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Overview rh) pes

= Curve Fitting and Multivariate Analysis
= Peak Fitting
= |east Squares
= Principal Component Analysis (PCA)

= Previous work on NEXAFS data analysis
= Analysis of O-ring polymer material
= Global analysis of NEXAFS images

= Analysis of EELS data

= Interpretation of spectral images (SI) taken on Pt/TaO,/Ta stack
= Multivariate curve resolution (MCR) of EELS images
= Global analysis of EELS images




Motivation rh) pes

= Peak fitting can help elucidate the nature of bonding in
polymers
= Typically, peak fitting is performed on a single spectrum or a summed
area in a spectrum image
= Use NEXAFS with global analysis to evaluate ageing
mechanisms in polymers

= Fitting NEXAFS images, multiple spectra simultaneously, can provide
information about the areal extent of bonding in the material as well
as mixed species

= Understanding behavior of memristor materials using EELS

= |nterpret data using global analysis to understand physical changes in
memristors upon electrical challenges
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Curve Fitting ) o

= Gaussian and Lorentzian peaks are characterized by three
parameters: amplitude, center, and width

= The step function has four parameters: amplitude, center,
width, and decay rate
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Peak, Step and Offset Definitions [

E-Eg \2

= Gaussian: Ig = Ae_( w c) ; where ¢ = 2,/log 4

W 2
= Lorenztian: I = A< (/2) >

(E-Eq)2+("/,)"

=  Pseudo-Voigt:
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=  Asymmetric Peaks: Set w = mE+b
= Both mand b are common to all shifted peaks in sample spectra
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= ShapedStep: Ig=A E + %erf (
= Can also introduce exponential decay term into step function

= Offset: Ip=A

= Red indicates linear term




Set Up the Least Squares Problem @&

ST

= The model is D = AST D =]A

= D is the data matrix, dimensioned as number of image pixels by
number of spectral channels

= A is the matrix of linear coefficients, dimensioned as number of pixels
by number of peaks, steps and offsets (factors)

= Sis the matrix of nonlinear terms, dimensioned as number of spectral
channels by number of factors
= Superscript T represents matrix transpose

2
= The least squares criterion: minimize ||D — AST||
Least Squares Model
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a a, a
Knorr, F. J. and J. M. Harris, Analytical Chemistry 53(2): 272-276, (1981).

Beechem, J. M., Numerical Computer Methods. L. Brand and M. L. Johnson, Methods in R ——
Enzymology San Diego, Academic Press. 210: 37-54, (1992). _
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Solving the Problem ) e,

1. Solve nonlinear terms using a nonlinear solver, like nonlinear least
squares

= |nitialize with best guesses for peak or step parameters

=  Each peak or step is computed using the estimated parameters
and the given energy axis

=  The offset is entered as a column of ones; it has no nonlinear
term

2. Given the estimate of S from nonlinear solution, solve the linear
terms using least squares
~  caretayl, . -
= A-— DS(S S) (can impose nonnegativity)
=  This is done within the nonlinear function call

3. Iterate until convergence




Compression ) s,

= We can represent the data as the product of two

orthogonal matrices using principal component analysis
(PCA): D = TPT PCA

P4 P2 Pn
D ~ + +---+

t, t, t,
= T is the matrix of orthogonal “scores” dimensioned as #pixels by

#principal components (#PCs)

= P s the matrix of orthonormal “loadings” dimensioned as
#spectral channels by #PCs
= Number of PCs<<min(#pixels,#channels)

. T PT ' | I I e
= Recall the modelis D = AS s sz sk
. T T T ~ + +---+
= Now we can write TP' = AS
= Finally, we can define PT = AST - % o
PT ~ a|:|1|S1:| +%2|52:|+...+%3|S1:|

Henry, E. R. and J. Hofrichter, Numerical Computer Methods. L. Brand and M. L. Johnson,
Methods in Enzymology San Diego, Academic Press. 210: 129-192, (1992).
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Compression Use

= One can treat the following equation identically to the full
data least squares problem
= Model PT = AST
= Minimize ||PT — KST”2

= Solve nonlinear part to obtain S

= Solve A — DS(S7S) " A

= |T

= After convergence compute A = TA

= Nonnegativity can be imposed with only a minor
computational penalty




NEXAFS Data Arrays )

= Consider a collection of Imaging NEXAFS data
Energy axis (eV)
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= These data can be reorganized as a matrix by stringing out the
images as a vector of pixels

Energy axis (496)

=D
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Sample and Analysis Summary ) .
B e 1

C=—N

=  KF25 Gasket O-ring, Buna-N, Black--filled with unknown fillers Nitrile Rubber. Buna-N. Butadiene
=  Standard vacuum “quick flange” type commercial O-ring (from www.wil,(ipedia.o,rg)

=  O-rings cut into ~1cm length pieces, & artificially aged under different conditions in air ovens
= Native unaged
= 125°C, 10 days
= 125°C, 21 days

= After ageing, ~1mm slices were extracted away from the end of each piece and placed onto
sample platen for NEXAFS analysis with double-sided copper tape.

=  Analysis Conditions:
= Samples analyzed on the LARIAT imaging NEXAFS end station located on U7A, National Synchrotron Light Source, BNL.
= Scanning from 270 to 348eV, 0.2 eV per step (391 spectral channels), 1 second per frame, 2 frames per step, 50V grid bias

= Data file Processing (each individual file):
=  Remove outliers
= Normalize to Iy
= Determine variance from duplicate frames
= Cropped to include only the O-ring material

= 3 Data files concatenated together, then processed with the global analysis routine:

= 5 symmetrical Voigt peaks, 5 asymmetrical Voigt peaks, 1 step and 1 horizontal offset

= Constraints for symmetrical Voigt peaks: all have same peak width and must be at a lower energy than the step

= Constraints for asymmetrical Voigt peaks: must follow model in reference and must be at a higher energy than the step

= Step location based on similar samples noted in the literature

= Scale image-mode factor intensities to common total intensity for all samples

= Images sizes: 47398 pixels + 47349 pixels + 46156 pixels = 140903 pixels x 391 channels
-



Spectral Peak Assignments
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Fig. 3 (a) C 1s N..~ spectra of trans -1,4-polyisoprene (1.A), cis -1,4-polyisoprene (1.B), mixed isomer polybutadiene (1.C), and
mixed isomers polychloroprene (Neoprene) (1.D). (b) Expanded low energy region of the sam...
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Mean O-ring NEXAFS spectrum in this work
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C=C bond formation upon degradation with 80eV photons

Fig. 5 (a) A series of carbon K-edge NEXAFS spectra of pristine
and degraded polypropylene thin-films with different photon-

irradiation time. ibi NEXAFS sEectrum of Eolibutadiene Eolimer.



Total Spectrum Fit
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Global Analysis Factors 1-6
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Global Analysis Factors 7-12
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NEXAFS Results ) o,

= Used NEXAFS acquired data to analyze aged O-ring material
= Used peak fitting to insinuate an explanation for ageing details
= Model suggests ageing influences on C=C bond energies

= Developed and implemented a fast multivariate method of
peak fitting for NEXAFS data

= Capable of fitting many spectra simultaneously
= Currently used to fit single images
= Could be applied to multiple images or spectra

= Method takes advantage of image inhomogeneities during

fitting process

= Shows promise for finding variation in the spatial domain to aid in
data interpretation




EELS Sample Prep and Acquisition @

= Sample preparation = EELS Images
= Tungsten wire tip = Collect before, during and after
Flat-topped to ~10um challenge.
= FEl Titan G2 80-200
TEM/STEM
' A = 200 kV

" Sputter deposit Pt/TaOx/Ta stack on W tip = High-brightness Schottky field emission
= Mill comb structure into the surface electron source

" Electrically isolates the structures = Spherical aberration corrector on probe

= 100-200 nm wide, 30-40 nm in beam forming optics (AC-STEM)

Jrecton = Gatan Quantum 963 EELS.

= STEM acquired full EELS

spectral images (SI)
= Low-loss energy region (-20 eV-180 eV)

" |ncludes zero-loss peak, plasmons and
Ta O, ; edge, with a 50 msec dwell time

= Data size: 30 x 190 pixels x 550 channels
x 3 states

50 nm

Au probe

= Challenge stack with probe




EELS-SI data preprocessing )i

= Energy Axis Alignment

= Correcting for small instabilities in the primary beam energy and
drift/instability of power supplies.

= Use the region of the zero loss peaks
= Restrict datasetto-3 eVto+3eV

= Upsampled data by fifty times
= Effective channel size of 2 meV

= Used Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

= Computed the cross-correlation coefficients across the zero loss peaks

= Align each pixel spectrum relative to the first row, first column pixel of
the before-challenge sample

" Choosing the index of the maximum cross-correlation coefficient as the
zero loss value

= Shifts all the spectral to a common energy-loss baseline



Peak Alignment Cross-Correlation .
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Effects of Alignment Procedure h
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Eigenanalysis of Combined, Shifted Data(® .
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MCR Factor Analysis Results ) .
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MCR Factor 10 ) o

MCR Factor 10 Pt/TaOx/Ta Stack
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No evidence of conductor filaments or channels in the TaO, region,
although this factor shows a noticeable affect from the challenge




Global Analysis Results
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Ta O, ;-Metallic ) .
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On and off states result in TaO, becomes more metallic. Again,
there is no indication of filament or channel formation.




Ta O, ;-Oxidized, W O, ;-metal
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On and off states see formation of a more-insulating
layer between TaO, and Ta.
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DFT: Amorphous Ta(O) Derivatives™
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- Qualitative trends are very clear with increasing O content (50% O is a-Tag,Og, or TaO). As O
content increases:

Ta plasmon peak near 21 eV decreases and blueshifts.
Peak near 40 eV decreases and redshifts.
New peak grows below 45 eV.

Shoulder between 15 and 20 eV becomes more prominent.




Conclusions )

= Used NEXAFS acquired data to analyze aged O-ring material
= Used peak fitting to insinuate an explanation for ageing details
= Model suggests ageing influences on C=C bond energies

= |mplemented a fast multivariate method of peak fitting for
EELS data
= Capable of fitting many spectra simultaneously
= Applied to multiple images simultaneously

= This preliminary analysis of Pt/Ta0O,/Ta stack shows no
filament formation after electrical challenge

= This work indicates a possible resistance change across the TaO,/Ta
interface
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