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US 2013: total NG prod.  total transport energy, 
but NG ~3% of transport (EU28: 0.8%, China~1%)



US goals for emissions/GHG reduction promote 

increased NG for electricity & transportation

• Climate Action Plan – Promote fuel switching from oil & coal to NG
– Produces 50% less CO2, a third of the NOx, 1% SOx relative to coal for power
– NG combustion at >50% of new electricity generation, push for greater usage

• Transport cost incentive – Tax increase Prevention Act of 2014 (H.R. 5771)
• US DOE Vehicle Technologies Office – Promote technologies that reduce  

petroleum use while lowering costs and reducing environmental impacts
– NG 6-11% lower GHG relative to gasoline (DOE Alternative Fuels Data Center)
– Renewable NG up to 88% lower GHG (ANL Waste-to-Wheel Analysis)



World NGVs growth +20% annual, largely light-duty;  

US projected growth (~10%) is mostly heavy duty

EIA Annual Energy Outlook 

2014 Early Release

Projections for U.S. Natural Gas 

Transportation Sector
International Association for Natural 

Gas Vehicles, www.iangv.org

• IANGV: 2012 worldwide NG vehicles (NGV) at 16.7M (1.3% of total vehicles)
– #1 Iran (3M-21%) #2 Pakistan (2.9M-65%) #3 Argentina (2.1M-17%) #4 Brazil (1.7M-3.6%) 

#5 China (1.6M-1.1%) #6 India (1.3M-1.5%) #7 Italy (750k-1.6%) #18 USA (130k-0.05%) 
#19 Germany (95k-0.19%) #23 Sweden (44k-0.84%) #24 Japan (43k-0.06%) #25 Korea
(34k-0.18%) #28 France (13k-0.03%) #29 Canada (13k-0.06%) #30 Switzerland (11k-0.21%)

• NG passenger car market in US is relatively small with little growth 
anticipated, but rapid (~10% annual) growth is expected in heavy-duty, bus, 
rail, and marine markets



Projected increased NG usage in US heavy-duty 

transportation market driven by economics

National Petroleum Council: Advancing 

Technology for America’s Transportation 

Future 2012

Projected Fuel Prices in US
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Fuel Price Reports

Recent Fuel Prices in US

• Since 2011, US NG prices have been consistently lower than gasoline/diesel
– But transportation fuel costs are not strong driver for US passenger car market; 

US drivers pay among lowest unit fuel costs relative to income 
(in 2014, ~2% of daily wage per gallon in US, median is 9.6% - Bloomberg)

– Fuel costs are more important in heavy-duty on-road and rail transport 
(~40% of operating costs – American Transportation Research Institute)

• Recent NG production gains due to hydraulic fracturing and shale gas development 
are projected to maintain a large price differential in the US through 2060



Improvements are needed at many steps in NG 

supply chain – Sandia/CRF focus is combustion 

Pipeline

NG Transmission/ 
Distribution

Refueling and 
Compression

Liquefaction

LNG

NG Production 
and Processing

GTL Production

Tanks

Vehicle End Use

• Vehicle system integration 
(aftertreatment, hybridization, 
fuel storage) tailored for these 
fuels

• Combustion concepts 
designed for CNG, LNG, rNG, 
dual-fuels, NG/H2
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• Current NG supply/economics: R&D to improve NG usage in 

heavy-duty engines responds to both the push from USDOE and 

the economic pull from domestic industry

• Key R&D areas:

US Summary: Optical engine research to provide 

a science base to overcome NG end-use barriers

• Distribution/refueling

• GTL/LNG production

• On-board storage

• Vehicle end-use

• Four NG engine combustion strategies in production:

• “Best” combustion strategy depends

on economics/regulations/performance

• Each faces unique challenges

• Much less optical engine data available

for NG compared to liquid fuels

Common-platform optical engine 

can provide missing science base
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Optical engine led to diesel “conceptual model”;

Is now industry standard for conventional diesel 

From Dec’s 1997 
conceptual model 
(SAE 970873)

O2 = 21% (no EGR)

SOI = 10 BTDC

Pinj = 1000 Bar
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First conceptual model motivated new strategies;

New low-temperature diesel conceptual model

O2 = 13% (high EGR)

SOI = 22 BTDC

Pinj = 1200 Bar

From 2013 LTC
conceptual model 
(PECS 39:246-83)
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Four production NG combustion strategies today; 

balance of economics, regulation, & performance

Each NG strategies faces unique combustion challenges

Stoichiometric 

Spark Ignition

• Premixed intake, 

NG+air+cEGR

• 3-way catalyst

• ~36% efficiency

• 100% NG

• Cummins, Scania, 

Waukesha, IVECO

Lean Premixed 

Diesel Pilot

• Premixed intake, 

NG+air+cEGR

• Oxy-catalyst

• ~45% efficiency

• 0-95% NG

• Volvo (Hardstaff, 

G-Volution retro.)

Lean Premixed 

Spark Ignition

• Premixed intake, 

NG+air+EGR

• Oxy-catalyst

• ~44% efficiency

• 100% NG

• Cummins, MAN, 

Doosan, GE

Direct Injection 

Diesel Pilot

• intake: air + EGR

• Catalyzed DPF, 

Urea SCR

• ~46% efficiency

• ~90% NG

• Westport, Volvo
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Stoichiometric spark-ignition challenges include 

efficiency, fuel variability, and knock/load limits

• Controlling flame kernel/growth/knock transition1

• Surface/geometry effects

• Fuel composition effects

• EGR/fuel mixing/distribution effects1

• Using turbulence to increase flame speed with EGR

• Effects on ignition, misfiring issues1
Excess Air Ratio (l)

* Cornwall et al, [2] 

In-cylinder gaps for NG stoichiometric/EGR spark ignition

Intake

Premixed NG,

Stoichiometric

Methane-specific 3-way 

catalyst for CO, HC, NOx2

Cooled EGR
Reduces NOx & heat load, 

raises knock limit1,2

Fuel 

Efficiency
Low (~36%)1

Throttle, Timing Retard, 

EGR + low compression 

ratio to avoid knock1

NG Fraction 100%1,2 No diesel fall-back2

Key HD Dev. Cummins, Scania, Waukesha, IVECO2
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Stoichiometric spark-ignition challenges include 

efficiency, fuel variability, and knock/load limits

• With LPG, intake port 

valve can place EGR in 

bottom of cylinder

• More stratified EGR 

burns faster and with 

higher efficiency

Previous optical work:

Intake

Premixed NG,

Stoichiometric

Methane-specific 3-way 

catalyst for CO, HC, NOx2

Cooled EGR
Reduces NOx & heat load, 

raises knock limit1,2

Fuel 

Efficiency
Low (~36%)1

Throttle, Timing Retard, 

EGR + low compression 

ratio to avoid knock1

NG Fraction 100%1,2 No diesel fall-back2

Key HD Dev. Cummins, Scania, Waukesha, IVECO2

EGR #1

(more stratified )

EGR #4

(less stratified )

* SAE 2004-01-0928, Woo, Yeom, 

Bae (KAIST); Oh, Kang (KIMM)
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Stoichiometric spark-ignition challenges include 

efficiency, fuel variability, and knock/load limits

High-speed chemiluminescence 

imaging of knock-free combustion
Understand factors that 

control NG knock with EGR

• Kernel/flame growth

• Surfaces/geometry

• Fuel composition (inc. H2)

• EGR distribution

• Mixing diagnostics

Schlieren images of 

knocking combustion

Prior to 

autoignition 

of end-gas

Onset of 

knocking

Intake

Premixed NG,

Stoichiometric

Methane-specific 3-way 

catalyst for CO, HC, NOx2

Cooled EGR
Reduces NOx & heat load, 

raises knock limit1,2

Fuel 

Efficiency
Low (~36%)1

Throttle, Timing Retard, 

EGR + low compression 

ratio to avoid knock1

NG Fraction 100%1,2 No diesel fall-back2

Key HD Dev. Cummins, Scania, Waukesha, IVECO2
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Lean premixed spark-ignition challenges include 

ignition stability, transients, and CH4 slip

Intake
Lean-premixed 

NG (l~1.6-1.8)

Aftertreatment for HC and 

CO only

Efficiency ~44%
high specific heat ratio,

high compression ratio

Heavy-Duty Cummins, Scania, MAN, GE (Jenbacher)

Challenges

Ignition stability (pre-chamber), transients, 

SCR for US2010/Euro VI NOx, CH4 slip 

(low exhaust T / catalyst-efficiency)

• PLIF shows pre-chamber 

stratification, comp. inflow

- Variability lowers knock limit

• Pre-chamber-jet mixing 

increases flame speed

Previous optical work:

* SAE 2014-01-1330 Wellander, Rosell, 

Richter, Alden, Andersson, Johansson 

(Lund); Duong, Hyvonen (Wartsila)

Pre-chamber simulation Acetone PLIF: fuel consumption
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Lean premixed spark-ignition challenges include 

ignition stability, transients, and CH4 slip

Intake
Lean-premixed 

NG (l~1.6-1.8)

Aftertreatment for HC and 

CO only

Efficiency ~44%
high specific heat ratio,

high compression ratio

Heavy-Duty Cummins, Scania, MAN, GE (Jenbacher)

Challenges

Ignition stability (pre-chamber), transients, 

SCR for US2010/Euro VI NOx, CH4 slip 

(low exhaust T / catalyst-efficiency)

• Turbulent jet ignition pre-

chamber allows leaner 

operation with higher 

stability & combustion 

efficiency

Previous optical work:

*SAE 2012-01-0823, Attard (MAHLE); 

Toulson, Huisjen, Chen, Zhu, Schock

(Michigan State U)

Natural Luminosity imaging

SI, l=1

SI, l=1.4

SI, l=1.5

TJI, l=1.8
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Lean premixed spark-ignition challenges include 

ignition stability, transients, and CH4 slip

Intake
Lean-premixed 

NG (l~1.6-1.8)

Aftertreatment for HC and 

CO only

Efficiency ~44%
high specific heat ratio,

high compression ratio

Heavy-Duty Cummins, Scania, MAN, GE (Jenbacher)

Challenges

Ignition stability (pre-chamber), transients, 

SCR for US2010/Euro VI NOx, CH4 slip 

(low exhaust T / catalyst-efficiency)

• Spark-ignited jets improve 

combustion speed/stability 

at overall lean conditions

Previous optical work:

* SAE 2015-01-0398, Bartolucci, 

Cordiner, Mulone, Rocco (Rome Tor 

Vergata); Chan (U British Columbia)

** SAE 2007-01-1913, Chan, Evans, 

Davy (U British Columbia); Cordiner

(Rome Tor Vergata)

Schlieren spark-ignited jet* Schlieren jet-capillary spark plug**
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Lean premixed spark-ignition challenges include 

ignition stability, transients, and CH4 slip

Intake
Lean-premixed 

NG (l~1.6-1.8)

Aftertreatment for HC and 

CO only

Efficiency ~44%
high specific heat ratio,

high compression ratio

Heavy-Duty Cummins, Scania, MAN, GE (Jenbacher)

Challenges

Ignition stability (pre-chamber), transients, 

SCR for US2010/Euro VI NOx, CH4 slip 

(low exhaust T / catalyst-efficiency)

High-speed chemiluminescence 

imaging of RCCI with laser spark
Understand fuel-lean flame 

ignition/propagation issues

• Lean spark/pre-chamber 

ignition kernel growth

• Flow/piston-geometry 

interactions

• Incomplete combustion

• Fuel/tracer diagnostics

Particle Image Velocity 

Measurements

With fuel

injection

Without 

fuel inj.
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Lean premixed diesel-pilot ignition challenges 

include combustion efficiency, aftertreatment cost

Intake
lean-premixed 

NG + EGR

aftertreatment for HC and 

CO, possibly NOx

Efficiency ~45%
high specific heat ratio,

high compression ratio

NG fraction 0-95% can run 100% diesel

Heavy-Duty Volvo; retrofit: CAP, Hardstaff, G-Volution

Challenges
combustion efficiency (CO, CH4),

aftertreatment costs

• OH Chemiluminescence shows 

bowl-wall ignition, incomplete 

combustion at center for low f

• Fuel-tracer PLIF: fuel-lean at 

center, akin to diesel LTC PCCI

Previous optical work:

*SAE 2014-01-1313, Dronniou, 

Kashdan, Lecointe (IFPEN); Sauve, 

Soleri (Westport Innovations)

OH Chemiluminescence Fuel-tracer PLIF
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Lean premixed diesel-pilot ignition challenges 

include combustion efficiency, aftertreatment cost

Intake
lean-premixed 

NG + EGR

aftertreatment for HC and 

CO, possibly NOx

Efficiency ~45%
high specific heat ratio,

high compression ratio

NG fraction 0-95% can run 100% diesel

Heavy-Duty Volvo; retrofit: CAP, Hardstaff, G-Volution

Challenges
combustion efficiency (CO, CH4),

aftertreatment costs

High-speed chemiluminescence 

of premixed gasoline + diesel
Understand fuel-lean NG w/ 

diesel-pilot ignition issues

• Source of CO (lean/rich)

• Fluorescence/absorption

• Incomplete combustion

• CH4/Intermediates

• Source of NO (pilot comb.)

CO Fluorescence Images
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High-pressure direct injection challenges include 

diesel aftertreatment cost, injection interactions

Intake air + EGR DPF + Urea SCR (diesel)

Efficiency ~46%
high specific heat ratio,

high compression ratio

NG fraction 80-95% can’t run 100% diesel

Heavy-Duty Volvo; retrofit: CAP, Hardstaff, G-Volution

Challenges Diesel-like emissions, optimize dual inj.

High-speed natural luminosity of 

conventional diesel combustion

• PLIF shows pressure ratio 

affects shock structures 

and spreading angle & 

volume

• Shock-induced turbulence 

enhances mixing

Previous optical work:

* SAE 2014-01-1619 Yu, Vuorinen, 

Kaario, Sarjovaara, Larmi (Aalto)

Acetone PLIF: N2 jet in chamber
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High-pressure direct injection challenges include 

diesel aftertreatment cost, injection interactions

Intake air + EGR DPF + Urea SCR (diesel)

Efficiency ~46%
high specific heat ratio,

high compression ratio

NG fraction 80-95% can’t run 100% diesel

Heavy-Duty Volvo; retrofit: CAP, Hardstaff, G-Volution

Challenges Diesel-like emissions, optimize dual inj.

Diesel LTC: combined HCO/PAH 

PLIF (red) and OH PLIF (green) 

Understand high-pressure 

direct-injection NG issues

• Flame lift-off with NG and 

diesel pilot ignition

• OH LIF/chemiluminesc.

• Soot LII / PAH LIF

• Explore LTC options

• Partial premixing

Diesel: combined soot PLII 

(red) and OH PLIF (green)
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Some industry perspectives:

• “A comprehensive optical dataset 

would be a huge step forward, 

especially for understanding 

flame-propagation versus 

autoignition combustion modes.”

• “We need to be able to compare 

results using different strategies 

in the same engine platform.”

• “Optical data leading to 

conceptual models would be 

instrumental to advance NG 

strategies.”

Adapting heavy-duty optical diesel engine for NG  

to provide common platform, 4(+) comb. strategies

Common-platform optical engine 

can provide the missing science 

base for multiple NG strategies 

in reciprocating HD engines
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