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Abstract—Short-term extreme response statistics are often
required to obtain the long-term (deployment life) response
for an offshore structure. A number of methods are available
to produce these response statistics for data collected from
either physical experimentation or numerical modeling. Here, we
consider the application of a series of such methods to determine
the short-term extreme response statistics for a simple wave
energy converter (WEC). Using data created from a frequency-
domain model, each method is implemented multiple times to
provide an understanding of its accuracy and variance. The
results are compared along with an empirical “truth” result that
uses all of the available data. Trade-offs between the amount of
data required by a given method and its accuracy are presented
and discussed.
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I. INTRODUCTION

A better understanding of extreme loads on wave energy
converters (WEC) has the potential to increase the economic
viability of WECs. More accurate design loads would allow for
device designs that can survive in the harsh ocean conditions
without the need for excess (wasted) structural material. This
requires (i) a statistical understanding of the environmental
conditions at the deployment site, as well as (ii) an under-
standing of the WECs response at the different environmental
conditions. In general, the methods employed to analyze
analogous systems (e.g., offshore oil and gas structures, ships,
and offshore wind turbines) should be applicable to WECs
[1], [2]. However, some care must be taken to insure that the
unique aspects of a WEC do not necessitate a somewhat altered
approach.

In general, the design response for an offshore system
is described by a long-term (e.g. deployment life) extreme
response probability distribution. This distribution is the com-
bination of short-term (i.e specific environmental condition)
extreme response probability distributions and distributions
describing the environmental conditions. A short-term extreme
response distribution describes “If a device is in sea-state X
for Y amount of time, what will be the largest Z observed,”
where X is the environmental condition, Y the short-term
period, and Z the response parameter of interest (e.g. the
mooring load, bending moment). To move from a distribution
to some scalar value that can more easily be used in the
design process, the characteristic extreme value is often taken
as the expected value (the mean) or some higher rth percentile
of the distribution. Combining a device’s short-term extreme

response distribution for a given sea state with the probability
of occurrence for that sea state produces a long-term extreme
response that can be used to quantify the design response of
a device (see, e.g., [3], [4]).

An ongoing project is currently investigating the full scope
of this process, however, this paper specifically looks at the
methods of estimating characteristic extreme response values
from numerical simulations. The goal is to compare different
methods and make an informed selection to be used in the
larger project. Since the process of estimating short-term
extreme responses may need to be repeated possibly hundreds
of times to assess the device response across a range of sea
states, it is desirable for (i) the numerical model to be fast
running, and (ii) for the method of estimating the extreme
response distribution to require the least amount of simulation
time. For this study, we consider a simple numerical model
and focus our analysis on part (ii) by considering a number
of statistical methods and in each case varying the amount
of data used to implement the method. The results provide
a relative comparison of the accuracy and efficiency trade-
off between the methods. Additionally, an empirical “truth” is
calculated and used to provide some absolute comparison for
the methods.

II. METHODS FOR OBTAINING THE EXTREME EVENT
PROBABILITY DISTRIBUTION

In this study, we compare different methods for obtaining
the extreme response at a given sea-state. A wide range of
methods are available and are regularly applied to marine sys-
tems. Here, we consider four of the most popular methods: all-
peaks Weibull, Weibull tail-fit, block maxima, and peaks-over-
threshold. Each of these methods make different compromises
between the amount of data used and the relevance of that data
to extreme events. The tail of the distribution (i.e. the largest
global peaks) are the most important when extrapolating to
the short-term extreme distribution. In all cases, the global
peaks (largest point between successive zero up-crossings) are
identified and treated as an independent random variable.

A. All-Peaks Weibull

The all-peaks Weibull method uses a single simulation
time-series of any length, not necessarily the desired short-
term period (i.e. the length of the simulation may be shorter
than, equal to, or longer than the desired short-term period)
[5]. A Weibull distribution is assumed and fitted to the global

SAND2015-6890C



peaks. The cumulative distribution function (CDF), F (x), for
a Weibull distribution is given by

F (x) = 1− exp

(
−
(x
α

)λ)
(x ≥ u). (1)

Here, α and λ are the distribution’s scale and shape parame-
ters respectively. The short-term extreme distribution function,
Fe(x), can then be defined in relation to a distribution of the
response’s peaks, Fp(x)

Fe(x) = Fp(x)
q, (2)

where q is the number of expected peaks in the short-term
period. This method uses the most data (all global peaks),
however much of this data may not be relevant to extreme
events. Thus, by fitting a Weibull to all the global peaks, one
risks not getting the best fit for the tail of the peak distribution,
which has the largest effect on the extreme distribution.

B. Weibull Tail-Fit

The Weibull tail-fit method is similar to the all-peaks
Weibull, but emphasizes the tail of the distribution [6], [7].
With the peaks in ascending order, an empirical distribution is
approximated as

F ′(xi) =
i

N + 1
(3)

for the ith ordered peak, where N is the total num-
ber of peaks. Distributions are fitted to the points
(xi, F

′(xi)) for seven different datasets where F ′(xi) ≥
0.95, 0.90, 0.85, 0.80, 0.75, 0.70, and 0.65. Thus, the 1st

distribution is a fit to the peaks with F ′(xi ≥ 0.95), the 2nd is
fitted to peaks with F ′(xi ≥ 0.90) and so on. The distribution
of global peaks is then taken as a Weibull, with parameters
equal to the average of the parameters of the seven fitted
Weibull distributions. The short-term extreme distribution is
then obtained using (2).

By obtaining a better fit on the tail of the peaks, this
method should provide more accurate estimates for the short-
term extreme distribution. Mathematically, we can consider
how the CDF of the peaks (which is always between 0 and 1)
is raised to a large positive number, q, to obtain Fe(x). This
operation causes the short-term extreme CDF to shift to the
right of the peak CDF, due the fact that F (x)q+1 > F (x)q

where q � 1. Hence the section of the extreme CDF with
non-negligible values comes only from the tail of the peaks
CDF.

C. Block Maxima

The block maxima method is the most rigorous and straight
forward method of obtaining the short-term extreme distribu-
tion. It obtains the short-term extreme distribution directly,
without calculating a distribution for the global peaks. The
first step is to run N simulations of length equal to the short-
term period of interest. Then the extreme value (largest value
observed, or block maxima) is identified from each of the N

simulations. A generalized extreme value (GEV) distribution
is fitted to the N extreme values. The CDF of the GEV is
defined as

F (x) = exp

(
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

)
(4)

where ξ, σ, and µ are the shape, scale, and location parameters,
respectively.

Unlike the use of the Weibull distribution for fitting the
global peaks, the choice of GEV is mathematically true for
block maxima, regardless of the base distribution of the data
[8]. This method uses only one data point per simulation, but
it is the most relevant data point, however, it also requires the
most simulation time.

D. Peaks-Over-Threshold

The peaks-over-threshold method uses all global peaks
over a certain threshold (u). A Pareto distribution is fitted to
this subset of the data. The CDF for the Generalized Pareto
distribution is given by

F (x− u) = 1−
(
1 +

ξ(x− u)
σ

)− 1
ξ

, (5)

where ξ and σ are the shape and scale parameters, respectively.
The distribution of peaks, F (x)p, is then obtained from the
distribution of peaks-over-threshold, F (x)pot, as

F (x)p = 1− (ζu(1− F (x)pot)), (6)

where ζu is the probability of global peak being over the
threshold (u) and is approximated as the fraction of observed
peaks over the threshold. The short-term extreme distribution
is then obtained using (2).

The Generalized Pareto distribution is mathematically true
for the global peaks-over-threshold [8]. Like the Weibull
tail-fit, the peaks-over-threshold method uses an intermediate
amount of data. The choice of threshold is important; too low
of a threshold may violate the underlying assumptions and too
high decreases the amount of data available (see, e.g., [8]).
Based on standard practice for offshore wind turbines, here we
employ a threshold 1.4 standard deviations above the mean of
the peaks [9].

III. CASE-STUDY

For this study, the simple WEC illustrated in Fig. 1
was considered. This device is a neutrally buoyant cylinder
restricted to move in heave and connected to the ocean floor via
a linear damper. Table I summarizes the device’s parameters.
The response parameter of interest was chosen as the force on
the power conversion chain (PCC), and the short-term period
as one hour. The sea-state modeled consists of irregular waves
represented by a JONSWAP spectrum. Spectral parameters are
listed in Table I.



TABLE I. CASE-STUDY & WEC SPECIFICATIONS.

WEC Radius, R 5 m
WEC Draft, T 5 m
WEC Mass, m 402517 kg

PCC Damping Coefficient, bpcc 52163 Ns/m
Water Density, ρ 1025 kg/m3

Hydrostatic stiffness, k 786144 N/m

Ocean wave spectral family JONSWAP
Significant wave height, Hs 6 m

Energy period, Te 8 s
Peak period, Tp 8.85 s

Peakedness factor, γ 3.3

Response parameter of interest PTO-Force
Short-term period of interest 1 hour

bpcc

z

T = 5m

R = 5m

Fig. 1. Schematic of case-study WEC device.

A. Hydrodynamic Model

The WEC was modeled using a frequency-domain ap-
proach (see, e.g., [10]). The frequency-dependent excitation,
Ĥ(ω), added mass, ma(ω), and radiation damping, brd(ω),
coefficients in the heave direction were obtained using the
boundary element method code NEMOH [11]. The hydrostatic
stiffness is represented by a linear spring coefficient, k. The
frequency-dependent wave elevation is calculated given as

ζ̂(ω) = A(ω)cos(φ(ω)) +A(ω)sin(φ(ω))i (7)

where A(ω) is the frequency-dependent amplitude correspond-
ing to the JONSWAP spectrum described in Table I and
φ(ω) is the frequency-dependent random phase. The complex
frequency-dependent wave excitation force is given by (8), and
the WEC’s impedance (intrinsic + PCC impedance) by (9).

F̂e(ω) = Ĥ(ω)ζ̂(ω) (8)

Ẑ(ω) = ω(m+ma(ω))i+ bpcc + brd(ω)−
k

ωi
(9)

The frequency-domain complex velocity is then given by

ˆ̇z(ω) =
F̂e(ω)

Ẑ(ω)
(10)

and the force in the power conversion chain (PCC), Fpcc, is

F̂pcc(ω) = bpcc ˆ̇z(ω). (11)

The time-history of the response parameter of interest is then
obtained as

Fpcc(t) = bpcc

∞∑
i=1

|ˆ̇z(ωi)|cos(ωit+ arg(ˆ̇z(ωi))). (12)

The damping coefficient, bpcc, for the WEC was chosen by
optimizing the absorbed power, Pa.

bpcc = argmax

{ ∞∑
i=1

Pa(ωi)

}

Pa(ω) =
1

2
bpcc|ˆ̇z(ω)|2

(13)

B. Comparison of Statistical Method Performance

The frequency-domain model described in Section III-A
was used to simulate 1000 hours of the response parameter
of interest (Fpcc) at a specific sea-state. To reduce the number
of frequencies required to generate such a long time history
without repetition, the 1000 hours were obtained by concate-
nating the results from multiple simulations of shorter repeat
period. This was possible because of the ergodic nature of the
system. The global peaks between zero up-crossings were then
identified and treated as an independent random variable.

For this study, the desired short-term period is considered
as 1 hour. The 1000 hours of simulation results can be divided
into n simulations of length m (such that n ·m = 1000 hours).
Table II summarizes the different methods and simulation
times used. For each method, the characteristic short-term
extreme value is taken as the expected value of the short-
term extreme distribution. Each method was used ni times,
providing ni estimates of the expected short-term extreme.
By fitting a normal distribution to these ni estimates, the
expected value and variance of each method can be estimated
and compared [12]. For example, the APW 0.5 case described
in Table II uses a Weibull fitting method on mi = 0.5
hour simulations; with 1000 hours available, there are a total
of ni = 2000 realizations with which to characterize the
performance of this method. On the other hand, the BMA 10
case uses a block maxima method in which ten simulation,
each with a length of 1 hour (mi = 10), are used, allowing
for a total 100 realizations to be taken from the 1000 hours of
available simulation time.



TABLE II. SUMMARY OF CASE-STUDY STATISTICAL METHODS FOR
COMPARISON.

Case name Method Simulation
duration (hr)

Number of
realizations

APW 0.5 all-peaks Weibull 0.5 2000
APW 1 all-peaks Weibull 1 1000
APW 2 all-peaks Weibull 2 500
WTF 0.5 Weibull Tail-Fit 0.5 2000
WTF 1 Weibull Tail-Fit 1 1000
WTF 2 Weibull Tail-Fit 2 500
BMA 10 Block Maxima 10 × 1 100
BMA 20 Block Maxima 20 × 1 50
BMA 40 Block Maxima 40 × 1 25
POT 0.5 Peaks Over Threshold 0.5 2000
POT 1 Peaks Over Threshold 1 1000
POT 2 Peaks Over Threshold 2 500
EMP Block Maxima 1 1000
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Fig. 2. Goodness of fit plots for GEV and all (1000 hours) 1-Hour extremes
data.

IV. RESULTS

An empirical “truth” for this study was obtained by using
the block maxima method with all available data. A GEV
distribution was fit to the 1000 1-hour extremes. The resulting
distribution has the following parameters: shape, ξ = 0.0567;
scale, σ = 1456; location, µ = 112. Since the shape parameter,
ξ, is very close to zero, a Gumbel distribution would also be
an acceptable option. Fig. 2 shows the goodness of fit with
good agreement between the fitted GEV and the data.

Fig. 3 and 4 show an example of the analyses conducted
for each case studied in the comparison. Here, the results for
the 1-hour all-peaks Weibull case (APW 1) is considered. The
goodness of fit plots in Fig. 3 show that the Weibull distribution
is a good choice for the global peaks. Fig. 4 shows the fits from
each of the 1000 realizations for this method. For this case,
there are 1000 distinct Weibull fits of the peaks (green lines)
and 1000 extrapolated 1-hour extreme distribution estimates
(red lines). It can be seen that there is a large spread and
that the method tends to be an overestimate compared to the
empirical truth (black line). Additionally, Fig. 4 also illustrates
the process of a peak distribution being transformed to an
extreme distribution (this behavior, and its influence on the

Fig. 3. Goodness of fit plots for Weibull and all (1000 hours) global peaks
data.
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rational behind the Weibull tail-fit method was discussed in
Section II-B).

The performance for each of the cases introduced in
Table II is shown in Table III and Fig. 5. Fig. 5 shows the
expected value and the 95% interval bounds of the normal
distribution fitted to each of the method’s expected value
estimates. The horizontal lines are the expected value and
95% intervals of the “true” empirical distribution of 1-hour
extremes. These same results are summarized in Table III with
the simulation time required to execute each method.

For the block maxima methods, a Gumbel distribution was
used instead of a GEV. When using the GEV with fewer than
roughly 50 points, the spread was very large due to the fitted
shape parameter being positive, negative, or zero for different
realizations [8]. This results in three very different behaviors
and causes large spread of predicted characteristic extreme
values. Forcing the shape parameter to zero (therefore forcing
the GEV to assume a Gumbel form) allows for reasonable fits
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Fig. 5. Comparison of different methods. Black solid line is the expected
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TABLE III. SUMMARY IF STATISTICAL METHOD PERFORMANCE.

Case name
Expected
value, EV

[kN]

EV %
difference

± 95%
[kN]

Simulation
time [hr]

APW 0.5 1577.8 -4.17% 304.8 0.5
APW 1 1578.8 -4.23% 205.8 1
APW 2 1579.1 -4.25% 143.3 2

APW 10 1579.3 -4.26% 65.1 10
APW 20 1579.3 -4.27% 44.5 20
APW 40 1579.3 -4.27% 28.2 40
WTF 0.5 1583.3 -4.53% 478.6 0.5

WTF 1 1553.4 -2.55% 320.7 1
WTF 2 1539.3 -1.62% 227.1 2

WTF 10 1527.9 -0.87% 104.2 10
WTF 20 1526.4 -0.77% 74.2 20
WTF 40 1525.6 -0.72% 50.3 40
BMA 10 1515.4 -0.05% 162.2 0.5
BMA 20 1516.0 -0.08% 109.5 1
BMA 40 1516.3 -0.10% 82.9 2
POT 10 1511.0 0.25% 158.2 10
POT 20 1513.5 0.08% 123.0 20
POT 40 1515.7 -0.06% 84.7 40

Empirical “truth” 1514.7 1000

with fewer points. The Generalized Pareto distribution used
for the peaks-over-threshold method also shows very different
behaviors depending on the sign of its shape parameter, and
it was found that about 10 or more hours of simulation were
needed to guarantee a reliable fit.

V. DISCUSSION

From Fig. 5, it is clear that the statistical methodology used
to produce a short-term extreme response distribution can have
a substantial influence on the results of an analysis. For the
same simulation time, the all-peaks Weibull method provides
lower variance than the Weibull tail-fit method, but does not, on
average, predict the true expected extreme value with as much
accuracy. To function properly, the peaks-over-threshold and
block maxima methods require an order of magnitude more
data than the all-peaks Weibull and Weibull tail-fit methods. On
average, the peaks-over-threshold and block maxima methods
predict the true expected value; however, a long simulation

time is required to reduce the variance in these methods’
predictions. For the purpose of this project it is likely a Weibull
tail fit will be adopted as the method for obtaining the short
term characteristic extreme value, since it seems to be the best
compromise between accuracy and simulation time.

Future investigation into methods for obtaining the charac-
teristic extreme value will focus on two aspects: (i) exploration
of other, more novel methods, and (ii) consideration of a
different characteristic extreme value. In this study, we used
the expected value of each extreme distribution to serve
as the characteristic extreme in the single point comparison
between methods. However, there is ample reason to consider
using a higher percentile in design applications. For instance,
considering ocean wave amplitudes, Ochi points out that
there is a 62.3% chance of the extreme wave exceeding the
extreme distribution’s (Rayleigh) modal value (i.e. peak of
the distribution) [13]. Thus, many engineering applications
employ some small risk parameter or probability of exceedance
in selecting the percentile to indicate a single characteristic
extreme. In fact, it may be wise to choose the probability of
exceedance to use with a given distribution based on the that
distribution’s variability, as demonstrated by [14]. Here, the
percentile used to determine a characteristic extreme is set
based on the distribution’s variance; thus, in cases with a large
variability, a higher percentile is used.

It must be noted that the common use of a Weibull
distribution to describe the response of floating structures is
not completely theoretically justified, and is instead a useful
and practical assumption [12]. In this particular study, because
of the nature of the simple numerical model, which uses linear
superposition of sinusoidal functions, and the narrow-banded
nature of both the ocean spectrum and the WEC’s dynamic
system, the peaks of the response are expected to follow
a Rayleigh distribution (see, e.g., [13]). Since the Rayleigh
distribution is a subset of the Weibull distribution, the results
using this method might be better in this particular case-study
than with nonlinear numerical models. The goodness of fit
plots in Fig. 3 show that a Weibull distribution is a good choice
for the global peaks the data considered in this study.

VI. CONCLUSION

A series of short-term extreme response methods have been
presented and compared. Each method was implemented using
datasets of a range of sizes. The results of this analysis show
that these statistical analysis methods and the results that they
produce must be used with care and an understanding of their
performance trade-offs. While none of the considered methods
is clearly dominant above the others, for applications in which
the model requires some significant amount of time to run, the
Weibull tail-fitting approach appears to be a good a balance
between accuracy, low variance and efficient usage of data.
Future work will focus on investigating more novel methods
and on considering different characteristic extreme values to
represent the distribution.
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