{pl1} \equiv \delta_p$$

$$F_{pl} \equiv F_p$$

- Plastic response has small curvature, thus

$$\delta_{pl2} > \delta_u$$

- Define

$$\delta_{pl2} \equiv \delta_p + \delta_u$$

Model Development

$$F(\delta) = -F_{el} e^{-\left(\alpha \frac{\delta}{\delta_y}\right)^2} + F_p e^{-\left(\frac{\delta - \delta_p}{\delta_p + \delta_u}\right)^2}$$

- At this point the free variables are F_{el} and α , and δ_y is the displacement where the force F_{el} occurs.
- An initial optimization is ran to identify α and F_{el}

A286 #8-32 UNC 5/8 in Length				
Gage Length [in]	Speed [in/s]	R^2	alpha	Fp/Fel
0.15	0.0002	0.9992	1.50	1.18
0.25	0.0002	0.9990	1.46	1.21
0.25	0.0002	0.9990	1.55	1.18
0.25	0.0002	0.9979	1.52	1.22
0.25	0.0002	0.9967	1.61	1.18
0.25	0.0002	0.9992	1.38	1.24
0.25	0.0002	0.9987	1.38	1.25
0.15	2	0.9973	1.36	1.17
0.25	2	0.9986	1.37	1.22
0.25	2	0.9988	1.45	1.20
Mean		1.46	1.21	

- The values of α and F_p/F_{el} are similar
- Suppose that

$$\alpha \equiv \frac{F_p}{F_{el}}$$

Then...

Model Development

$$F(\delta) = F_p \left[-\frac{1}{\alpha} e^{-\left(\alpha \frac{\delta}{\delta_y}\right)^2} + e^{-\left(\frac{\delta - \delta_p}{\delta_p + \delta_f}\right)^2} \right]$$

- At this point the free variable is α , and δ_y is the displacement where the force $\frac{F_p}{\alpha}$ occurs.
- Rerunning the optimization to identify α

A286 #8-32 UNC 5/8 in Length				
Gage Length [in]	Speed [in/s]	R^2	alpha	Fp/Fy
0.15	0.0002	0.9963	1.26	1.26
0.25	0.0002	0.9973	1.27	1.27
0.25	0.0002	0.9955	1.27	1.27
0.25	0.0002	0.9953	1.28	1.28
0.25	0.0002	0.9937	1.27	1.27
0.25	0.0002	0.9981	1.27	1.27
0.25	0.0002	0.9975	1.28	1.28
0.15	2	0.9954	1.23	1.23
0.25	2	0.9978	1.26	1.26
0.25	2	0.9968	1.26	1.26
Mean		1.27	1.27	

- $\alpha = 1.27$ on average, but is still a free variable...

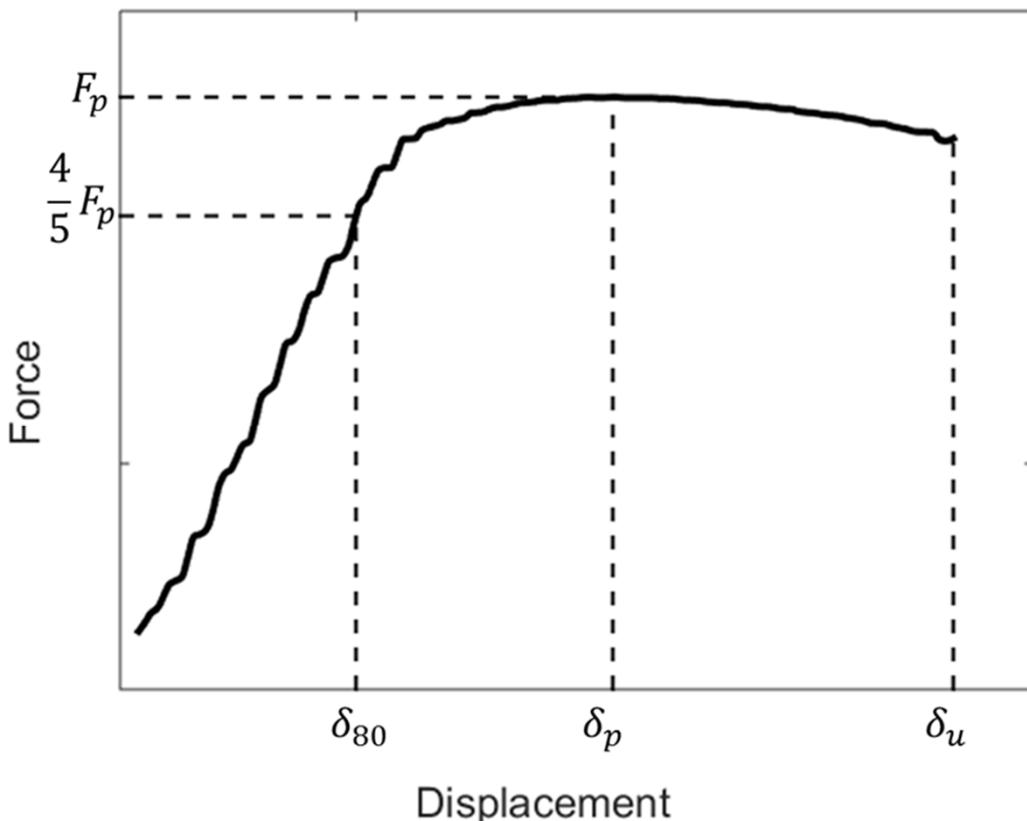
- Suppose that

$$\alpha \equiv 1.25$$

Then...

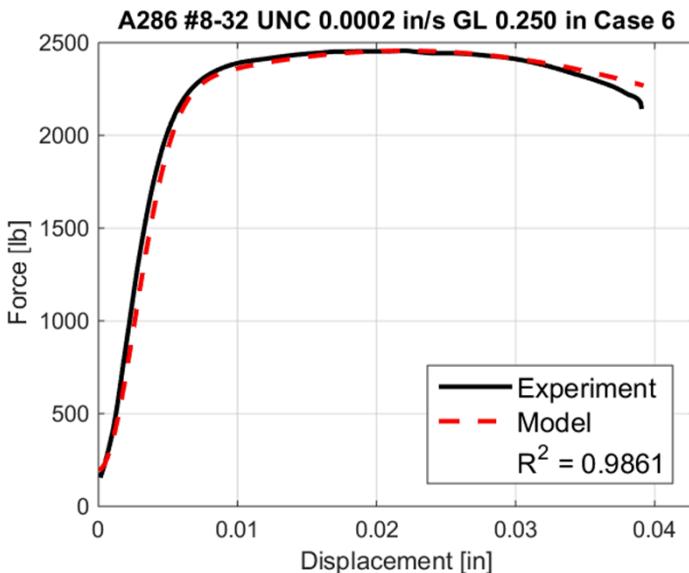
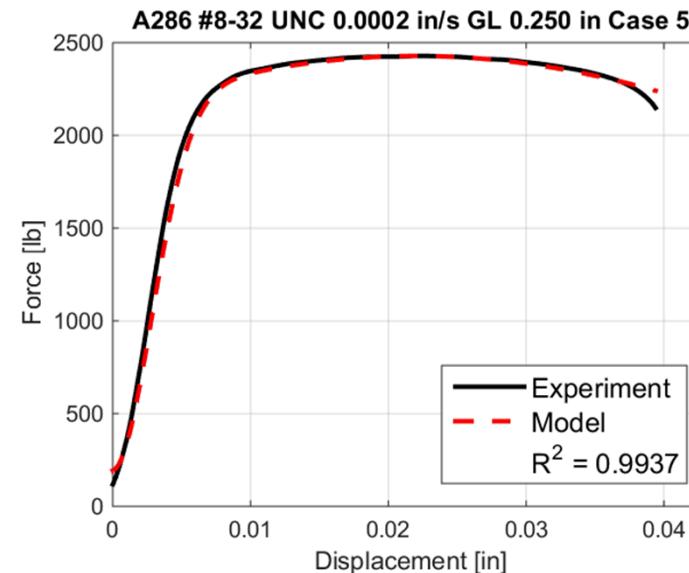
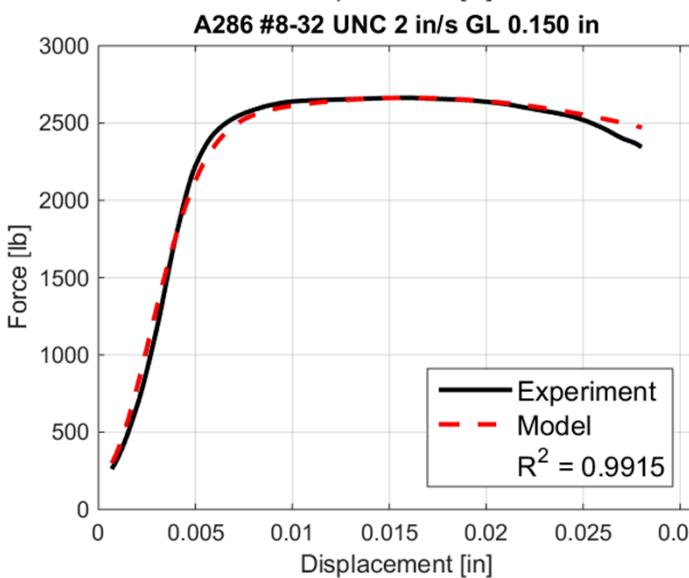
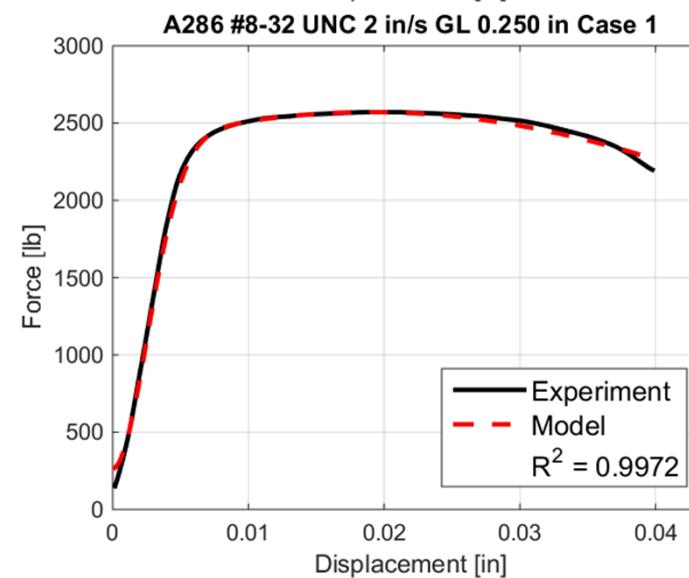
Model Development

$$F(\delta) = F_p \left[-\frac{4}{5} e^{-\left(\frac{5}{4} \frac{\delta}{\delta_{80}}\right)^2} + e^{-\left(\frac{\delta-\delta_p}{\delta_p+\delta_f}\right)^2} \right]$$

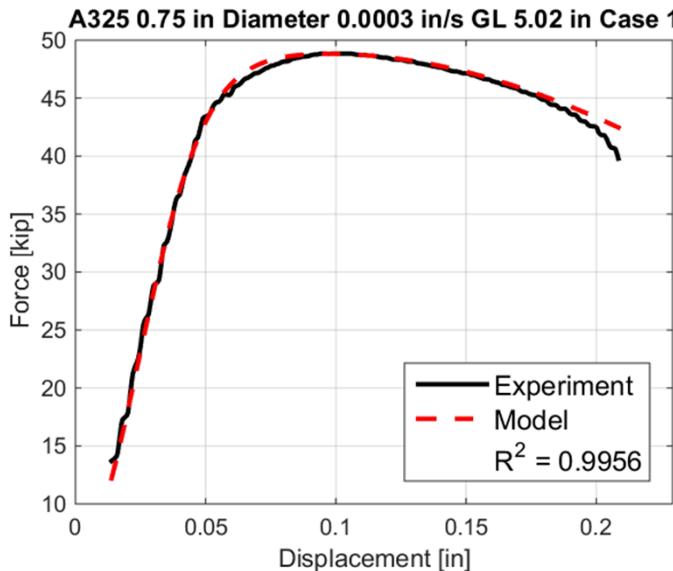
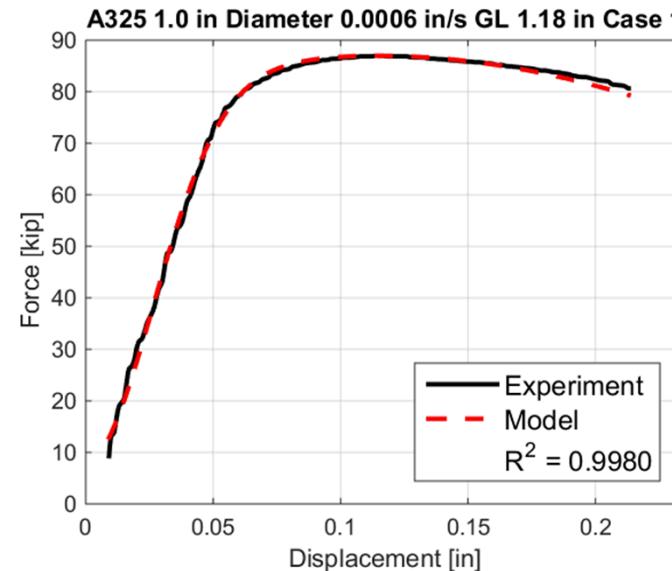
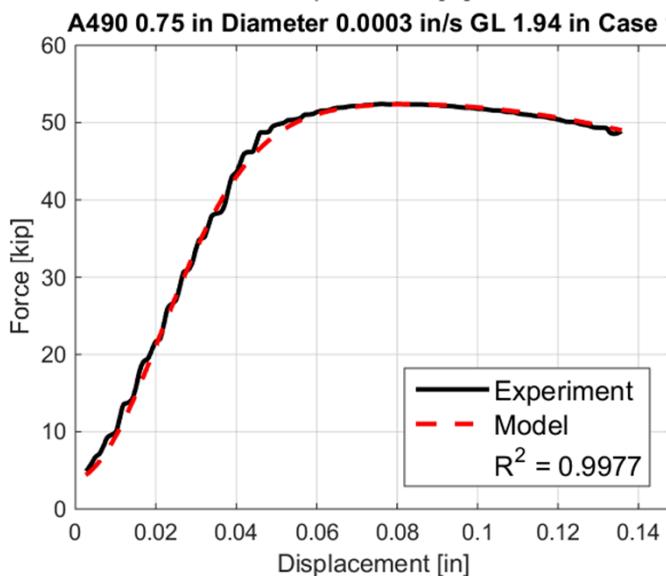
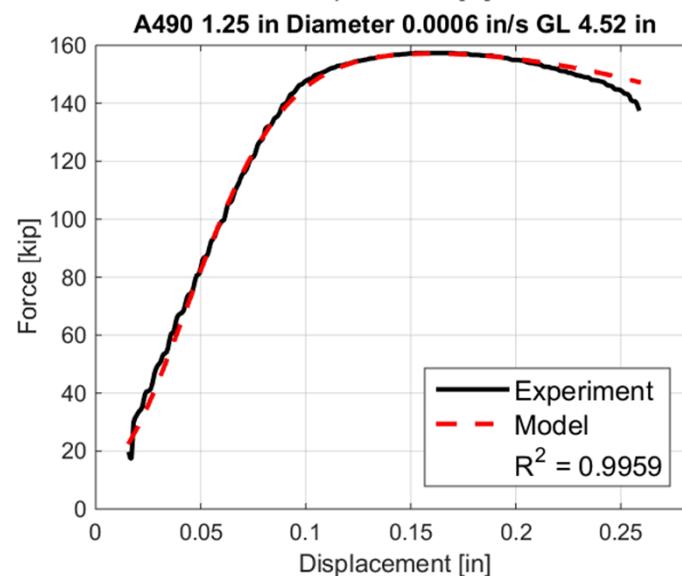


A286 #8-32 UNC 5/8 in Length		
Gage Length [in]	Speed [in/s]	R^2
0.15	0.0002	0.9924
0.25	0.0002	0.9933
0.25	0.0002	0.9939
0.25	0.0002	0.9896
0.25	0.0002	0.9919
0.25	0.0002	0.9937
0.25	0.0002	0.9861
0.15	2	0.9915
0.25	2	0.9972
0.25	2	0.9958

Model Results: Small Bolt Diameter

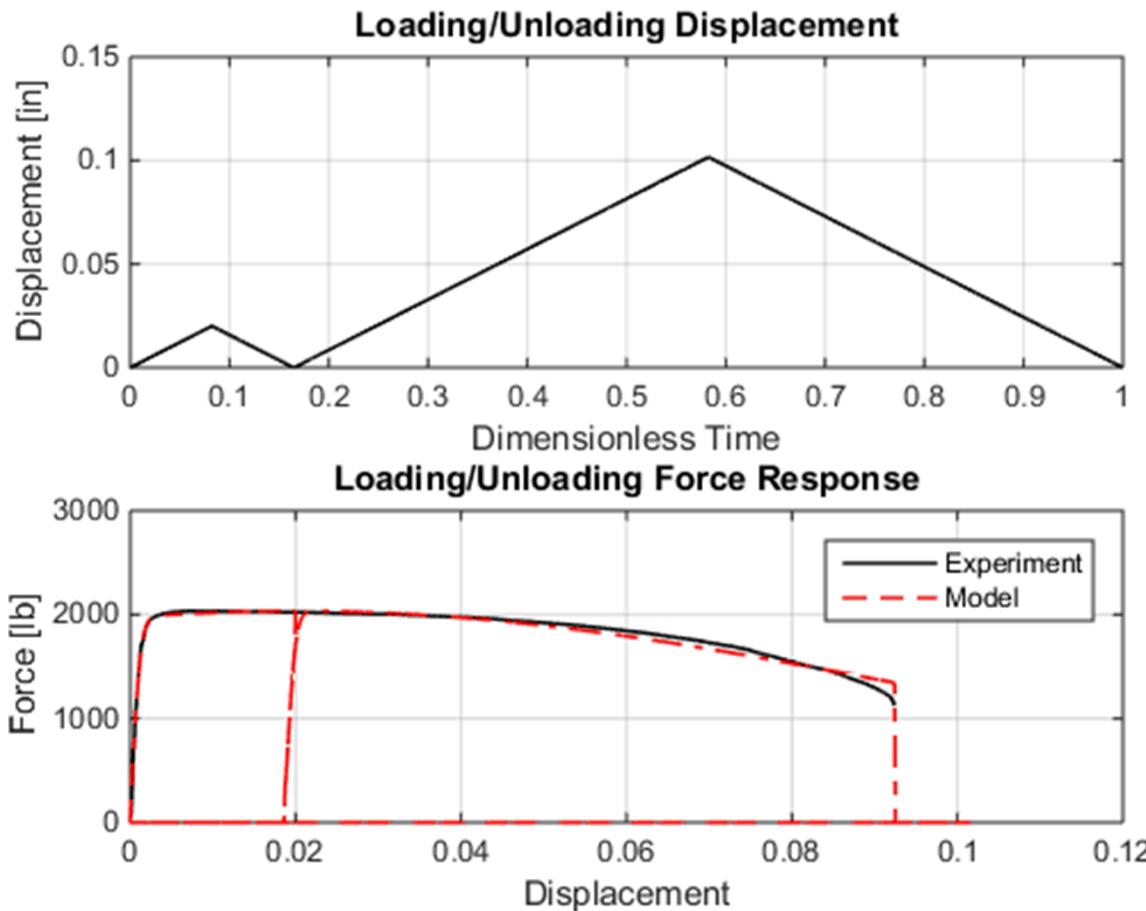


Model Results: Large Bolt Diameter



Model Unloading & Failure

$$F(\delta) = F_p \left(-\frac{4}{5} e^{-\left(\frac{5(\delta-h)}{\delta_{80}}\right)^2} + e^{-\left(\frac{\delta-\delta_p}{\delta_u+\delta_p}\right)^2} \right) (H(\delta - h) - H(\delta - du))$$



$F \equiv$ Bolt force
 $\delta \equiv$ Bolt displacement

$F_p \equiv$ Peak force

$\delta_{80} \equiv$ Displacement at $0.8F_p$
 $\delta_p \equiv$ Peak displacement
 $\delta_u \equiv$ Ultimate displacement

$H \equiv$ Heaviside function
 $h \equiv$ Permanent deformation
 at unloading

Conclusions & Future Work

Conclusions

- Created reduced order model that reproduces force displacement curves for pure tension.
- Reduced model from 2 free variables to zero free variables – no optimization is required, but model is fully empirical.
- Model matches experiments with high R-squared values (>0.98)

Future Work

- Investigate other types of response functions.
- Extend model(s) for pure shear and mixed loading conditions.
- Verify models further with additional experiments.