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Overview

 Curve Fitting and Multivariate Analysis
 Peak Fitting

 Least Squares

 Principal Component Analysis (PCA)

 Previous work on NEXAFS data analysis
 Analysis of O-ring polymer material

 Global analysis of NEXAFS images

 Analysis of EELS data
 Interpretation of spectral images (SI) taken on Pt/TaOx/Ta stack

 Multivariate curve resolution (MCR) of EELS images

 Global analysis of EELS images
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Motivation

 Peak fitting can help elucidate the nature of bonding in 
polymers
 Typically, peak fitting is performed on a single spectrum or a summed 

area in a spectrum image

 Use NEXAFS with global analysis to evaluate ageing 
mechanisms in polymers
 Fitting NEXAFS images, multiple spectra simultaneously, can provide 

information about the areal extent of bonding in the material as well 
as mixed species

 Understanding behavior of memristor materials using EELS
 Interpret data using global analysis to understand physical changes in 

memristors upon electrical challenges
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Curve Fitting

 Gaussian and Lorentzian peaks are characterized by three 
parameters: amplitude, center, and width

 The step function has four parameters: amplitude, center, 
width, and decay rate 
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J. Stöhr, NEXAFS Spectroscopy, Springer, Berlin (1992). 4



Peak, Step and Offset Definitions
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 Asymmetric Peaks: Set w	=	mE+b

 Both m and b are common to all shifted peaks in sample spectra
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 Can also introduce exponential decay term into step function

 Offset:            �� = �

 Red indicates linear term

J. Stöhr, NEXAFS Spectroscopy, Springer, Berlin (1992).
5



Set Up the Least Squares Problem

 The model is � = ���

 D is the data matrix, dimensioned as number of image pixels by 
number of spectral channels

 A is the matrix of linear coefficients, dimensioned as number of pixels 
by number of peaks, steps and offsets (factors)

 S is the matrix of nonlinear terms, dimensioned as number of spectral 
channels by number of factors

 Superscript T represents matrix transpose

 The least squares criterion: minimize � − ���
�

Knorr, F. J. and J. M. Harris, Analytical Chemistry 53(2): 272-276, (1981).
Beechem, J. M., Numerical Computer Methods. L. Brand and M. L. Johnson, Methods in 
Enzymology San Diego, Academic Press. 210: 37-54, (1992). 6
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Solving the Problem

1. Solve nonlinear terms using a nonlinear solver, like nonlinear least 
squares

 Initialize with best guesses for peak or step parameters

 Each peak or step is computed using the estimated parameters 
and the given energy axis

 The offset is entered as a column of ones; it has no nonlinear 
term

2. Given the estimate of �� from nonlinear solution, solve the linear 
terms using least squares

 �� − ��� �����
��

(can impose nonnegativity)

 This is done within the nonlinear function call

3. Iterate until convergence
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Compression
 We can represent the data as the product of two 

orthogonal matrices using principal component analysis 
(PCA): � = ���

 T is the matrix of orthogonal “scores” dimensioned as #pixels by 
#principal components (#PCs)

 P is the matrix of orthonormal “loadings” dimensioned as 
#spectral channels by #PCs

 Number of PCs<<min(#pixels,#channels)

 Recall the model is � = ���

 Now we can write ��� = ���

 Finally, we can define �� = ����

Henry, E. R. and J. Hofrichter, Numerical Computer Methods. L. Brand and M. L. Johnson, 
Methods in Enzymology San Diego, Academic Press. 210: 129-192, (1992).
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Compression Use

 One can treat the following equation identically to the full 
data least squares problem

 Model �� = ����

 Minimize �� − ����
�

 Solve nonlinear part to obtain ��

 Solve ��� − ��� �����
��

 After convergence compute �� = ����

 Nonnegativity can be imposed with only a minor 
computational penalty
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NEXAFS Data Arrays

 Consider a collection of Imaging NEXAFS data

 These data can be reorganized as a matrix by stringing out the 
images as a vector of pixels
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Sample and Analysis Summary

 KF25 Gasket O-ring, Buna-N, Black--filled with unknown fillers
 Standard vacuum “quick flange” type commercial O-ring 

 O-rings cut into ~1cm length pieces, & artificially aged under different conditions in air ovens
 Native unaged

 125oC, 10 days 

 125oC, 21 days

 After ageing, ~1mm slices were extracted away from the end of each piece and placed onto 
sample platen for NEXAFS analysis with double-sided copper tape.

 Analysis Conditions:
 Samples analyzed on the LARIAT imaging NEXAFS end station located on U7A, National Synchrotron Light Source, BNL.

 Scanning from 270 to 348eV, 0.2 eV per step (391 spectral channels), 1 second per frame, 2 frames per step, 50V grid bias

 Data file Processing (each individual file):
 Remove outliers

 Normalize to IO

 Determine variance from duplicate frames

 Cropped to include only the O-ring material

 3 Data files concatenated together, then processed with the global analysis routine:
 5 symmetrical Voigt peaks, 5 asymmetrical Voigt peaks, 1 step and 1 horizontal offset

 Constraints for symmetrical Voigt peaks:  all have same peak width and must be at a lower energy than the step

 Constraints for asymmetrical Voigt peaks:  must follow model in reference and must be at a higher energy than the step

 Step location based on similar samples noted in the literature

 Scale image-mode factor intensities to common total intensity for all samples

 Images sizes: 47398 pixels + 47349 pixels + 46156 pixels = 140903 pixels x 391 channels

Nitrile Rubber, Buna-N, Butadiene 
(from www.wikipedia.org)
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Spectral Peak Assignments

O. Dhez, H. Ade, and S. G. Urquhart, Calibrated NEXAFS Spectra of Some Common 
Polymers, Journal of Electron Spectroscopy and Related Phenomena, 128 (2003), 85-96.
http://dx.doi.org/10.1016/S0368-2048(02)00237-2
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P. H. Zhou, O. Kizilkaya, and E. Morikawa, Electronic Structure of Photo-Degraded 
Polypropylene Ultrathin Films, Chemical Physics Letters, 465 (2008), 241-44.
http://dx.doi.org/10.1016/j.cplett.2008.10.006

Mean O-ring NEXAFS spectrum in this work

Fig. 3 (a) C 1s N EXAFS spectra of trans -1,4-polyisoprene (1.A), cis -1,4-polyisoprene (1.B), mixed isomer polybutadiene (1.C), and 
mixed isomers polychloroprene (Neoprene) (1.D). (b) Expanded low energy region of the sam...

Fig. 5 (a) A series of carbon K-edge NEXAFS spectra of pristine 
and degraded polypropylene thin-films with different photon-
irradiation time. (b) NEXAFS spectrum of polybutadiene polymer.

C=C bond formation upon degradation with 80eV photons

C=C

C-H
C-C



Total Spectrum Fit
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Global Analysis Factors 1-6
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Native        10 days       21 days
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Global Analysis Factors 7-12
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Native        10 days       21 days

Native        10 days       21 days

Native        10 days       21 days

Native        10 days       21 days

Native        10 days       21 days

Native        10 days       21 days

C-C ?



NEXAFS Results

 Used NEXAFS acquired data to analyze aged O-ring material
 Used peak fitting to insinuate an explanation for ageing details

 Model suggests ageing influences on C=C bond energies

 Developed and implemented a fast multivariate method of 
peak fitting for NEXAFS data

 Capable of fitting many spectra simultaneously
 Currently used to fit single images

 Could be applied to multiple images or spectra

 Method takes advantage of image inhomogeneities during 
fitting process
 Shows promise for finding variation in the spatial domain to aid in 

data interpretation
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EELS Sample Prep and Acquisition

 EELS Images 
 Collect before, during and after 

challenge. 

 FEI Titan G2 80-200 
TEM/STEM
 200 kV 

 High-brightness Schottky field emission 
electron source

 Spherical aberration corrector on probe 
forming optics (AC-STEM) 

 Gatan Quantum 963 EELS. 

 STEM acquired full EELS 
spectral images (SI) 
 Low-loss energy region (-20 eV-180 eV)

 Includes zero-loss peak, plasmons and 
Ta O2,3 edge, with a 50 msec dwell time

 Data size: 30 x 190 pixels x 550 channels 
x 3 states

 Sample preparation
 Tungsten wire tip 

Flat-topped to ~10µm

 Sputter deposit Pt/TaOx/Ta stack on W tip 

 Mill comb structure into the surface 

 Electrically isolates the structures

 100-200 nm wide, 30-40 nm in beam 
direction

 Challenge stack with probe
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EELS-SI data preprocessing

 Energy Axis Alignment
 Correcting for small instabilities in the primary beam energy and 

drift/instability of power supplies. 

 Use the region of the zero loss peaks 
 Restrict data set to -3 eV to +3 eV 

 Upsampled data by fifty times 

 Effective channel size of 2 meV

 Used Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) 

 Computed the cross-correlation coefficients across the zero loss peaks

 Align each pixel spectrum relative to the first row, first column pixel of 
the before-challenge sample

 Choosing the index of the maximum cross-correlation coefficient as the 
zero loss value

 Shifts all the spectral to a common energy-loss baseline
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Peak Alignment Cross-Correlation
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Consider two 
identical, but shifted, 
Gaussian curves.

Compute product-sum 
for each increment as 
the curves are 
progressively overlaid.

Determine the lag at the 
value of the maximum 
cross-correlation.

Lags



Effects of Alignment Procedure
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Alignment of EELS-SI zero loss peaks 



Eigenanalysis of Combined, Shifted Data
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MCR Factor Analysis Results
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MCR Factor 10
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No evidence of conductor filaments or channels in the TaOx region, 
although this factor shows a noticeable affect from the challenge



Global Analysis Results
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Ta O2,3-Metallic
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On and off states result in TaOx becomes more metallic. Again, 
there is no indication of filament or channel formation.



Ta O2,3-Oxidized, W O2,3-metal
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On and off states see formation of a more-insulating 
layer between TaOx and Ta.



DFT: Amorphous Ta(O) Derivatives

 Qualitative trends are very clear with increasing O content (50% O is a-Ta80O80 or TaO). As O 
content increases:

 Ta plasmon peak near 21 eV decreases and blueshifts.

 Peak near 40 eV decreases and redshifts.

 New peak grows below 45 eV.

 Shoulder between 15 and 20 eV becomes more prominent.
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Conclusions

 Used NEXAFS acquired data to analyze aged O-ring material
 Used peak fitting to insinuate an explanation for ageing details

 Model suggests ageing influences on C=C bond energies

 Implemented a fast multivariate method of peak fitting for 
EELS data
 Capable of fitting many spectra simultaneously

 Applied to multiple images simultaneously

 This preliminary analysis of Pt/TaOx/Ta stack shows no 
filament formation after electrical challenge
 This work indicates a possible resistance change across the TaOx/Ta 

interface
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