INEL-95/0118
October, 1995

RECEiveD
NOV 2 11995
OSTI

Idaho

Engi’,‘,’ZZ'r‘;,”’a’ An Investigation of Newton-
Laboratory Krylov Algorithms for Solving
Incompressible and Low Mach
Number Compressible Fluid
Flow and Heat Transfer
Problems Using Finite Volume

Discretization

P. R. McHugh

<= rlockheed

ldaho Technologies Company

e A e b A Ay

DISCLAIMER
INEL-95/0118

This report was prepared as an account of work sponsored by an agency of the United States
Government, Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

An Investigation of Newton-Krylov Algorithms for Solving Incompressible
and Low Mach Number Compressible Fluid Flow and Heat Transfer
Problems Using Finite Volume Discretization

Paul R. McHugh

Published October 1995

Idaho National Engineering Laboratory
Lockheed Martin Idaho Technologies
Idaho Falls, Idaho 83415

Supported by the
U.S. Department of Energy
through DOE Idaho Operations Office

Contract DE-AC07-94ID13223 M AS.E- ER

DISTRIBUTION OF THIS DOCUMENT IS JNIZ%@TZD)

AN INVESTIGATION OF NEWTON-KRYLOV ALGORITHMS FOR SOLVING
INCOMPRESSIBLE AND LOW MACH NUMBER COMPRESSIBLE FLUID FLOW
AND HEAT TRANSFER PROBLEMS USING FINITE VOLUME DIS CRETIZATION

A Dissertation
Presented in Partial Fulfillment of the Requirements for the

Degreee of Doctor of Philosophy

witha
Major in Mechanical Engineering

in the

College of Graduate Studies
University of Idaho

by
i’aul R. McHugh

April 1995

Major Professor: E. Clark Lemmon, Ph.D.

AUTHORIZATION TO SUBMIT
DISSERTATION

This dissertation of Paul R. Mcﬁugh, submitted for the degree of Doctor of Philosophy with
a major in Mechanical Engineering and ttled "An Investigation of Newton-Krylov
Algorithms for Solving Incompressible and Low Mach Number Compressible Fluid Flow
and Heat Transfer Problems Using Finite Vollume Discredzation,” has been reviewed in final
form, as indicated by the signatures and dates given below. Permission is now granted to

submit final copies to the College of Graduate Studies for approval.

Major Professor. % %/ - &M?&ZJM Date Z/‘Z}/ —?.(’
E. Clark Lemmon
Committee Members \7121,‘4 / /vaé& Date L’ / l Cf / %f
Dana A. Kn e

Lol S 7 /ﬁwﬂj vae FI22/38

(Clayton S. Miller

Eernd A PMannrd Dawe_ 4/i4 /45

Earl S. Marwil

Do 2 fahe Mt e Y24

Administrator,
E. Clark Lemmon

Discipline's a/\) Uy C—
College Dean — 1 oecba 44 Date 42455

David M. Wgodall

Final Approval and Acceptance by the College of Gradyate Studies
e ~
Sezutne M w&— DaeS [/

Oan ne M. Shreeve

ABSTRACT

Fully coupled, Newton-Krylov algorithms are investigated for solving strongly
coupled, nonlinear systems of partial differential equations arising in the field of
computational fluid dynamics. Primitive variable forms of the steady incompressible and
compressible Navier-Stokes and energy equations that describe the flow of a laminar
Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are
obtained by first integrating over discrete finite volumes that compose the computational
mesh. The resulting system of nonlinear algebraic equations are linearized using Newton's
method. Preconditioned Krylov subspace based iterative algorithms then solve these linear
systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based
Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate
_Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual
(TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based
additive and multiplicative Schwarz preconditioning strategies are studied. Numerical
techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and
parameter continuation are used to improve the solution efficiency, while algorithm -
implementation is 5imp1ified using a numerical Jacobian evaluation.

The capabilities of standard Newton-Krylov algorithms are demonstrated via
solutions to both incompressible and compressible flow problems. Incompressible flow
problems include natural convection in an enclosed cavity, and mixed/forced convection past
a backward facing step. Additionally, matrix-free Newton-Krylov implementations are
constructed by approximating the Jacobian-vector products appearing in the Krylov
algorithms with finite difference approximations. Performance of the matrix-free
implementation is found to depend upon problem size, problem nonlinearity, and Krylov

algorithm selectioq. Higher order accurate solutions for mixed convection flow are obtained

iv

using the third order cubic upwind interpolation scheme (CUI) convection scheme with a
defect correction procedure and (several CPU performance enhancement techniques. Solution
efficiency for high Reynolds number forced convection flow is investigated using a discrete
pressure equation formulation, alternative cell ordering strategies, and pseudo-transient
relaxation. Solutions to the compressible flow problem, consisting of low Mach number
subsonic flow past a backstep, found ILU preconditioners to be strongly sensitive to cell

ordering and less effective than domain based preconditioners at low Mach numbers.

ACKNOWLEDGEMENTS

I express my sincere thanks to Dr. Dana A. Knoll, my dissertation advisor, for his
time, inspiration, and advice during the course of this dissertation. His encouragement and
assistance has been a continuous source of motivation and energy during each phase of my
graduate study.

I would also like to acknowledge Dr. E. Clark Lemmon, Dr. Clayton S. Miller, and
Dr. Earl S. Marwil for théir work as members of my graduate committee. I thank them for
the considerable time and effort they expended in guiding and assisting me through the
University of Idaho graduate program.

Several co-workers and collaborators at the Idaho National Engineering Laboratory
(INEL) also deserve recognition. First of all, I would like to express my appreciation to Dr.
John D. Ramshaw, who has truly been a mentor for me during my tenure at the INEL. I
thank him for his encouragement and support, which helped motivate me to pursue this
doctoral degree. I thank Dr. Richard W. Johnson for his assistance with higher-order
accurate finite volume discretization schemes. Additionally, the assistance provided by Mr.
Vincent A. Mousseau and Mr. Paul G. Jacobs with regard to domain-based preconditioning
schemes is greatly appreciated. I thank Dr. C. H. Chang for many helpful discussions and
suggestions regarding this research. I also extend my appreciation to Dr. Glen A. Mortensen
for volunteering to read the initial draft of this dissertation, and for the many ;/aluable
suggestions made afterwards. I also like to thank Dr. Mark J. Oliver for helpful early
discussions regarding Krylov iterative algorithms and preconditioning. Additionally, the
support and encouragement of Dr. Rod W. Douglass, Dr. Paul E. Murray, Mr. Glen A.
Hansen, and Dr. Hoa D. Nugyen is appreciated.

I would also like to acknowledge the support of the INEL Long Term Research
Initiative in Computational Mechanics (LTRI-CM). This project, lead initially by Dr. John

D. Ramshaw and currently by Dr. Rod W. Douglass, provided me the opportunity to pursue
this research. Additionally, I thank the University of Idaho and the INEL for the opportunity
to pursue this degree while residing in Idaho Falls.

Finally, I would like to thank my family for their never-ending moral support and
encouragement. This thanks is especially extended to my wife, Carrie, for her abundant

patience and understanding during the course of this study.

This dissertation is dedicated to my parents, Paul J. and Margaret A. McHugh

viii

TABLE OF CONTENTS

ABSTRACT.... jii

ACKNOWLEDGEMENTS eV

DEDICATION vii

LIST OF FIGURES . xi

LIST OF TABLES xvi
LIST OF SYMBOLS xviii

1. INTRODUCTION 1

1.1. BACKGROUND AND MOTIVATION 4

'1.2. RELATED WORK 12

1.2.1. Incompressible Flow 13

1.2.2. Compressible Flow 16

1.3. DOCUMENT ORGANIZATION 19

2. DESCRIPTION OF GOVERNING EQUATIONS AND MODEL PROBLEMS.......... 21

2.1. INCOMPRESSIBLE FLUID FLOW AND HEAT TRANSFER.........cccceoeree.. 21

2.1.1. Governing Equations 22

2.1.2. Discretization of Governing Equations 24

2.1.2.1. Standard Discretization 27

2.1.2.2. Discrete Pressure Equation Formulation 38

2.1.2.3. Higher-Order Discrete Approximations 41

2.1.3. Natural Convection in an Enclosed Cavity Model Problem 44

2.1.4. Mixed Convection, Backward Facing Step Model Problem.............. 46

2.1.5. Forced Convection, Backward Facing Step Model Problem............. 50

2.2. COMPRESSIBLE FLUID FLOW AND HEAT TRANSFER 53

2.2.1. Governing Equations 54

2.2.2. Discretization of Governing Equations ~ 56

2.2.3.

3. NUMERICAL SOLUTION ALGORITHM

Backward Facing Step Model Problem

3.1. NEWTON'S METHOD AND ALGORITHM PERFORMANCE

ENHANCEMENT TECHNIQUES

3.1.1.
3.1.2.
3.1.3.
3.14.
3.1.5.
3.1.6.

3.2. NEWTON-KRYLOV METHODS

3.2.1.
3.2.2
3.2.3.

Numerical Jacobian Evaluation

Adaptive Damping Strategy.

Mesh Sequencing
Pseudo-Transient Relaxation

Parameter Continuation

Defect Correction.....

Krylov Subspace Based Iterative Methods

Sparse Matrix Storage Scheme

Preconditioning

3.2.3.1. Incomplete Lower-Upper Factorization (ILU)

Preconditioning

3.2.3.2. Cell Ordering Strategies

3.2.3.3. Domain-Based Preconditioning

3.2.4. Finite Difference/Inexact Newton Projection Methods (Matrix-Free

4. NUMERICAL RESULTS
4.1. INCOMPRESSIBLE FLOW

4.1.1.
4.1.2.

4.1.3.

4.1.4.

Implementations)

Important Computational Issues

Natural Convection in an Enclosed Cavity Model Problem .

4.1.2.1. Computer Memory Considerations

ooooooooooooo

4.1.2.2. Standard Newton-Krylov Algorithm Performance

ooooooooooooo

4.1.2.3. Matrix-Free Newton-Krylov Algorithm Performance.........

1.2.4. Solutions

ixed Convection, Backward Facing Step Model Problem.

ooooooooooooo

4.
M
4.1.3.1. Defect Correction Technique
4.1.3.2. Solutions

orced Convection, Backward Facing Step Model Problem

Effectiveness

4.1.4.1. Cell Ordering Effects on ILU(k) Preconditioner
4

.1.4.2. Discrete Pressure Equation Formulation

65

67

68
73
76
77
80
81
82

83
85
89
92
96

100
106

113

119

119
120

121
122
124
134
146

152
157

172

173
180

4.1.4.3. Pseudo-Transient Calculations 183

4.1.4.4. Solutions : 186

4.2. COMPRESSIBLE FLOW 195
4.2.1. Important Computational Issues 195

4.2.2. Backward Facing Step Model Problem 198
4.2.2.1. Comparison of Different Krylov Algorithms.........cccoeecueee 198

4.2.2.2. Preconditioner Effectiveness 202

4.2.2.3. Solutions 207

5. CONCLUDING REMARKS 212
5.1. SUMMARY 212
5.2. OBSERVATIONS AND CONCLUSIONS 215
5.3. SUGGESTED TOPICS FOR FURTHER STUDYcccevueeeereesersansnnnaas . 220

APPENDIX - AN OVERVIEW OF KRYLOV SUBSPACE-BASED METHODS FOR

SOLVING SYSTEMS OF LINEAR EQUATIONS 222

Al. INTRODUCTION eeesesesssnsReee s RRAss R e Rt R RRRR R RR R8RS 223
A2. GENERAL DESCRIPTION OF KRYLOV METHODS 226
A2.1. Minimal Residual Approach 229

A2.2. Orthogonal Residual Approach 3 237

A3. ARNOLDI-BASED KRYLOV ALGORITHMS eseresssenssnsaasesssnesssnsess 240
A3.1. The FOM and IOM(m) Algorithms 242

A3.2. The GMRES AIZOTIthIN ...cuiininccnnnirsriracsesncsaesnssessesessascsnssnsossasassacans 244

A4, LANCZOS-BASED KRYLOV ALGORITHMS 248
A4.1. The Bi-Conjugate Gradient Algorithm (BCG) 251

A4.2. The Conjugate Gradients Squared Algorithm (CGS) ...ccccoeeeureseccsncaes 255

A4.3. The Bi-CGSTAB Algorithm 257

A4.4. The Transpose-Free Quasi-Minimal Residual Algorithm (TFQMR) 259
A5. SUMMARY 263

REFERENCES : ' 266

LIST OF FIGURES

Figure 1. Schematic of typical finite volume cell and placement of cell variables.........

Figure 2. Schematic illustration of typical u-momentum cell.

Figure 3. Schematic illustration of typical v-momentum cell.

Figure 4. Finite volume stencil used to discretize incompressible flow continuity
equation. ..

Figure 5. Finite volume stencil used to discretize the incompressible flow ¥-momentum
equation.

Figure 6. Finite volume stencil used to discretize the incompressible flow v-momentum
equation.

Figure 7. Finite volume stencil used to discretize the incompressible flow energy
equation.

Figure 8. Finite volume stencil used in the discrete pressure equation formulation

Figure 9. Schematic of one-dimensional finite volume stencil used for higher order
approximations to CONVECHVE LEIMS. wuvevscsssssscsenssesesesaserensrassnsasass

Figure 10. Geometry for natural convection model problem.

Figure 11. Schematic of mixed convection, backward facing step model problem.

Figure 12. Schematic of forced convection, backward facing step model problem...........

Figure 13. Finite volume stencil used to discretize compressible flow continuity
equation.

Figure 14. Finite volume stencil used to discretize compressible flow u-momentum

equation.

. 25

26

26

28

30

34

37

42

45

. 47

50

57

59

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 27.

Figure 28.

Finite volume stencil used to discretize compressible flow v-momentum
equation.

Finite volume stencil used to discretize compressible flow energy equation. ...

Schematic of compressible, backward facing step model problem.

Finite volume stencil for energy equation centered about grid cell (i, j). -cceevc..

Schematic description of the row ordering scheme on a square Cartesian

grid. »

Schematic description of the reverse row ordering scheme on a square
Cartesian grid.

Schematic description of the column ordering scheme on a square Cartesian
grid.

Schematic description of the reverse column ordering scheme on a square

Cartesian grid.

Schematic illustration of the partitioning of a global domain into four
overlapping sub-domains.

Effect of £" on algorithm convergence.

Convergence comparison between TFQMR and CGS on first Newton
iteration. .

Convergence comparison between TFQMR and CGS on second Newton
iteration.

Standard inexact Newton iteration convergence behavior (10x10 grid)............

Matrix-free inexact Newton iteration convergence behavior (10x10 grid).

xii

. 64

. 66

.75

102
103
104
105

109

127
132

133

.138

.139

Figure 29.

Figure 30.

Figure 31.

Figure 32.

Figure 33.

Figure 34.

Figure 35.

Figure 36.

Figure 37.

Figure 38.

Figure 39.

Figure 40.

Figure 41.

Standard inexact Newton iteration convergence behavior (40x40 grid)............. 141
Matrix-free inexact Newton iteration convergence behavior (40x40 grid). 142
Inner iteration convergence on the first standard Newton iteration (40x40

grid). 143
Inner iteration convergence on the first matrix-free Newton iteration (40x40

BIHA). cvrrerenemsnsscsssssesssrsssnassssssssssnssessssssssssssssssssssssssssnssearasssssssassrssis R sns s s s es 145
Schematic of the row ordering scheme used with the mixed convection model
problem. 151
Schematic of coarse 35x10 nonuniform mesh. 161
Steady state principal velocity profiles atx =0, 2,7, 15, and 30

(Re=100, Pec=T0, G =0).cuercrcsscnsensscsnserininsssesssssensansscassssssssasasssanases 162
Steady state transverse velocity profiles atx =0, 2, 7, 15, and 30

(Re=100, Pec=170, Gr=0). 163
Steady state temperature profiles at x =0, 2, 7, 15, and 30

(Re=100, Pec=70, Gr=0). 164
Steady state Nusselt number variation along both hot and cold walls

(Re=100, Pec=170, Gr=0). 165
Steady state variation of the friction coefficient, C, Re, along both hot and

cold walls (Re =100, Pec=70, Gr=0). 166
Steady state principal velocity profiles atx =0, 2,7, 15, and 30

(Re =100, Pec =70, Gr =1000). 167
Steady state transverse velocity profiles atx =0, 2, 7, 15, and 30

(Re=100, Pec=70, Gr=1000). 168

Figure 42.

Figure 43.

Figure 44.

Figure 45.

Figure 46.

Figure 47.

Figure 48.

Figure 49.

Figure 50.

Figure 51.

Figure 52.

Figure 53.

xiv

Steady state temperature profiles atx =0, 2, 7, 15, and 30
(Re=100, Pec =170, Gr=1000). 169

Steady state Nusselt number variation along both hot and cold walls
(Re =100, Pec =70, Gr=1000). 170

Steady state variation of the friction coefficient, C;, Re, along both hot and

cold walls (Re=100, Pec =70, Gr=1000). w171
Schematic of the row ordering scheme as applied to the forced convection

model problem. 173
Schematic of the reverse row ordering scheme as applied to the forced

convection model problem. 174
Schematic of the column ordering scheme as applied to the forced convection
MOAE] PTODIEML. ..cvcvrrecncinscsnsesisesesssesssssesssssssssssassssssssssssssesssnsassssnssanansssssssses 174
Schematic of the reverse column ordering scheme as applied to the forced
convection model problem. ... 174

Stream function contours [-0.298692 (0.025) 0.201308] from the 960x64 grid
solution to the forced convection model problem. The stream function is set
to zero along the upper wall. 189

Temperature contours [0 (0.25) 5] from the 960x64 grid solution to the forced
convection model problem. 190

Principal velocity (u) profile at x=7 from 960x64 grid solution to the forced
convection model problem. 191

Principal velocity () profile at x=15 from 960x64 grid solution to the forced
convection model problem. 192

Axial Nusselt number variation along both the upper and lower walls in the
case of the forced convection model problem. 193

Xv

Figure 54. Axial upper aﬁd Jower wall and bulk temperature variation in the case of the
forced convection model problem..... ' 194

s

Figure 55. Convergence history of five different N ewton-Krylov algorithms.ccceceucecene. 199

Figure 56. Comparison of convergence behavior of several different Krylov solvers......... 201

xvi

LIST OF TABLES

Table 1. Estimated "break even" inner iteration VAlUES.ccccccsccecsscccssssssesccsessrssacssssssesnes 117

Table 2. Comparison of algorithm memory requirements using direct vs. iterative
linear equation solvers (in megawords). 123

Table 3. Performance data using LINPACK banded Gaussian elimination for Ra =
104, 125

Table 4. Effect ot_‘ varying £" on algorithm performance (60x60 grid, flat initial guess). 126

Table 5. Effect of varying £" on algorithm perfdnnance when using mesh sequencing. 128

Table 6. Effect of higher levels of ILU fill-in on algorithm performance (a flat initial
guess was used on each grid). 129

Table 7. Comparison of CPU perZormance of two inexact Newton algorithms and a
direct Newton algorithm (flat initial guess on each grid). we 151

Table 8. Comparison of standard and matrix-free implementations on a 10x10 grid
(my,, =20). 136

Table 9. Comparison of standard and matrix-free implementations on a 20x20 grid
(my,,, =40). . 136

Table 10. Comparison of standard and matrix-free implementations on a 40x40 grid
(m_,, =80). 137

Table 11. Comparison of standard and matrix-free implementations on a 40x40 grid
using a 10x10, 20x20, and 40x40 mesh sequence (m,,, = 20, 40, and 80,
respectively). _ 137

Table 12. Comparison with benchmark solution of de vahl Davis [101] for Ra= 104.147

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

Table 19.

Table 20.

Table 21.

Table 22.

Table 23.

xvii

Comparison with benchmark solution of de vahl Davis [101] for Ra = 10°. 148
Comparison with benchmark solution of de vahl Davis [101] for Ra = 105. 149

Performance data using several defect correction calculation options with
mesh sequencing (Re =100). 156

Performance data using several defect correction calculation options with
mesh sequencing (Re = 200). 156

Memory requirements of the inexact Newton algorithm versus grid size and
level of ILU fill-in. : 160

Effect of ordering and level of ILU fill-in on preconditioner effectiveness in
solving the forced convection model problem. 177

Effect of ordering and level of ILU fill-in on preconditioner effectiveness in
solving the forced convection model problem with adaptive damping. 179

Effect of ordering and level of ILU fill-in on prcconditiorier effectiveness in
solving the forced convection model problem using the discrete pressure
equation formulation. 181

Performance data obtained using an adaptively damped Newton iteration with
the discrete pressure equation formulation and ILU(1) preconditioning. 182

Preconditioner memory requirements for a uniform 16x80 grid.cccceeececucnee 204

Algorithm performance data for various flow Mach and Reynolds numbers on
a uniform 16x80 grid (» = total Newton iterations, 777 = average inner
iterations per Newton iteration, NS = No Solution). 205

LIST OF SYMBOLS

AM

bb

w

Nl"“m'ﬁﬁ-mwﬂpl‘m

Gr

INUM
INUMD
IEQ
IEQD

xviii

General system matrix employing sparse nonzero
diagonal storage scheme

General preconditioning matrix employing sparse
nonzero diagonal storage scheme

Perturbation constant
General right hand side vector

Perturbation constant
Wall friction coefficient

Specific heat capacity at constant pressure
Specific heat capacity at constant volume
Diagonal matrix
Hydraulic diameter
Jacobian is evaluated every d Newton steps
Discrete governing equations vector
Error matrix
Individual discrete governing equation
Gravitational acceleration vector
Grashof number = ég—é@

v2
Upper Hessenberg matrix
Finite volume cell number
Finite volume cell number of dependency
Equation number

Equation number of dependency

Coordinate index for x-direction or general index

depending upon context

b [=Ty

I R NOHOX

2

NEQ
NF

=>

Unit vector in x-direction

Vector array containing offsets with respect to the main
diagonal for stored non zero diagonals

Jacobian matrix
Flux of y-momentum.

Coordinate index for y-direction or general index
depending upon context

Unit vector in x-direction

Krylov subspace dimension, thermal conductivity, ILU
fill-in level, or general index depending upon context

Denotes Krylov subspace of dimension k.
Lower diagonal matrix

Characteristic length

Mach number

Inner iteration counter or general index depending upon
context

Dimension of linear system

Number of finite volume cells

Number of governing equations

Number of function evaluations per computational cell
Unit normal vector

Newton iteration counter

Number of cells in x-direction

Number of cells in y-direction

Nusselt number

Preconditioning matrix

Dimensionless pressure or general index depending
upon context -

Pec

Pr

Ra
Re

Cn

& (o) R B ~

<

Peclet number = Re Pr = l;—-

Prandtl number = é

Inner iteration residual vector
Rayleigh number = Gr Pr
Reynolds number = Ké‘-

Restriction/prolongation matrix or error matrix
depending upon context

Scaled inner iteration residual norm
Relative update for nth Newton iteration

Surface area

Set of row and column index pairs that compose the
Jacobian matrix sparsity pattern

Newton iteration damping pa;ameter or general index
depending upon context

Dimensionless temperature
Characteristic temperature difference
Dimensionless time step

Upper diagonal matrix
Dimensionless velocity in x-direction

Diagonal matrix whose elements are the volumes of the
computational cells

Characteristic velocity scale or volume depending upon
context

Dimensionless velocity in y-direction
Arbitrary Krylov vector
Cartesian coordinate variable

State variable vector

e e g —

ox

Ay

Greek Symbols:

Q © @ <« m =S S & R o ® T R

{\

e

Grid spacing in x-direction

Newton iteration update vector
Perturbation in the jth component of x
Grid spacing in y-direction

Cartesian coordinate variable

Newton iteration damping parameter

Thermal diffusivity

Coefficient of thermal expansion

Perturbation constant

Tolerance parameter for Krylov iteration

Ratio of specific heat capacities = ¢, /C,
Lagrangian interpolation polynomial for x-direction
Orientation of x-axis with respect to horizontal
Time step control constant

Dynamic viscosity

Kinematic viscosity

General dimensionless scalar quantity
Dimensionless density

Viséous stress tensor

Wall shear stress

Relaxation parameter

Lagrangian interpolation polynomial for y-direction

Superscripts:

sub

Subscripts:

be
bulk, b

COL
cl

E,e
INUM
INUMD
IEQ
IEQD

Refers to inner iteration
Newton iteration number
Refers to outer iteration

Refers to sub-domain

Reference/Initial value

Refers to preconditioning matrix
Break even value

Refer to bulk values

First upstream value

Matrix column number
Centerline value

Downstream value

East (right) values

Finite volume cell number
Finite volume cell number of dependency
Equation number

Equation number of dependency

Inlet value or vector component number depending
upon context

Refers to Jacobian matrix

Krylov iteration number or general index depending
upon context

NC
N,n

Operators:

Lower case bold
Upper case bold
\"

|l

[’

[l

(1

Hell, il elip
elleo

Left

Maximum value of a quantity
Number of finite volume cells
North (top) values

Newton iteration number or north face depending upon
context

Refers to outer iteration
Cell centered value
Right

Matrix row number
South values

Second upstream value
Refer to wall values

West (left) values

Vector quantity

Matrix/Tensor quantity

Gradient operator

Absolute value

Tmnspose of []

Indicates that [] is an averaged quantity
Indicates that [] is dimensional
Euclidean norm (L2 norm)

Lonom

CHAPTER 1

INTRODUCTION

The objective of this dissertation is the development, implementation, and
investigation of robust yet practical numerical algorithms for solving strongly coupled,
nonlinear systems of partial differential equations that arise in the field of computational fluid
dynamics. Of specific interest are the steady state, incompressible and compressible Navier-
Stokes and energy equations describing the flow of a laminar, Newtonian fluid in two-
dimensions [see 1 and 2]. These equations are solved numerically, in primitive variable
form, by integrating them over discrete finite volumes that compose a Cartesian
computational mesh, which approximates a given problem geometry. This discretization
process results in a system of nonlinear algebraic equations. This study investigates fully
coupled Newton-Krylov algorithms for solving these nonlinear algebraic equations. On each
iteration, Newton's method [see 3] is used to first linearized the discretized system of
nonlinear algebraic equations, and then a preconditioned Krylov subspace based iterative
algorithm is used to solve the resulting linear system for the new solution update. The
Krylov subspace based algorithms considered in this study include the Generalized Minimal
RESidual (GMRES) algorithm [4], the Conjugate Gradients Squared algorithm (CGS) [5],
the Bi-CGSTAB algorithm [6], and the Transpose-Free Quasi-Minimal Residual (TFQMR)
algorithm [7]. These different Krylov algorithms and others are described in the Appendix.

Effective and efficient implementation of this basic process is accomplished by
reducing computer memory requirements and by employing various convergence \
enhancement techniques to improve CPU performance. The capabilities of this

implementation are demonstrated in solving the coupled equations describing fluid flow and

heat transfer in their primitive variable forms. Specifically, the problems of natural, mixed,
and forced convection are studied assuming incompressible flow, while for a compressible
fluid the problem of low Mach number subsonic flow is studied. The capability to handle
low Mach number (low speed) regimes, in which a fluid is normally considered
incompressible (Mach number less than 0.3 [8]), is important in situations such as: alow
Mach number region is imbedded within a high speed flow, some thermally driven flows ,
and other flow situations where density variations are important, i.e. chemically reacting flow
and flows with significant heat transfer.

An important contribution made by this dissertation is the documentation of useful
observations and guidelines regarding the practical and efficient use of Newton-Krylov
algorithms for solving challenging CFD problems of the type mentioned above. These
observations and guidelines stem from the research performed during the course of this
dissertation [also see 9, 10, 11, 12, 13, and 14]. For instance, research presented in this
dissertation investigates many performance enhancement techniques such as: adaptive
damping, mesh sequencing, pseudo-transient calculations, suitable convergence criteria,
effective preconditioning and cell ordering strategies, and the use of alternative formulations
such as the discrete pressure equation in the case of incompressible flow. Specifically,
research contained in this dissertation was among the first studies to employ recently
developed Krylov algorithms within the context of Newton-Krylov algorithms designed for
solving fluid flow and heat transfer problems [12, 13]. This dissertation research represents,
to the authors knowledge, the first detailed comparison of Lanczos-based and Arnoldi-based
Krylov algorithms within so called "matrix-free" Newton-Krylov implementations for
solving steady state incompressible ﬂuid‘ flow and heat transfer applications [10, 13].
Furthermore, practical "matrix-free" Newton-Krylov implementations using pseudo-transient
relaxation are demonstrated and discussed herein, where the cost of periodic Jacobian and

preconditioner evaluations are amortized over many pseudo-transient Newton steps (see

Reference 15 for another example of the successful application of this specific research).
Additionally, research presented in this dissertation first investigated algorithm efficiency
issues associated with the use of the third order accurate cubic upwind interpolation (CUI)
convection discretization scheme within a Newton-Krylov algorithm. This research studied
techniques such as mesh sequencing and defect correction fo;' improving the efficiency in

) obtaining higher order accurate solutions [also see 11 and 14]. Finally, with regard to direct
steady state (i.e., no time stepping) Newton-Krylov solutions of compressible flows, this
research first demonstrated the superiority of domain-based preconditioning strategies over
more conventional incomplete lower upper (ILU) type preconditioning schemes at low Mach
numbers [also see 16]. The Mach numbers used in this latter study were well below those
considered elsewhere using Newton-f(rylov type algorithms.
“ Several different computational resources were employed during the course of this
investigation. In general, the best computational resources available to the author at the time
were employed. Consequently, initial numerical studies were performed oln either a CRAY
X-MP/216 computer or an IBM RISC System 6000 Model 320 workstation depending upon
the CRAY availability and cost. The CRAY X-MP/216 computer had two processors, 16
megawords of main memory, an 8.5 nanosecond clock time, and a theoretical peak rate of
470 megaflops (million floating point operations per second). Note that although the CRAY
computer had two processors, it was only used in a serial mode. The IBM workstation had
16 megabytes of main memory and operated at 20 MHz, with a theoretical peak rate of 40
megaflops. Latter numerical studies were performed on HP 9000/735 workstations. These
workstations operated at 99 MHz with a theoretical peak rate of 200 megaflops.
Additionally, a somewhat faster upgraded HP 9000/735 workstation was also employed that
operated at 125 MHz with a theoretical peak rate of 250 megaflops. The memory available
on these HP workstations varied from 80 megabytes up to 288 megabytes. Calculations on

the CRAY computer were run in single precision, while the workstation calculations were

performed using double precision. A comparison of the performance of these different
computers and others (excluding the upgraded HP 9000/735 mentioned above) using
standard linear equations software (i.e., LINPACK [17]) is presented by Dongarra in
Reference 18. Note that in solving the "LINPACK Benchmark" problem defined in
Reference 18, the actual megaflop rates acheived by the CRAY, HP, and IBM computers
listed above were 143, 41, and 9, respecti\;ely [see 18].

Section 1.1 below presents background and motivational information that discusses
the relative merits of a fully coupled Newton solution algorithm compared with more
conventional segregated and approximate factorization type implicit solution algorithms.
Section 1.2 identifies and describes related work using Newton-Krylov solution techniques
for fluid flow and heat transfer applications. An itemization of subsequent Chapters
contained herein is given in Section 1.3 in order to provide information regarding dissertation

organization.
1.1. BACKGROUND AND MOTIVATION

The goal of this section is to provide general background information, and to describe
the motivation beh.ind this research. As such, this goal requires a general discussion of
previous research from which this work has evolved, and explanations why alternative
options, including different solution algorithms and techniques, were not considered.

The motivation behind using a fully coupled, Newton iteration follows from previous
research comparing this technique with other nonlinear iterative techniques. This research
demonstrated that Newton's method used with direct linear solution methods (direct-Newton
algorithms) can be considerably more robust than other more conventional segregated, and
approximate factorization type solution techniques. These latter solution techniques have

historically been popular in the finite volume and finite difference communities [see 19, 20,

21, and 22]. Some examples of the use of direct-Newton solution techniques for

-incompressible flow applications can be found in References 23, 24, 25, 26, 27, 28, 29, and

30. Specifically, References 25 and 29 concluded that fully coupled Newton-like solutions
offer advantagés over segregated solution algorithms such as the popular SIMPLE algorithm
[21], although typically requiring considerably more computer memory resources. They
suggested that the advantages of retaining full coupling (simultaneous solution of all
variables) between the equations is especially important in strongly nonlinearly coupled
problems such as natural convection at high Rayleigh numbers [25, 29], where the
momentum equations are coupled to the energy equation through the buoyancy force term in
the momentum equations using the Boussinesq approximation [31]. Some examples of fully
coupled direct-Newton solutions for compressible ﬂ<-)w applications are given in References
32, 33, 34, and 35. In particular, Reference 32 found advantages in the use of a direct-
Newton method compared with a method using an approximate factorization of the J acobian
matrix based upon a spatial directional splitting that allowed the inverse to be computed
using an alternating direction sequence of block tridiagonal solves [see 19 and 36]. It was
suggested that these advantages may be especially apparent for low subsonic Mach numbers;
situations where these latter algorithms sometimes encounter convergence difficulties [32].
Note that the direct-Newton references cited above all employed a finite volume or finite
difference type discretization scheme. However, use of fully coupled solution techniques for
solving fluid flow problems have been popular in the finite element community for some
time [e.g., 37, and more recenﬂy 38 and 39]. Additionally, fully coupled Newton's method
solution techniques have also been successfully applied in other disciplines such as the
modeling of chemically reacting flow [40, 41, 42, 43], and edge plasma fluid modeling [44].
These disciplines typically exhibit strong nonlinear coupling between equations, and so they

also benefit from a fully coupled solution approach.

The rise in popularity of these fully coupled, direct-Newton solution techniques is
primarily due to rapid advances in computer technology, especially large increases in
available "in core" computer memory. Direct solution methods, however, still suffer from
large computer memory requirements, especially for large two-dimensional and three-
dimensional problems. The primary focus of the numerical algorithm research in this
dissertation is the efficient use of preconditioned Krylov subspace based iterative algorithms
to solve the linear equations that arise on each Newton step; specifically, recently developed
preconditioned conjugate gradient-like algorithms (see the Appendix). These algorithms
enable the sparse structure of the Jacobian matrix to be exploited in order to alleviate the
large computer memory requirements, while maintaining the strong convergence
characteristics of Newton's method. The motivation for selecting these iterative linear
solvers is discussed further in the Appendix. Note that related work using Newton-Krylov
type solution algorithms is discussed in Section 1.3 below. For information and examples
regarding the use of Krylov subspace algorithms within other types of solution algorithms for
solving fluid flow type problems see References 45, 46, 47, 48, 49, 50, 51, 52, and 53. For
information and examples regarding the use of Newton's method with other types of linear
equation solvers see References 54, 55, 56, 57, and 58.

Besides memory considerations, other disadvantages in the use of a Newton type
solver include the often high cost of forming and factoring the Jacobian matrix on each
Newton step, and the sometimes small radius of convergence of Newton's method, which
often makes convergence strongly sensitive to the initial guess. Consequently, the secondary
focus of this research considers various numerical techniques to address these remaining
disadvantages associated with the use of Newton's method. This dissertation combines these
ideas with the goal of obtaining efficient and robust algorithms for solving the coupled -

equations describing both incompressible and compressible fluid flow and heat transfer.

Compensating for its disadvantages, Newton's method offers the advantage of full
coupling t_)etween all variables and all equations so that all the unknowns are solved for
simultaneously. This is in contrast to a seéregated solution approach [e.g. 21, 22, 59, and 60]
where the governing equations are solved sequentially in a decoupled and iterative fashion.
Approximate factorization techniques solvé for all variables simultaneously, but differ from a
true fully coupled, simultaneous solution approach in that the iteration matrix is
approximately factored so as to reduce memory requirements, and to facilitate matrix
inversion. Examples include the Beam-Warming algorithm cited above and a similar
algorithm proposed by Briley and McDonald [19, 36, 61]. Stone's Strongly Implicit
Procedure (SIP) [62], which is based upon a type of Incomplete Lower-Upper (ILU)
factorization, is another example of an approximate factorization technique. Newton's
method makes no such approximations when solving the linear systems that arise on each
Newton step. The segregated and approximate factorization type solution approaches are
discussed below in order to further distinguish these approaches from a fully coupled
Newton's method approach.

The segregated solution approach solves each equation [i.e. continuity (or
approximate pressure equation), momentum, and energy conservation equations]
sequentially, in a decoupled manner, for the variable unknowns corresponding to that
equation. This means that only the variables corresponding to the equation of interest are
allowed to vary, while variables corresponding to other equations are held constant. Thus,
only a local reduction of the error (corresponding to the individual equation of interest) is
performed, in contrast to a fully coupled or simultaneous approach where the error is reduced
globally. Global error reduction in a segregated solution approach is obtained by repeating
this solution sequence in an iterative manner until all equations have converged to the desired
level of accuracy. Consequently, systems of equations that are strongly coupled may require

many iterations and, in some instances, severe underrelaxation to achieve global error

reduction. In fact, the selection of optimal underrelaxation parameters can significantly
influence the performance of a segregated solution approach [24, 25, 29, 30]. The use ofa
fully coupled or simultaneous approach,'to a large extent, reduces or eliminates this
sensitivity to parameter estimation [24, 25, 29, 30]. This feature is another significant
advantage of a fully coupled solution approach.

The motivation for decoupling the different governing equations in a segregated
solution technique is twofold. The first motivating factor is the reduction of computer
memory requirements. This is accomplished by replacing the large global nonlinear system
with a sequence of smaller nonlinear systems associated with the individual governing
equations. The second motivating factor is algorithm convergence and performance. The
smaller nonlinear systems are linearized in some suitable fashion, and then are often solved
iteratively because of memory limitations. The performance of many of the iterative
techniques used by these segregated type solvers is tied to the diagonal dominance of the
linearized system [see 63]. Decoupling the individual conservation equations enables the
smaller individual linear systems (corresponding to each individual equation) to be
constructed so as to maintain diagonal dominance [see 21], thereby enabling the convergence
of these individual linear systems. Some popular examples of the segregated solution
approach include the SIMPLE algorithm [21], the ICE algorithm [22], and the method of
artificial compressibility [59]. These sequential, segregated solution algorithms are very
effective for many different fluid flow and heat transfer applications; although past research
cited above for strongly coupled systems of equations suggests that a simultaneous solution
technique may sometimes be preferable.

One general class of simultaneous solution techniques for nonlinear systems is
referred to as parallel chord iteration [3]. Picard iteration and Newton iteration are members
of this general class of nonlinear iterative techniques [3]. Picard iteration differs from

Newton's method in that the iteration miatrix fepresents only linear coefficients of the

nonlinear operator, whereas for Newton's method the iteration matrix is the Jacobian matrix
[3]. Picard iteration often has a larger radius of convergence than Newton's method, but
exhibits much slower convergence. Consequently, researchers have considered combining
these two schemes to form a hybrid type of nonlinear algorithm [e.g., 24, 25, 64, and 65].
Approximate factorization techniques can be applied to either a Picard type iteration or a
Newton type iteration. Note that the latter choice can also be viewed as a quasi-Newton or
approximate Jacobian technique [3, 66]. The goal in an approximate factorization technique
is to reduce the memory required to store the iteration matrix and/or its factorization. In two-
dimensions, one possible technique is to include coupling between variables along a given
»spatial direction for one factor, and then include coupling between variables along the
alternate spatial direction for the second factor. The product of these two factors is then used
to approximate the true iteration matrix. The advantage in this technique is that the
individual factors have a much simpler structure than the original matrix (i.e., often block
tridiagonal) and the action of the inverse can be computed from a sequence of alternating
direction solves (usually block tridiagonal), thereby avoiding the necessity of storing a full
factorization of the iteration matrix. However, difficulties associated with this technique
include: 1.) the factorization is only an approxima.tion to the iteration matrix and so use of
this technique will likely result in slower convergence; 2.) the factorization assumes a
rectangular mesh with two independent directions, and so the technique is not easily
applicable to unstructured grids. 3.) the technique is typically applied in a time marching
manner so that for non time accurate solutions, the time step acts as a sort of relaxation
parameter that must be tuned for optimal performance. An example of this technique is the
popular Beam-Warming method [36] and the algorithm of Briley and McDonald [61]. A
second approximate factorization technique is to only compute a partial or incomplete

factorization of the iteration matrix. An example of this approach is Stone's SIP algorithm

[62]. ‘Once again the efficiency of this algorithm is dependent upon the accuracy of the

10

approximate factorization, a difficulty that a fully coupled, simultaneous solution avoids by
accurately inverting the iteration matrix.

It must be pointed out, before proceeding, that the intent of the above discussion is
not to criticize the segregated and approximate factorization type algorithms. Rather, the
purpose is to point out reasons why a fully coupled solution approach, with no approximate
factorizations, may be an attractive alternative for some strongly coupled fluid flow and heat
transfer applications. The applications studied in this dissertation were selected because,
based upon the information from the references cited above, they should be good candidates
for a fully coupled type solution algorithm.

The reason why Newton's method was selected in this work, from the general class of
simultaneous solution techniques discussed above, is due to its characteristic quadratic
convergence behavior when the initial guess lies within the radius of convergence of the
algorithm [see 3 and 66]. This powerful feature of Newton's method enables the error to be
reduced in a quadratic fashion as the true solution is approached, thereby enabling strong
convergence (often to machine round-off) during the last few iterations. This behavior is
often in contrast to a segregated solution approach where the high frequency errors may be
eliminated quickly, but where the long wavelength (low frequency) errors may persist for
many iterations because of the equation decoupling. A fully coupled, simultaneous solution
approach eliminates both high and low frequency errors equally well.

Another type of fully coupled, simultaneous solution technique is the method of
steepest descent [see 25 and 66]. This technique uses equation sensitivity information
contained in the Jacobian and current error information contained in the residuals to predict a
new solution search direction [66]. The advantage in this approach is that the inversc; of the
Jacobian is not required to compute the new search direction. The disadvantage, however, is
that it can be difficult to specify the scale factors that determine how far one should move

along a given search direction, although several schemes have been developed for making

11

this determination [e.g., see 66]. These schemes greatly improve the global convergence
properties of the algorithm. Unlike Newton's method, however (which also yields a descent
search direction), the method of steepest descent does not converge in a quadratic manner in
the local vicinity of the solution [66]. Consequently, researchers have combined steepest
descent schemes with Newton's method to obtain strongly converging algorithms with
improved global convergence behavior [66, 67, 68, 69, 70, and 71]. Since these hybrid
algorithms are not the focus of this investigation, much simpler techniques are used to
enhance the convergence of Newton's method. These simpler techniques are described in
Chapter 3. Although, these simple techniques are effective for the problems considered in
this dissertation, it is acknowledged that use of the hybrid algorithms cited above may further
enhance the global convergenée properties of the overall algorithm, and so should be
included in any future investigation of this sort.

For completeness, it is instructive to mention several well known solution methods
commonly used to alleviate the high cost and difficulty associated with forming and factoring
the Jacobian matrix [see 3, 66, 72, and 73]. These quasi-Newton techniques include various
secant methods and the modified/simplified Newton's method. The convergence of these
"approximate" Newton methods is at best superlinear, but CPU efficiency features of these
algorithms often compensate for their slower convergence. Although these techniques are
not included in this investigation, they are cor}lmonly used to improve the CPU efficiency of
a Newton-type algorithm. As such, an explanation why they are not used in this investigation
is warranted.

One of the best known secant methods is Broyden's method [74]. This method
enables the Jacobian inverse to be updated simply on each iteration using the Sherman-
Morrison-Woodbury formula [3]. The advantage in this technique is that after the initial
evaluation of the Jacobian and its inverse, they need not be explicitly computed again [66,

74]. The difficulty, however, is that the inverse cannot be assumed sparse and so problenis

12

associated with memory requirements once again arise. MacArthur developed a modified,
reduced-memory, version of Broyden's method [25], although additional memory in excess
of his direct-Newton algorithm memory requirements were still needed for implementation.
Memory considerations explain why this type of algorithm is not considered here. Another
example of the use of a Broyden-based update is the work of Edwards and McRae [75],in-
which this type of quasi-Newton technique is used to accelerate an approximate factorization
type algorithm [Symmetric Line Gauss-Seidel (SLGS)]. Although the memory requirements
for this algorithm is considerable less than a direct-Newton algorithm, the memory needed
grows with the number of quasi-Newton steps. Additionally, the algorithm is still based
upon an approximate factorization type algorithm. Thus, the difficulties discussed above
regarding approximate factorization type algorithms also apply to this algorithm.

The second solution method mentioned above is the modified/simplified form of
Newton's method. This method consists of freezing the Jacobian and its factorization for two
or more iterations in order to reduce CPU costs [e.g., see 3, 23, 26, 32, 33, 40, 41]. However,
when using a conjugate gradient-like algorithm to solve the linear systems that arise on each
Newton step, no savings with regard to these linear systems are realized by this technique,
thereby lessening its benefits. For this reason, this methed is not studied in this dissertation.
Although, other techniques for simplifying the Jacobian evaluation and reducing the CPU
cost and memory requirements associated with its use are employed. These techniques are

described in Chapter 3.
1.2. RELATED WORK
The purpose of this section is to identify and briefly describe recent related work

using fully coupled Newton-Krylov methods for solving fluid flow and heat transfer -

problems. In order to more efficiently accomplish this purpose, incompressible flow and

13

compressible flow applications are discussed separately in the next two subsections.
Although finite volume discretization is employed in this work, research using other types of
discretization schemes such as finite elements and spectral methods are also included in this
literature review. The references cited below demonstrate that Newton-Krylov solution -
techniques in computational fluid dynamics are currently a very active research topic, with

many of the references having been published recently.

1.2.1. Incompressible Flow

Applications of Newton-Krylov techniques for finite volume/difference solutions of
incompressible flow have recently been investigated by researchers at the University of
Waterloo in Waterloo, Ontario, Canada [65, 76, and 77], and by Gropp and Keyes [78].
These investigations, however, did not include heat transfer effects. Gropp and Keyes used a
stream function-vorticity formulation with a Newton-GMRES algorithm for investigating
domain decomposition and defect correction (a type of approximate Jacobian technique
described in Chapter 3) ideas in solving flow past a backward facing step [78]. Other
Lanczos based Krylov algorithms were not included in this interesting study. Chin,
D'Azedevedo, Forsyth and Tang solved the primitive variable form of the incompressible
flow equations for several cavity and channel type flow problems [76]. This work
investigated several Newton-Krylov algorithms using different Krylov subspace solvers
(CGS, Bi-CGSTAB, and Orthomin) [76] with Incomplete Lower-Upper (ILU) factorization
type preconditioning. Recall that the Appendix describes these different Krylov subspace
solvers. Different cell ordering, time stepping, and defect correction type strategies were
considered with regard to algorithm performance. Although the GMRES algorithm was not
included in this initial study, GMRES was compared with the Bi-CGSTAB algorithm ina

subsequent study [77]. This paper found that for the test problems and implementations

14

employed, the Bi-CGSTAB algorifhm performed better [77]. A third study at the University
of Waterloo compared and contrasted a Picard-type iteration, a full Newton iteration, and a
hybrid combination of these two schemes using the Bi-CGSTAB algorithm [65]. This study
found advantages in the use of the hybrid scheme for the incompressible flow problems
considered.

Examples of finite element solutions of incompressible fluid flow using Newton-
Krylov solution algorithms are given in References 64, 67, 68, 79, and 80. In addition,
Einset and Jensen considered nearly Boussinesq flow in which compressibility effects were
neglected except in the thermal expansion of the gas [81]. Although the overall Newton-
Krylov algorithm structure is independent of the particular discretization scheme employed,
actual implementation and performance of the various Newton-Krylov algorithms will likely
be different for different discretization schemes. Comparison of performance data is
therefore only strictly valid if the same discretization schemes are employed. However, -
much useful qualitative information can be gleaned from this finite element research. Carey
et al. [68], Einset and Jensen [81], and Howard et al [64] compared iterative solution
techniques with a direct frontal solution method [82]. In general, they found that the various
Krylov iterative techniques considered were preferable to the use of the frontal method
provided the frontal 'width' was large enough (approximately 500 in Reference 81) and
effective preconditioning was employed. Among these references, Curfman [80], Howard et
al, [64], and Einset and Jensen [81] included the effects of heat transfer, but recall that the
model of Einset and Jensen was not truly incompressible. Curfman considered many recent
Krylov solution algorithms (CGS, Bi-CGSTAB, Bi-CGSTAB2, TFQMR, and GMRES) in an
interesting and useful study that employed a subsidiary pressure equation in place of the
incompressible continuity equation [80]. Curfman's work also studied several Newton-like
algorithms, which were found to converge more rapidly than a segregated type solution

algorithm in solving several different nonlinear fluid flow problems [80]. Howard et al. [64]

15

investigated both two- and three-dimensional free convection flow using both Newton and
Picard iteratioﬁ. Several different Krylov algorithms were considered (CGS, GCR, and
BCG), although several of the more recently developed algorithms were not yet available.
Brown and Saad, although not including heat transfer, investigated the use of matrix-free
type implementations of Newton-Krylov solution techniques by replacing matrix-vector
products with finite difference projections [67]. This study solved a single fourth order scalar
equation for the stream function and employed Amoldi-based Krylov techniques (GMRES,
IOM) [67]. '

An example using spectral methods to solve incompressible fluid flow using a
pressure equation formulation is given in Reference 83. This study did not include heat
transfer effects or some of the more recently developed Lanczos-based Krylov algorithms.

This dissertation builds upon previous work cited above in investigating Newton-
Krylov solution techniques for solving incompressible fluid flow and heat transfer using
finite volume discretization. An important difference in this dissertation is the inclusion of
heat transfer effects, especially in the context of natural and mixed convection type problem.
Additionally, this dissertation includes recently developed Krylov algorithms within an
inexact Newton iteration that have not been included in many of the references above.
Furthermore, this dissertation investigates matrix-free type implementations of Newton-
Krylov methods for solving the primitive variables form of the incompressible Navier-Stokes
and energy equations using both Amoldi-based and Lanczos-based Krylov algorithms.
Successful implementations of this sort for incompressible flow have previously been
considered by Brown and Saad [67]. However, they did not consider any Lanczos based
techniques, and they solved a single fourth order equation for the stream function using finite
element discretization [67]. Matrix-free implementations, if successful, offer many
significant advantages including both memory savings and CPU efficiency improvements.

These potential advantages are discussed further in Section 3.2.4, and applications of this

16

implementation are demonstrated in Chapter 4. The use of higher-order differgnc;ing within
the context of a defect correction scheme is also considered in this dissertation. Other
researchers cited above have employed various defect correction schemes [76 and 78], but
they have not used the third order accurate Cubic Upwind Interpolation convection scheme
employed in this study (see Chapter 3). Finally, this document enables the overall Newton-
Krylov algorithm efficiency to be studied at a level of detail that is typically not allowed in
many journal or conference papers. This feature enables more detailed consideration of the

various performance enhancement techniques that are described in Chapter 3.
1.2.2. Compressible Flow

Finite volume solutions of viscous, compressible flow using Newton-Krylov solution
techniques have been presented in References 84, 85, 86, 87, 88, 89, and 90.
Venkatakrishnan used an implicit time marching technique for transonic and subsonic (Mach
number of approximately 0.5) airfoil calculations [84]. This implicit technique reduced to
Newton's method as the time step approached infinity provided no approximations were
made in the analytically derived Jacobian. However, Venkatakrishnan did simplify certain
computationally inténsive Jacobian terms and so a full Newton's method was not used.
Included in this work were an explicit turbulence model, a study of both ILU and block
diagonal preconditioners (ILU tended to perform better), a comparison of GMRES and
Chebychev linear solvers (GMRES seemed to perform better), and various performance
enhancement techniques. This work was latter extended to unstructured grids by
Venkatakrishnan and Mavriplis [85], where again ILU preconditioning was favored over
other matrix-splitting type preconditioners. This study computed transonic flow past an
airfoil, and include low subsonic flow (Mach number approximately equal to 0.2) [85]. An

implicit time marching technique similar to the one described above was also employed by

17

Ajmani and Liou [86], again using the GMRES algorithm. This investigation compared this
solution technique with other more conver.ltional solvers in CFD codes. Several different
preconditioner options were studied. The more successful preconditioners included line
Gauss-Seidel (LGS), Lower-Upper Symmetric Successive Over Relaxation (LUSSOR), and a
block ILU preconditioner. Both transonic and hypersonic test problems were considered.
This work was extended by Ajmani, Ng, and Liou [87] to low subsonic flow past a backward
facing step (inlet Mach number of approximately 0.1). Much higher values of the Courant
number were considered during the implicit transient calculations in this work than the
previous study. It was concluded that the preconditioned GMRES algorithm was more
efficient than the more standard Line Gauss-Seidel Relaxation algorithm (LGSR) [87]. This
investigation was continued by Ajmani, Liou, and Dyson [88] in an investigation of parallel
implementations on distributed memory rﬁachines. Additionally; supersonic calculations
using Newton's method with the CGS algorithm have been conducted by Orkwis [89, 90].
These articles studied ILU preconditioning and the effects of using an approximate Jacobian
on algorithm convergence (quadratic convergence was lost). Investigations using Newton-
Krylov solution teéhniques for inviscid compressible flow calculations can be found in
References 91, 92, and 93. Additionally, related articles for reacting flow type calculations
are found in References 94 and 95. Although these studies do not solve the same physical
problems of interest in this work, the features of their solution algorithms are of interest.
Finite element solutions of viscous compressible fluid flow using Newton-Krylov
solution algorithms have been investigated recently by several Canadian researchers [see 96,
97, 98, 99, and 100]. Dutto [96] studied various node ordering strategies and ﬂ1eir effect on
several nonlinear leov algorithms (GMRES, Bi-CGSTAB, and CGS) in solving two-
dimensional, transonic and supersonic, external flow problems. The nonlinear Krylov
algorithms were derived by using the matrix-free approximation described in Chapter 3to

approximate matrix-vector products appearing withing the Krylov iteration, and by restricting

18

the number of allowed Krylov iterations per Newton step so that the state vector and Jacobian
are typically updated before the linear system is solved. This nonlinear Kryldv iteration is in
contrast to a linear Krylov iteration where the linear systems are solved to the desired
tolerance before updating the state vector and Jacobian. Block ILU and block diagonal
preconditioners were considered. A time accurate marching technique was used to obtain
both transient and steady state solutions. It was found that the nonlinear CGS algorithms did
not perform well compared to the other nonlinear Krylov algorithms. This observation was
also noted within the context of a matrix-free, inexact Newton iteration in References 10 and
13, the results of which are given in Chapter 4. This work of Dutto was extended in
Reference 99 to consider parallel aspects of block diagonal preconditioning using various
partitioning strategies. Three-dimensional, internal flow problems have been investigated in
References 97, 98, and 100 using a time accurate marching technique to obtain steady state
solutions. A hybrid viscosity unloading scheme was used to enable the use of larger time
steps. Dutto's work employed a simplified energy equation (representing constant enthalpy),
from which the density was obtained in a lagged manner after a Newton-Krylov solve for the
flow velocities and pressure. A turbulence model was also included for some calculations in
a lagged manner. An important focus of this work was parallel implementations of the
different portions of the calculation. A matrix partitioning strategy based upon matrix
sparsity and not problem geometry (i.e., domain decomposition) was used to enable parallel
implementation on shared memory workstations. This work has recently been extended in
Reference 38 to include domain-based Schwarz methods (see Chapter 3) and calculations
using direct linear solution techniques. .

This dissertation adds to the previously cited research by specifically considering
direct steady state (no time stepping) Newton-Krylov solution techniques for two-
dimensional, low Mach number flow problems. The computational difficulties that make

low Mach number compressible flow problems computationally challenging are addressed

19

further in Section 4.2.1. Thése difficulties can cause problems for approximate factorization
type algorithms at low flow Mach numbers; and, while direct-Newton solution techniques
have been effective for these flow situations [32], they have not been studied in detail using
Newton-Krylov solution algorithms without use of time stepping strategies and/or
approximate Jacobians. Point ILU preconditioning and domain-based preconditioning using
Schwarz methods are compared and contrasted for these types of flow conditions.
Additionally, the performance of Newton-Krylov solvers using both Arnoldi-based and
Lanczos-based Krylov algorithms are investigated, along with tﬁe various performance

enhancement techniques described in Chapter 3.
1.3. DOCUMENT ORGANIZATION

This document is organized into five main chapters including this introductory
chapter. Chapter 2 describes the nonlinear partial differential equations describing both
incompressible and compressible fluid flow and heat transfer that are solved in this
dissertation. The finite volume discretization scheme that is used to convert these systems of
nonlinear partial differential equations to systems of nonlinear algebraic equations is also
presented. The model problems used to investigate the performance of the different
numerical techniques are also included in this Chapter. This latter discussion includes a
description of problem geometry, important flow and heat transfer parameters, and boundary
conditions.

The different numerical techniques employed in this dissertation are described in
Chapter 3. This chapter first describes the general Newton's method solution algorithm, then
proceeds by describing several performance enhancement techniques used to improve the
performance and/or convergence of the Newton iteration. Next, the chaptef describes the use

of Krylov subspace based iterative algorithms to solve the linear systems that arise on each

20

Newton step, giving rise to what are referred to as Newton-Krylov algorithms. Since an
important advantage of iterative techniques for solving linear systems (compafed with direct
solvers) is the ability to exploit the sparseness of the system matrix, the sparse matrix storage
scheme employed in this dissertation is described. Next, a discussion of the preconditioning
strategies used to improve the performance of the Krylov algorithms is given. The last topic
in this chapter is the use of finite difference projections with inexact Newton methods to
yield matrix-free algorithm implementations. This terminology refers to the use of finite
difference projection techniques to approximate the matrix-vector products that are needed
by the Krylov algorithms. Since these finite difference approximations do not require
forming and storing the Jacobian matrix, a matrix-free implementation is obtained whereby
the Jacobian is typically only needed to generate an effective preconditioner.

The results of the numerical investigations are contained in Chapter 4. These results
serve to test and investigate different algorithm features in solving several benchmark,
incompressible fluid flow and heat transfer problems and one low Mach number
compressible flow model problem. These results are summarized in Chapter 5 and important
conclusions and observations are given. These main chapters are followed by an appendix
designed to provide an general overview and description of Krylov subspace based iterative
solution techniques for systems of linear equations. Finally, reference citations are

accumulated in the final section.

21

CHAPTER 2

DESCRIPTION OF GOVERNING EQUATIONS AND MODEL PROBLEMS

This chapter describes the nonlinear partial differential equations that represent '
incompressible and compressible fluid flow with heat transfer. A discussion of the finite
volume discretization scheme, which integrates these continuous partial differential equations
over discrete finite volumes, is also included in this Chapter. These discrete finite volumes
compose the computational mesh, which in turn approximates the true problem geometry.
The result of this discretization process is a system of nonlinear algebraic equations designed
to approximate the mathematical character of the original set of continuous partial differential
equations. The solution of these algebraic systems of equations is the topic of Chapter 3.

The model problems that are solved using these techniqués are described below with respect

to important flow parameters, geometry, and boundary conditions.
2.1. INCOMPRESSIBLE FLUID FLOW AND HEAT TRANSFER

This section describes the equations used to model steady state, incompressible (low
speed) flow of a laminar, Newtonian fluid. The transport of mass, momentum, and energy is
considered; while assuminé that the fluid density is constant everywhere except in the
buoyancy term that appears in the momentum equations. The latter restriction allows thermal
effects to influence momentum transport through small, temperature-induced density
variations. This coupling must be included for low speed flow whenever gravitational forces
are comparable to inertia and viscous forces [1]. The small density perturbations are

modeled using the Boussinesq approximation [see 31]. The conservation equations that

U —

22

describe this coupled incompressible fluid flow and heat transfer system are described in
Section 2.1.1 below. Section 2.1.2 presents a description of the various techniques used to
discretize these equations. Finally, three incompressible flow model problems are described

in Sections 2.1.3 through 2.1.5.
2.1.1. Governing Equations

The dimensionless governing equations for two-dimensional, incompressible,

constant property fluid flow and heat transfer are presented below in conservative form using

Cartesian coordinates.
Continuity:
=0 M
Momentum:
TP
Energy:
auT+a;yT RelPr(azT ?;y f) @

23

The flow variables u, v, p, and T represent the dimensionless x-direction velocity, y-direction
velocity, pressure, and temperature, respectively. The éngle, ¢, defines the orientation of the
x-axis with respect to horizontal. This convention then assumes that the gravity vector is
pointed in the negative vertical direction. Re is the Reynolds number, Gr is the Grashof
number, and Pr is the Prandtl number. Note that the Rayleigh number, Ra, another common
heat transfer parameter, is defined by Ra = Gr Pr. The Reynolds number reflects the
importance of inertia forces relative to viscous forces, while the Grashof number reflects the
importance of buoyancy forces relative to viscous forces. The Prandtl number represents the
rétio of momentum diffusivity to thermal diffusivity. The product of Reynolds number and

Prandtl number defines yet another important dimensionless heat transfer parameter, the

Peclet number, Pec. The parameter, %, appearing in the buoyancy term in the momentum
i e

equations indicates the relative importance of gravitational forces relative to inertia forces. In ’l
other words, it provides a measure of the importance of buoyancy or free-convection effects
relative to forced convection effects. If this parameter is at least of order unity then free
convection effects are irhportant and this term should be retained. This situation is often
referred to as mixed convection. However, if this term is very small then the pr<;blem is
dominated by forced convection, and this term may be negligible. When there is no forced
convection, the flow is entirely driven by temperature differences. This situation is referred
to as natural convection. In this case, the reference velocity is frequently set so that the
Reynolds number, appearing in Equations (2) through (4), is identically one.

Values used for the important dimensionless flow parameters, and the parameters
used to nondimensionalize the equations, are given in the sections describing each of the
incompressible flow model problems. Note that the momentum equations are coupled to the

temperature field via the buoyancy force terms arising from the Boussinesq approximation

24

[see 31]. This approximation assumes that density is constant everywhere except in the
buoyancy force terms of the momentum equation. In this term, density is assumed to vary
with temperature according to a first order Taylor series approximation about the reference

density, p, [see 1, 31]. This approximation can be expressed as follows,

s x o an < (OB xm = [AT
p=po+Ap=po+(§-)-AT =po(1-ﬁAT), ')

14

where B is the coefficient of thermal expansion defined iﬂ this case by,
= 1(dp
B= —.—(—g) . ©)

Use of this approximation leads to the buoyancy force terms presented in Equations (2) and

3.
2.1.2. Discretization of Governing Equations

Discretized forms of the governing equations are solved on a two-dimensional,
staggered mesh with thermodynamic variables located at cell centers and velocities located at

cell faces, analogous to the MAC solution procedure [see 19]. The computational mesh
consists of rectangular cells of length Ax; in the x-direction and Ay; in the y-direction, where

i and j refer are the cell indices in those directions, respectively. Note that Ax; is allowed to
vary with i, but not with j. Similarly Ay; is allowed to vary with j, but not with i. This
variation allows some flexibility in constructing non-uniform meshes, although still

rectangular and structured. The rectangular mesh is assumed to contain nx cells in the x-

25

direction and ny cells in the y-direction. A schematic of a typical finite volume cell is shown

in Figure 1.

Yy

Figure 1. Schematic of typical finite volume cell and placement of cell variables.

The governing équations are spatially discretized using the control volume or finite
volume approach, whereby the conservation equations are integrated (volume averaged) over
the volume of the appropriate computational cell [see 21, 101, 102]. The appropriate

computational cell is determined by the equation under consideration. In the case of the

continuity and energy equations, the appropriate cell is the typical computational cell shown

in Figure 1. However, in the case of the momentum equations, it is convenient to define two

additional computational cells, called momentum cells. Thus, the u-momentum equation is

26

integrated over the u-momentum cell shown in Figure 2, while the v-momentum equation is

integrated over the v-momentum equation shown in Figure 3.

(8)

Figure 2. Schematic illustration of typical u-momentum cell.

Cell (i.j)

b oo oo A 0 o oo o,

Figure 3. Schematic illustration of typical v-momentum cell.

27

The basic idea of this discretization scheme is the use of the divergence theorem to
convert volume integrals of terms of divergence form to surface integrals over cell faces.

The divergence theorem is expressed by [see 103],

[=[fr-sas. o

where v is a continuous vector defined within the finite volume, V represents the cell
volume, S denotes the cell surface, and i is the outward unit normal to S. The surface
integral in Equation (7) is then approximated by summing the integrand over all of the finite
volume faces. In two dimensions, this process is simplified because the components of the
vector are zero in the third dimension, and the face areas can be computed assuming a unit
depth in the third dimension. This procedure leads to conservative difference equations for
mass, momentum, and energy. Several specific spatial discretization schemes are described

below.
2.1.2.1. Standard Discretization

The standard finite volume discretization scheme used for the incompressible flow
equations is based upon the power-law formulation of Patankar [21]. Consequently, much of
the notation in Reference [21] is used here to describe this dis;:retization scheme.

In vector form, the continuity equation expressed in Equation (1), can be written in

the following divergence form,

V-u=0. ®

28

This equation is then integrated over the finite volume shown in Figure 4, where the shaded
region indicates the volume over which the integration is performed. Note that in this figure
and subsequent figures for the momentum cells, the notation used to define the locations of
variables [i.e., north (n, N), south (s, S), east (e, E), and west (w, W)] are defined with respect
to the volume (i.e., shaded region) of interest. Application of the divergence theorem to this

volume integral then yields,

I‘U(V u)dV = ﬁu -AdS = u Ay, +v,Ax; - u,Ay; —v,Ax; = (u, —u,)Ay; + (v, —v,)Ax.. ©9)
v s

[}
I

Ax.

1

Figure 4. Finite volume stencil used to discretize incompressible flow continuity equation.

A discrete algebraic equation of the form expressed by Equation (9) arises for each

computational cell in the mesh. Rows associated with Equation (9) in the resulting fully

29

coupled matrix system are typically aligned with the pressure variable even though pressure
does not explicitly appear in this equation. Under certain conditions, this alignment choice
can cause difficulties. These difficulties are addressed in Chapter 4. One remedy for
difficulties of this sort is to solve a discrete Poisson type pressure equation in lieu of
Equation (9). The discrete pressure equation formulation is described in Section 2.1.2.2
below.

The u-momentum equation can be treated in a similar fashion. First, Equation (2)

can be expressed in vector form as,

V-Q“+V.(pi)- ge’, Tsing =0, (10)
where
Q= uu—-l—Vu (11)
Re

Note that the first two terms in Equation (10) are of divergence form, and so the divergence
theorem may be used to convert volume integrals of these quantities to surface integrals. The
last term, however, is not of this form and so must be integrated over the finite volume.
Equation (10) is integrated over the shaded region shown in Figure 5. Recall that this shaded
region is the u-momenturﬁ cell. The finite volume stencil indicated in Figure 5 is used to
evaluate necessary quantities either at the cell faces or at the cell center. The result of this
integral approximation is given by,

(0 22)ay, +(@2 -0 e 5, -),

12)
Gr . Ax_, + Ax; (
_Ee_zT sin ¢(——1.£_—)ij = 0’

ave

30

where
and
o =(Q*i), gz =(--i) , gr=(Q*-j). ar=(-Q*-j). (14)

The subscripts in Equations (12) through (14) indicate where the subscripted quantity is

evaluated according to the notation used in Figure 5.

N N
n A |
fow ® iy
; "X
S I
f——q
w w A:i E

Figure 5. Finite volume stencil used to discretize the incompressible flow -momentum
equation.

31

Following the formulation outlined in Reference 21, the next step in the
discretization process is to integrate the continuity equation over the 4-momentum cell,

multiply this discrete equation by u,, and then subtract the result from Equation (12). This

step results in the following expression,
. Ax,
[(Qj‘ - u,u,,) - (Q: —UUp)]ij + [(Q: - v,u,) - (Q_{‘ -Vu,)](_éx_n—_lzi_‘_)

Gr . [Ax +Ax
+(p¢ - Pw)A)’ e R—ez-Ta" sin ¢(—L2——")ij =0,

(15)

where u,, u,, v,,and v, are the convecting velocities, which are located on the #-momentum

cell faces at the same x-location as u,. These velocities are defined by,

_Ugtlup | _Uytlp
k4

(] * Tw 2
Axy,, + Ax;_v,, Axy,, +Ax; v, (16)
v, = ¢ and vy, =—2———=,
Ax; + Ax;_, Ax; + Ax,_,

Note that v, and v, are computed using simple linear interpolation. At this point in the
discretization process, the Q" terms in Equation (15) have not yet been approximated. Since
these terms include convection, they must be evaluated in such a way so as to maintain
numerical stability. Patankar [21] suggests that these terms be evaluated as follows:

" 1
(0¥ —u,up)Ay; = (up —) mAﬂReAxiu,l) + Max(—u,,O)]ij,

(v) i Mt) £555)

o

2 =ReA A an
) 1
(Q,v —uup)Ay = (g —u1p) RoAe A(|ReAxi_ ,u,,l) + Max(uw,O)]Ay ;» and

(Q:-v,up)(w)qus_u,,)[&z . AqReAy,v,D+Max(v,,o)](e_x.-_-1§t&)

2 3

32

where

Ay. + Ay; Ay. + Ay

Ay, =TV gng Ay = T Vim (18)
2 2

The function A(|P|) appearing in Equation (17) specifies how the convection and diffusion
terms are handled. A([P])=1 corresponds to pure upwinding [see 19] for the convection
terms and centered differencing for the diffusion terms. This option renders the
approximation to the convective terms first order accurate, while the diffusion term
approximation is second order accurate. A(P)=1- |§| corresponds to central differencing
for both terms, which is second order accurate but often leads to numerical instability. The

power-law scheme [21] is obtained from,

A(P)) = Max{0,(1-1P}. (19)

The accuracy of this scheme depends upon the magnitude of the cell Reynolds number, |P|.
For |P|> 10, the power-law scheme reduces to pure upwinding with diffusion set to zero,
while for |P|< 10 the power-law scheme is more accurate than pure upwinding. Central
differencing arises only for [P|< 2.

The final discretized form of the u-momentum equation can be expressed compactly

as follows [see 21]:

(up —uz)ag +(up -Guw)ap, +(up Z;c”)aN + (4 — 45)t .
. - T Ax;
+(p¢ - Pw)Ay, - ;eLZ.Tmc sin ¢(—‘717———L)Ayl = 0’ ()

where

33

ag = —l—A(

o

1
= ReAx —— A(|ReAx, u,|)+ Max(u,,)]Ay,,
@1

A(|Rety,v,))+ Max(~,] izt “"A"") and

A
1

~| Reny,

Thus, rows associated with Equation (20) in the fully coupled matrix system are aligned with
the u-velocity variable (u#,) appearing in each computational cell. The general form of the
discrete equation given by Equation (20) is derived for the remaining equations below by
simply replacing u with the variable of interest (i.e., either v or T), redefining the coefficients
expressed in Equation (21), and then replacing the last two terms in Equation (20) by the
appropriate source terms, if any.

Before proceeding, however, it is convenient to express Equation (20) in a different
form that will be useful in the discussion of the discrete pressure equation formulation in

Section 2.1.2.2. This form is obtained by solving Equation (20) for u, to give,

P=aEuE+aWuW+aNu~+asus_(p —p)_1_3_)_’,_+ GrT ¢(Ax,_1+Ax)Ay
ap ap ap ! (22)
)2

=i, —(p. - p., -
P

b

where i, is referred to by Patankar [21] as a pseudo-velocity, given by

i, = Agliy + Gyl + aylly +asu; — Gr T sin ¢(Ax,; + Ax;) Ay, @23)

ap Re® ™ ap

34

and

a, =ag +ay +ay +as. R4

The purpose for introducing these equations will be more apparent in Section 2.1.2.2.
The v-momentum equation can be discretized for each computational cell in a
fashion analogous to the procedure used to discretize the u-momentum equation. The

integration is performed over the v-momentum cell (the shaded region shown in Figure 6).

E

Figure 6. Finite volume stencil used to discretize the incompressible flow v-momentum
equation.

35

The final discretization equation for the finite volume cell shown in Figure 6 is given below:

(vp —vi)ag + (vp — vy Jag + (V5 — vy)ay + (Ve — Vs)as
Ay j-12+ Ay; Ax, =0, (25)

Gr
v - ot

where

1 1Ay + 4y,
a; = e, A(|ReAx,u,))+ ch(—uc,o)= (_.!_1_2___'.)’

1 (Ay i T AY;
Rear, A(|ReAx,)+ Max(,,0) _{'—)'
1
ReAy;
1
| Redy;.;

(26)

A(IR?Ay Vi

)+ Max(—v,,0) |Ax;, and

)+ Max(v,,O)JAx‘.;

A(|ReAy i1V

and

Ay, T, + Ay,T

Ay;, +Ay;
- iju“ + Ayl"'lunt U = Ayiu.rw + Ayi—lumv

Ay; + Ay;, " Ay; + Ay, Q7)
YtV | _YstVe

Ax” Ax 2 " 2Ax Ax

Ax, =_+7_:1_ and Axw=——"l'"2——"‘—‘.

ave

(]

Rows associated with Equation (25) in the fully coupled matrix system are aligned with the

v-velocity variable (v,) appearing in each computational cell.

36

Again, it is convenient at this point to express Equation (25) in a different form that
will be useful in the discussion of the discrete pressure equation formulation in Section

2.1.2.2. This form is obtained by solving Equation (25) for v, to give,

o= apVe + ayVy +ayvy +agvs e)%__*_E)_-_T cos Ay, +Ay; Ar.
d a, » " a, R ™ 2a, © 28
= f’P - (p =D)ﬁ’
n 2 aP
where ¥, is another pseudo-velocity, given by
Ay, , +Ay;
5= agvg + awvwa+ ayVy +asVs ;?rz T_. cos ¢()’,_21a y;) Ax,, 29)
P P
and

a, = ag +ay +ay, +as. (30)

Again, the purpose for introducing these equations will be more apparent in Section 2.1.2.2.
The energy equation is discretized over a computational cell by integrating this
equation over the shaded region in Figure 7. The resulting discretization equation for the

finite volume defined in Figure 7 can be written as,

(T, —Tg)ay +(Tp — Ty)ay +(Tp —Ty)ay+ (T, —Ts)as =0, (31)

where

37

1 .
a; = mA(IRePrAx‘u,)+ Max(—u‘,0)=ij,

= RePrAx ——— A({RePrax,u,|)+ Max(u, ,o)sz,., o

————A(|RePray,v,|) + Max(-v,,0) |Ax,, and

- RePrAy,,
_ 1
| RePrAy,

A(|RePrayv,|)+ Max(v,, 0)]Ax

and

= Ax +Ax;, Ax = Ax; + Ax;,

R e ™ 2 ? w 2 .
_ Ay; + Ay, and Ay, = Ay; + Ay, (33)
’ s) .

W w ! e E

Figure 7. Finite volume stencil used to discretize the incompressible flow energy equation.

38

Rows associated with Equation (31) in the fully coupled matrix system are aligned with the

temperature variable (T',) appearing in each computational cell.
2.1.2.2. Discrete Pressure Equation Formulation

The discrete continuity equation given by Equation (9) yields, for each
computational cell, a row in the fully coupled matrix system that is aligned with the pressure
variable in that cell. In this manner, pressure is calculated so as to ensure a divergence-free
velocity field. The difficulty in this approach, however, is that pressure does not explicitly
appear in the continuity equation. This difficulty has led to the development of many
different numerical schemes that enable the calculation of pressure from the continuity
equation [for examples see 19, 20, 21, 22, 80, and 104]. In this work, a fully coupled Newton
solution technique is selected, and so the problem is manifested in the appearance of zeros on
the main diagonal of the Jacobian matrix. Oftentimes, this problem is not a serious concern
using the solution techniques described in Chapter 3. However, some circumstances do arise
when this problem must be addressed. One possible remedy in situations of this sort is to
solve a Poisson type pressure equation for pressure in lieu of the continuity equation [see
104]. This equation is derived by combining the momentum equations and the continuity
equation to yield a new equation for pressure.

In this work, a discrete pressure equation is formed from the discrete continuity and
momentum equations. This approach is in contrast to the derivation of a continuous partial
differential equation for pressure and then discretizing this equation. The advantage in the
former approach is that the discrete pressure equation is guaranteed to be consistent with the
discrete forms of the continuity and momentum equations, and imposition of boundary
condition is simplified because the boundary conditions that are imposed on the discrete

continuity and momentum equations can also be applied to the discrete pressure equation.

39

See Gresho [104] for a more complete discussion regarding the issues associated with using a
pressure equation formulation for incompressible flow calculations.

The discrete pressure equation used in this investigation is derived following the
‘ procedure outlined in Reference 21. The required finite volume stencil for this discretization
over a single cell is shown in Figure 8. The starting point in this derivation is the discrete
continuity equation given in Equation (9). The velocities, u,, u,, v,, and v, are then
replaced with expressions obtained from the discrete momentum equations of the form given

by Equation (22) and Equation (28). These expressions can be written as:

. Ay,
8, +(pp = 2s) 2,

u, =
) Ay,
uw = uw —(pP _pW)-—yL,
V4 (34)
v, =9, +(pp—py) a‘, and
. Ax,
v, = :"(pp"Ps) a'-

L4

The pseudo-velocities, #,, #,,, V,, and v, are obtained from expressions similar to Equations
(23) and (29), except defined with respect to the finite volume stencil shown in Figure 8.
Similarly, the coefficients, a,, a,, a,, and a, appéaring in Equation (34) are analogous with
Equations (24) and (30), except defined with respect to the finite volume stencil shown in

Figure 8. Substitution of these expressions into the discrete continuity equation then gives,

& Ay? Ax? Ax?
(PP "PE)"a—:"'*'(PP "PW)?L"'(PP ‘PN)T*‘(PP "‘Ps)a_ (35)

+{@, i,)Ay, +(, —9,)A%; = 0. ’

nn t"m
N —u-NY" pN.’TN UNe
v
n f nE Yi
u P ,T
w E'E _| By,
\E _
§ | T X
S
SS [\
o
Ax; '
ww W w e E ee

Figure 8. Finite volume stencil used in the discrete pressure equation formulation

This discrete pressure equation is considerably more complex than the original continuity
equation, but it accomplishes the goal of deriving a discrete equation that contains pressure.

The added complexity follows from the use of the expressions in Equation (34). These

expressions represent the solution of the discrete #-momentum equation for #, in cells

(i +1,/) and for u, in cell (i,), while the discrete v-momentum equation is solved for v, in
computational cell (i,j+1) and for v, in cell (i,j). Consequently, the finite volume stencil
shown in Figure 8 contains significantly more variables than are required for the
discretization of the other conservation equations. The advantages and disadvantages of the

discrete pressure equation formulation described here will be investigated in Chapter 4.

41

2.1.2.3. Higher-Order Discrete Approximations

Recall that the power-law discretization scheme [21] that was described in Section
2.1.2.1 reduces to pure upwinding for values of the cell Reynolds number greater than ten.
Unfortunately, upwinding is only a first order accurate spatial differencing scheme, which
cax; be too inaccurate in some instances. Additionally, improving spatial accuracy via grid
refinement may be impractical due to memory restrictions or in some cases due to
convergence difficulties. An alternative is to improve the accuracy of the spatial differencing
scheme used to appfoximate the convective terms, while maintaining numerical stability.
Several articles that investigate the use of higher order approximations for these convective
terms are cited in References 105, 106, 107, and 108. This alternative, however, typically
requires enlarging the finite volume stencil used to approximate quantities on cell faces.

The power-law convection-diffusion discretization scheme provided an
approximation to terms containing both convection and diffusion. These terms, analogous to

Equation (11), can be expressed in one-dimension in the following manner,

e 108
O, =ub T o’ ‘ (36)

where it is assumed that the quantity 6 is being convected by the velocity u, and is diffusing
according to the coefficient 1/I". Finite volume discretization typically requires evaluation of
terms of this form at cell faces. The use of higher order convection schemes for this
evaluation often requires treatment of convection and diffusion separately. In this work,
diffusion terms are approximated with conventional second order accurate central

differences. For example, consider the one-dimensional finite volume stencil shown in

Figure 9. For simplicity, this figure assumes a uniform grid, for which the mesh spacing

42

w €

Figure 9. Schematic of one-dimensional finite volume stencil used for higher order
approximations to convective terms.

between nodes and between cell faces are equal to Ax. In this figure the notation of
References 105 and 106 have been adopted, where the subscript ‘U’ denotes the second node
upstream of the cell face, the subscript 'C’ denotes the first node upstream of the cell face, and
the subscript 'D' denotes the node downstream from the cell face. The directions 'upstream’
and 'downstream’ are determined by the direction of the velocity u,,, which always points \
downstream. Using this notation, the derivative corresponding to diffusion on the west face

(w) is approximated by,

2 _6,-6

== Ar 37

The convection term (u6),, on the west face can then be approximated separately using

different combinations of the three node values for 8 to obtain more accurate

approximations. Note that for pure upwinding [see 19 and 20] this term is computed from,

u6), =u,6,. (3%

43

Use of upwinding to evaluate these face quantities results in a first order approximation to the

convective derivative, which is approximated by,

oub _ (u6), - (ub),
ox Ax)

(39)

A second order accurate approximation can be obtained using the QUadratic Interpolation for
Convective Kinematics (QUICK) scheme [see 106, 108]. This scheme computes the face

value from,

3 6

h), = u,,(g 6, +2 6 -%e,,). (40)

Another second order accurate scheme would be obtained by simply averaging the first
upwind node value and the downstream node value. This choice corresponds to central
differencing, which is more susceptible to numerically instability at higher values of the cell
Reynolds number than the QUICK scheme. A third order accurate approximation to the
convective derivative can be obtained using the Cubic Upwind Interpolation scheme (CUI)

[see 105 and 106]. This scheme computes the face value from,

2 5 1
(uG)w = u,,(—6- 6, +gec —EG,,). 41)

This investigation considers the use Equation (41) with conventional central differencing for
the diffusion terms. Note tha;c although use of Equation (41) results in a third order accurate
approximation for the convective derivatives, the diffusive terms are still only second order
accurate. Additionally, near boundaries where two upstream interpolation points are not

available, simple averaging of the upstream and downstream values is used to compute the

face value. Consequently, the overall scheme is fecond order accurate. Examples of the use
of this discretization scheme will be presented in Chapter 4.

Note that the formulae presented above assume the specified direction of the velocity.
If this velocity were reversed then the ‘upstream’ and ‘downstream’ directions would also
reverse. This sifply requires redefining the two upstream nodes and the one downstream
node. One significant effect in the use of a more accurate approximation for the convective
terms, is that the finite volume stencil is necessarily enlarged because of the addition of the
second upstream node. The consequences of this larger stencil mean a more dense Jacobian
matrix, and possibly one that is less diagonally dominant (i.e., a more ill-conditioned matrix).

The latter consequence can affect the performance solution algorithm described in the next

Chapter. These issues will be discussed further in Chapter 4.
2.1.3. Natural Convection in an Enclosed Cavity Model Problem

This section describes the problem of natural convection in an enclosed cavity. This
problem is a standard benchmark problem frequently used for testing different numerical
techniques. Accurate solutions to this problem have been presented by de Vahl Davis [109]
for different values of the Rayleigh number. |

The model problem geometry and boundary conditions are shown in the schematic of
Figure 10. The gravity vector is denoted by g, with a magnitude given by g. No-slip (zero
velocity) boundary conditions are enforced on all walls. This condition renders the geometry
closed in the sense that no flow into or out of the box is allowed. The temperatures are fixed
on the side walls with the right side wall set at a higher temperature, while the upper and
lower walls are assumed adiabatic (insulated).

The characteristic parameters used to nondimensionalize the governing equations are

identified below [see 1], where a tilde indicates a dimensional quantity:

45

i 7 _p+p@y=By p_T-T, % _7F
Uu=—=, v=—=, = T== =, X==, Yy==. ' 42
V V p poV2 "_ 0 L y L ()
y | oT/oy =0 .
u=v=0

&N

&N
tn

7777777777777 777777
<
]
o

I
(=]
ONOOOMNANAYANNANNNN VNN

Figure 10. Geometry for natural convection model problem.

The subscript '0' indicates a reference quantity defined with respect to thé cool left wall
(x=0), while the subscript 'H' refers to the hot wall (x=1). Note that for incompressible flow,
pressure appears only in gradient form. This means that the absolute magnitude of pressure
is not really important, only changes in its magnitude from one spatial location to another.

This allows the dimensionless pressure to be defined so as to include the hydrostatic term,
P,8¥. The velocity scale, V, used in Equation (42) is defined so as to make the Reynolds

number identically one, i.e., V = ¥, / L, where D, is the kinematic viscosity of the fluid. The
length scale, L, is defined based upon the height (or width) of the square cavity.

The important parameters used in Equation (1) through Equation (4) for this problem
are defined by,

~

B’ (F, - T
¢=0, Re=1, Pr=0.71, Gr =P£-L.-’i—°), Ra=Gr-Pr, 43)

o

where B is the coefficient of thermal expansion. The value of the Prandt] number listed in
Equation (43) is characteristic of air. Specification of the Rayleigh number, Ra, is used to

define the Grashof number, Gr.
2.1.4. Mixed Convection, Backward Facing Step Model Problem

This section describes a model problem that represents steady, two-dimensional,
mixed convection flow in a channel with a backw@ facing step. A schematic illustration of
this model problem is given in Figure 11. This problem was defined by the ASME K-12
Aerospace Heat Transfer Committee as a benchmark for code validation and assessment [see
11, 110]. Geometrically, this problem is distinguished from the natural convection problem
by inflow and outflow sections, the non-rectangular geometry, and aspect ratios (x:y) of 5:1
upstream from the step and 15:1 downstream from the step.

The inlet dimensionless velocity at x =—5 for 1<y <2 is specified by a parabolic

profile defined by,

u(y)=§[1—<3—2y)2]. (a4)

47

This velocity profile at the inlet acts to impose a pressure gradient, which forces the fluid
through the expansion channel and then out the boundary at the other end. Note that the
sudden expansion caused by the step causes the flow to separate, thus creating a local
recirculating flow pattern in the region just downstream from the step. The inlet temperature
is fixed at the cold value of T, so that the dimensionless tempefature there is zero. Walls are
assumed to be no-slip (zero velocity) boundaries. The temperature of the wall attached to
and downstream of the step is set at the hot temperature f‘,,, so that the dimensionless
temperature there is one. Upstream of the step this wall is assumed adiabatic. The wall
opposite the step is set to the cold temperature so that the dimensionless temperature along its
length is zero. The step face wall is assumed adiabatic. Along the outflow boundary, the
following fully developed, zero gradient boundary conditions are enforced,

[URppR y—
]

) A
3&:0 % : u,v=0 T=0
T(y)=0 f Y 9

adiabatic —e- u,v=0 CT=1

zero gradient

A

o1 -
'F 5 e 30

Figure 11. Schematic of mixed convection, backward facing step model problem.

The characteristic values used in the nondimensionalization of the governing

equations are the same as those listed in Equation (43), except the velocity scale is defined as

9|

48

the bulk average inlet velocity, the length scale is defined to be the step .height, and ¢ =90.
The values assumed for the nondimensional parameters are Re =100, Pr=0.7, and
eitherGr =0 or Gr =1000. The former option for the Grashof number specifies a forced
convection flow, while the latter option enables the effects of buoyancy to be determined.

In addition to the dimensionless flow field and temperature field, two additional
solution parameters are of particular interest to a design engineer. The first is the
dimensionless heat transfer coefficient along the hot and cold walls, namely the Nusselt

number, Nu, defined by

Nu=h7L
k

, (46)

where 7 is the heat transfer coefficient and £ is the thermal conductivity [see 2, 111]. Itis

assumed that / is defined by,

-, 47)

where §” is the heat flux in the y-direction. Thus, along the hot wall §” represents the heat
flux into the channel, while on the cold wall it represents the heat flux out of the channel.

Similarly, k is defined in terms of the heat flux by,

- g”
k= —gme——. (48)
(05/25),.,
Substituting for h and k using the above expressions and using the definitions in Equation

(42), Equation (46) can be written as,

49

%)
Nu=——1| , 49)
3.

which defines the Nusselt number in terms of the dimensionless wall temperature gradient.

A second important solution parameter of interest is the wall skin friction coefficient

defined by,

C, = (50)

ﬁﬁ:, Hot wall (5=0)
% 51
% K (51
- b—y—’ Cold wall (3=2L)

where jI is the dynamic viscosity. The density dependence in Equation (50) can be

eliminated by multiplying by the &Rcynolds number (Re = %). The quantity C, Re can

then be expressed as

299-, Hot wall (y=0)

Cr.Re= ag,, , (52)
—2-5;, Cold wall (y=2) ,

which defines the skin friction coefficient in terms of the dimensionless principal velocity
gradient at the wall. By convention, the quantity C, Re is positive if the principle (along the

50

channel) velocity () near the wall is posiﬁve and negative if the principle velocity near the

wall is negative (i.e., reversed flow).
2.1.5. Forced Convection, Backward Facing Step Model Problem

This section describes a forced convection, backward facing step model problem.
This problem was also defined by ASME K-12 Aerospace Heat Transfer Committee as a
benchmark problem for code validation and assessment [see 9, 112]. The hydrodynamic
problem is the same as that solved by Gartling [113]. This backward facing step model
problem differs from the one described in Section 2.1.4 with respect to geometry, boundary
conditions, and assumed dimensionless parameter values. A schematic illustration of this

model problem is given in Figure 12.

r 30
Figure 12. Schematic of forced convection, backward facing step model problem.

I\
12 :ru(y), T@y) wv=0 % Constant heat flux into channel E g
1v(y) =0 i 8
§ [
Muian 1 = &
o i o
adiabatic— u,v=0 y Constant heat flux into channel E g
|
1

The characteristic values used in the nondimensionalization of the governing

equations are listed below:

51

- Twall

i
Tcl - Twall

1!

—P 7.
A

]
(l] B30

> Y (53)

o &

» P= » X<

<q| =
<if =

In this case, the velocity scale is defined as the bulk average inlet velocity, while the length
scale is defined to be the channel width. Dimensionless temperature is defined with respect
to the inlet centerline ('cl') and wall (‘wall’) values, respectively, since there are no fixed hot -
and cold wall temperatures for this problem. There is no hydrostatic term in the definition of
the dimensionless pressure‘ since gravitational effects are ignored in this model problem. The
values assumed for the nondimensional parameters are Re =800, Pr=0.7, and Gr=0. \
The inlet dimensionless velocity and temperature profiles at x=0 and 0 <y <1/2 are

assumed to be fully developed and are specified as,
3 .
u(y) == 42~ 4y), (54)
) 1
T(y)=1-[1-1- 4y)2][1—-5-(1—4y)2]. (55)
All fixed walls are no-slip (zero velocity) boundaries. Both the upper and lower walls are

heated, with constant heat flux given by,

., 32k ’
q =?-Z-(TM—TC,), | (56)

which is the heat flux (into channel) that yields the dimensionless temperature profile

expressed by Equation (55). This heat flux corresponds to dimensionless wall temperature

gradients specified as,

52

&Y))

Note that the inlet temperature profile and upper and lower wall temperature boundary
conditions are consistent in that the fluid is assumed heated both upstream and downstream
of the step. The wall associated with the step is assumed to be well insulated (i.e., zero heat
flux). Along the outflow boundary, the following fully developed, zero gradient boundary

conditions are enforced,

ou _ov_dT _
P ax-O. (58)

In this problem the heat flux is specified, while the wall temperatures (T,) are

unknown. Consequently, there is no fixed temperature difference, upon which the local wall
heat transfer coefficient can be based, as was done in Equation (47). Thus, it is necessary to
introduce a quantity called the bulk fluid temperature [see 2, 111], which is defined at each x-

location by,

= o

This enables the local heat transfer coefficient to be defined as,

h=er=® ‘ (60)

N 53

v

The Nusselt number for this model problem is defined based upon the hydraulic diameter
(13,,) and not the step height [see 2, 111] so that, l

Nu=—=——, (61)

Thus, these expressions give rise to a Nusselt number, defined in terms of the dimensionless

variables, that can be expressed as,

2 oT_64 1
T, =T 9 5 Ty—Tuu
2 8T=64 1
Tw—Tbulkay STw-Tbulk

, y=+0.5

Nu= (62)

, y=-0.5

The Nusselt number given in Equation (62) is a function of the wall and bulk temperatures at
each x-location. The skin friction coefficient for this problem can be defined in a manner
similar to that described for the mixed convection, backward facing step problem defined in

Section 2.1.4.
2.2. COMPRESSIBLE FLUID FLOW AND HEAT TRANSFER

This section describes the partial differential equations that describe two-dimensional,
laminar, compressible fluid flow and heat transfer. These equations also represent the
transport of mass, momentum, and energy; but unlike the incompressible flow case, density
is assumed variable everywhere. Thus, there are five unknowns in this system including
density, two components of velocity, pressure, and temperature (energy). Since only four

transport equations exist, an additional equation is required for closure. This additional

54

equation arises from a thermodynamic equation of state, which relates the three

thermodynamic variables.

The compressible flow equations solved in this work are presented in Section 2.2.1.

The finite volume discretization scheme used to convert this continuous set of partial

differential equations into a system of discrete algebraic equations is described in Section

2.2.2. Finally, the compressible flow model problem used to investigate the numerical

solution techniques of Chapter 3 is described in Section 2.2.3.

2.2.1. Governing Equations

The partial differential equations, representing constant property laminar flow of a

compressible fluid, are presented below in dimensionless form:

Continuity:
Momentum:
T sleaan) @
w3k Es] @

55

Energy:
G e 2 I
Equation of state:
p= ;‘; . (67)

where p is now the fluid density and constant transport properties have been assumed along
with Stokes condition [1]. Additionally, heat generation, viscous dissipation, and the effects
of buoyancy forces have been neglected. Note that because this investigation is concerned
with low Mach number compressible flow, the effects of viscous dissipation should be
negligible. Additionally, the model problem described in Section 2.2.3 does not include any
sources of energy and only adiabatic temperature boundary conditions. Consequently, only
slight changes in temperature occur, which makes the assumptions of constant properties and
»negligible buoyancy effects reasonable. The Peclet number, Pec, appearing in Equation (66)
is defined as the product of the Reynolds number and the Prandtl number, i.e., Pec =Re- Pr.
M, is the reference Mach number based upon a reference velocity and temperature, and 7 is
the ratio of the specific heat capacities. Note that the thermodynamic equation of state in
Equation (67) assumes a perfect gas. In this work, the state equation is used to eliminate
pressure from the conservation equations so that the four unknown variables are «, v, p, and
T.
The characteristic parameters used to nondimensionalize the governing equations are

identified below [see 1], where once again a tilde indicates a dimensional quantity:

56

i 7 P T p 7 y
U=-—=, v=—, =—==, T=-:—, ==, X==, V== 68

The subscript '0' indicates a reference thermodynamic quantity. The specific velocity and
length scales, and reference conditions for the model problem of interest are defined in

Section 2.2.3.
2.2.2. Discretization of Governing Equations

The governing equations presented in the previous section are discretized on a finite
volume mesh similar to that described in Section 2.1.2. The only difference between the
incompressible flow mesh described previously and the compressible flow mesh used here is
that the pressure variable, p, in each computational cell is replaced with the density variable,
p. This replacement is required because the equation of state is used to eliminate pressure
dependencies.

The development of the discretized compressible flow equations proceeds in the same
manner as for the incompressible flow case. The continuity and energy equations are
integrated over the standard finite volume cell, while the components of the momentum
equation are integrated over the appropriate momentum cell. Once again, the basic feature of
the discretization process is the use of the divergence theorem to convert volume integrals of
divergence form to surface integrals, which are then be approximated by summing quantities
evaluated at cell faces. One important difference in the discretization of the compressible
flow equations is that pure upwinding [see 19, 20] is used to evaluate the convective terms
instead of the power-law convection-diffusion formulation that was employed in th;z

discretization of the incompressible flow equations. The use of this technique is illustrated

57

below in the development of the discretized forms of the continuity, momentum, and energy
equations.

The continuity equation can be written in vector form as,

V-(pu)=0. (69)

This equation is then integrated over the finite volume stencil shown in Figure 13, where the
variables identified in this figure are used to evaluate the necessary integral quantities. This

integration process yields,

IV -touav = [f(ou)-fas =[(pw), =) Joy, +[low). - 70

yi

Figure 13. Finite volume stencil used to discretize compressible flow continuity equation.

58

The quantities in parenthesis, which must be evaluated at cell faces, are computed using

upwinded values for the density. These quantities can be computed as follows:

(pu), = pyMax(u,,0)~ pyMax(-u,,0),
(pu), = —pMax(-u,,0)+ pyMax(u,,0),
(pv). = ppMax(v,,0)— pyMax(~,,0), and
(pV): = —PPMQX(—V,,O) +psM(IX(V:,O).

1)

Similarly, the u-momentum equation can be written in the following divergence form,

V- (puu)+V- (pl)+—V (0,)=0, ‘ (72)

where

2 cu) 2
=5-i=|Vu+=1|-=ZV-u,
6,=6-i (u+) 3 u (73)

and G represents the viscous stress tensor. This form of the u-momentum is then integrated
over the shaded finite volume shown in Figure 14. Application of the divergence theorem to
this integral results in three surface integrals corresponding to the three terms in Equation
(72). These surface integrals can be approximated numerically by cohverting the integrals to

summations over the cell faces. This process yields the following discretization equation,

{[(p)u], - [(pu)u], Ja; + {[(PV)u] ~[(ov)u], }(Ax—“‘—J'éﬁ)Hp. pw)Ay,
-) (o) oo [3o D B

74

59

N
n y
u
S -
X
S
————
Ax;
w w e E

Figure 14. Finite volume stencil used to discretize compressible flow #-momentum
equation.

The first two terms in brackets in Equation (74) contain the convection terms. The terms in
parenthesis, within the brackets, are interpreted as the convecting quantities, while the terms
they multiply are interpreted as convected quantities. In this implementation, the convected -

quantities are upwinded, so that the convection terms are computed from:

[(pu)u]‘ = u,,Max{(pu)‘;O} - uEMax{-(pu)‘, 0},
[(pu)u], = —u,,Max{—(pu)w,O} + uWMax{(pu)w,O},
[(pv)d], = u,,Max{(pv)u,O} - uNMax{-(pv)n,O}, and
[(pv)u], = —u,,Max{—(pv)‘,O} + uSMax{(pv)‘,O};

@s)

where

(), =p (8222},
(pu), pw(“"’ "")

(pv), = PrAY;n + Pl | v AX, +V, A and
Ay; +Ay;, Ax,+Ax,,)

(p‘V) - ppij_l +PSA}’,~ v Ax,_, "l"v Ax
y Ay; +4y;, Ax; +Ax_

and

p = p Ax[—] +prAxx
YU Ag+Ax,)
/
Pp = peAxi-l +prxi \ and
k Ax + AX,-_I
p = (pScht—l +pSwai
ST\ Ax+Ax,

(76)

an

The pressure terms in Equation (74) are evaluated using the equation of state as follows,

Fel e — prw
i ;-

The remaining viscous terms are computed from the following expressions:

(o) -(23) 53+ 2);
(0.5 -4(3+2).

("x'ﬂf(%*%l’ and (0,-3),= (3‘; 3)

(73)

79)

61

where the derivative terms appearing in Equation (79) can all be computed on the appropriate
cell face using conventional central differencing with the variables appearing in Figure 14.
The procedure for discretizing the v-momentum equation is analogous to the

procedure for the u-momentum equation. The vector form of the v-momentum equation can

be expressed as,
V-(pw)+ V- () +=-V+(s,)=0, (80)
where
c,=a-j=(vV+-§y“-)-§v-u, @1)

and G again represents the viscous stress tensor. This form of the v-momentum is then

integrated over the shaded finite volume shown in Figure 15. Application of the divergence
theorem to this integral results in three surface integrals corresponding to the three terms of
divergence form in Equation (80). These surface integrals are approximated by summations

over the cell faces. This process yields the following discretization equation,

{loup], o] Y 22 e oo Ll o+ (=)
Aol ANl Bl

(82)

The convected quantities are upwinded as was done for the #-momentum equation, so that

the convection terms are computed from:

\'A
N f N Yy i
n AYj

. "X
S
S 1 Vg
—
Axi
w w e E

Figure 15. Finite volume stencil used to discretize compressible flow v-momentum
equation.

[(pu)] = v,,Max{(pu)‘,O} - vEMax{—(pu)t,O},
[(pu)], = —v,,Max{—(pu)w,O} + v M ax{(pu)w,O},
[(Pv)v], = VPMax{(Pv),.’O} = vyM. ax{—(pv);.’0}’ and
[(ov)v]. = -vPMax{-(pv)‘,O} +vsM, ax{(pv)x,O};

where

(pu)‘ - (PPAxm + peAx;](U Ay, +u,Ay; }

Ax; + Ax;, Ay ;+ Ay -1
(pu) - pPAxi-l + pWAxi uvay i-1 + u-mAy j
ot Ax, + Ax;_, Ay; + Ay i1

(o), =p(222, and (o), =p, (252}

62

(83)

84)

63

and

(anAy i1 PeY; J

Pr=
£ Ay; +Ay;, .
Ay, , +p.Ay;
pp= pn y]—l px y, A and (85)
Ay; + Ay,
- PuwlY; +p.wAY;
Ay; +Ay;,

The pressure terms in Equation (82) are evaluated using the equation of state as follows,

T T
p.=E2 and p,=Pcs. (86)

o () 2w
(o, - J)n_(z ayl 3(=+ ay),’ and @87

with central differencing being used to approximate the necessary derivatives.

The energy equation can be written as,

V-(puT) "FZZV (VT)+ 7(y ~)M?Zp(V - u)=0. (88)

Note that the first two terms of Equation (88) are of divergence form, while the last is not.
Thus, the divergence theorem may be applied to the first two terms, while the last term
represents a volumetric source that must be integrated over the entire volume. Integration of

Equation (88) over the shaded region shown in Figure 16 then yields the following discrete

equation,
(o), B Yo, + o], bl
HEEPAE G -
+y(y— l)szp(= ay) AxAy; =
N P T
n y
Pw’;rw Ay,
S

W w ! e E

Figure 16. Finite volume stencil used to discretize compressible flow energy equation.

65

The convected quantities (pT') are again upwinded, so that the convection terms are

computed from:

[u(eT)), = (pT), Max{u,,0} - (pT) Max{~u,.0},
[u(pT)], =~(pT), Max{-u,,0}+(pT),, Max{u,.0},

o)), = (oT), Max{s, 0}~ (oT), Max{-»,,0}, and 0

[W(eT)], = —~(pT), Max{-v,,0}+(pT); Max{v,,0}.

The pressure in Equation (89) is evaluated using the equation of state,
pp=2le 91)

while central differencing is used to approximate the necessary velocity and temperature

derivatives appearing in Equation (89).
2.2.3. Backward Facihg Step Model Problem

The model problem described here is compressible flow past a backward facing step.

The model problem geometry is shown in Figure 17. The velocity scale used in the
nondimensionalization in Equation (31) is defined as the uniform inlet velocity, while the
length scale is defined as the step height. Note that all rigid walls are assumed to have zero
velocity and are adiabatic. The Mach number that appears in Equation (67) and Equation
(30) is defined with respect to the inlet vqlocity and temperature conditions,

Y =, 92)
T,

M. =

where R is the gas constant of the fluid. At the inlet, the principle (along the channel)
velocity and temperature are assumed uniform, while the transverse velocity (across the
channel) and the density gradient are set to zero. At the outlet, the pressure is fixed at its
reference value, which is determined by evaluating Equation (30) at the reference density and

temperature, i.e.,

p=(”:‘52)‘ =—']:_.2-s (93)

while the following fully developed, zero gradient conditions are enforced,

=2 =—=0. (94)

/

Note that density at the outlet is defined via the equation of state in Equation (67), which

relates density to the pressure and temperature at the outlet.

y
v=T=1 | J_l t § i
u=dp/dy =0) EFixedp
—— 11,v=(), adiabatic E zero gradient
Y i
]
| -l
Xy 10 ™1

Figure 17. Schematic of compressible, backward facing step model problem. .

67

CHAPTER 3

NUMERICAL SOLUTION ALGORITHM

The finite volume discretization of the governing equations described in the previous
chapter results in a system of nonlinear discrete algebraic equations that must be solved for ’
the primitive variable unknowns. This chapter describes the use of a fully coupled solution
algorithm to solve these nonlinear systems. The foundation of the nonlinear solution
algorithm is the use qf Newton's method to linearize the nonlinear algebraic equations. The
resulting linear syétem of equations are in turn solved on each Newton step using
preconditioned Krylov subspace based iterative methods. Use of iterative techniques with
Newton's method is often referred to as inexact Newton's method because the linear systems
arising on each step are typically not solved exactly on each iteration. Additionally, several
algorithm enhancements are used to improve overall algorithm robustness and to simplify
algorithm implementation. The robustness enhancements techniques include adaptive
damping of the Newton updates, mesh sequencing to enlarge the radius of convergence,
pseudo-transient relaxation, and simple continuation techniques. The large, complex
Jacobian matrices that arise on each Newton step are evaluated numerically in order to
simplify implementation. These features of the solution algorithm are discussed in more

detail in the subsections that follow.

68

3.1. NEWTON'S METHOD AND ALGORITHM PERFORMANCE
ENHANCEMENT TECHNIQUES

Newton's method is a powerful technique for solving systems of nonlinear equations

of the form,

F(X) =[£, (%), (0,0, [y)] =0, (95)

where N is the dimension of the system (number of unknowns) and the state variable vector,

X , can be expressed as,

x =[x, %0ty] - (96)

Newton's method is derived from a first order Taylor's series expansion of F(x™*') about the
approximate solution x", where n is the Newton iteration number. This approximation can

be expressed as,

oF ox" = F(x")+ J"6x". (975

F(x™) = F") + =

The goal of Newton's method is to pick the solution update, 6x", in order to drive F(x™!) to
zero. Thus, application of Newton's method requires the solution of the linear system given

by,

Jox" =-F(x"), (98)

69

where the elements of the Jacobian matrix, J", are defined by,

Sama

Jrow.coL = 5;1 ’ 99

and the new solution approximation is obtained from,
x™ =x"+5.6x". (100)

The scalar, s, which lies between zero and one, is used to damp the update. The damping
strategy is discussed further in Section 3.1.2. This iteration is continued until the norm of
Sx" and the norm of F(x") are below some suitable tolerance level. Note that this Newton
iteration is often referred to in this work as the outer iteration, while the Krylov iteration
(described in Section 3.2.1) used to solve Equation (98) is referred to as the inner iteration.
The convergence criteria for the outer Newton iteration is based upon a relative update

defined by

RO = Max [ox21

*all m[Max{lx;I,l}:l’

(101)

where the superscript on R? refers to the outer Newton iteration and the subscript indicates

the dependence on the Newton iteration. Convergence is then assumed when

R <1x10° and [F(x™)|_ <1x10°%. (102)

The first criteria requires six digits of Accuracy when the magnitude of the state variable is

greater than one, and six decimal places of accuracy are required when the magnitude of the

70

state variable is less than one. The second criteria simply requires the maximum steady state
residual to be less than 1x107°.

The state variable vector is defined in terms of the variables of the problem. For
incompressible flow the primitive variables are u, v, p, and T. For compressible flow, p is
replaced by p. A natural ordering of these variables is assumed, which means that the
primitive variables are numbered sequentially within a finite volume before moving to the

next finite volume. In this manner, the state variable is defined for incompressible flow as,
T
X= [ul’vl’pl’Tl’"’7uINW’leUM’pINUM’TINW""’uNC’vNC’pNC’TNC] ’ (103)

while for compressible flow it becomes,
T
X= [ul'vl'pl’Tl"“’uINW’leW’meM’TINUM’“"uNC’vNC’pNC’TNC]) (104)

where the subscript now refers to the finite volume cell number (/NUM) and NC is the total
number of finite volume cells. Note that the total number of unknowns, N, equals NC times
the number of variables/equations per cell, NEQ, which in thi; case is four. The cell number,
INUM, and the equation number, JEQ, of interest then determine the row number of the

Jacobian used in Equation (99), i.e.,

ROW = IEQ +(INUM -1)- NEQ. (105)

The column number of the Jacobian element depends on the state variable dependency of
interest. For example, assume the dependency is with respect to variable number JEQD in

cell INUMD. The column number in Equation (99) is then determined from the offset or
distance between the equation number (JEQ) in the current cell NUM) [fz,y in Equation

71

(99)] and the variable number (/EQD) in the dependent cell NUMD) [x;,, in Equation
99, ie.,

COL = ROW +(IEQD — IEQ) + (INUMD — INUM)- NEQ. (106)
The state variable vector can also be expressed in terms of the grid indices if one

knows how the finite volume cells are ordered, i.e., the grid dependence of INUM. Assume a
finite volume cell w1t1un the grid is defined by an (i, j)location, where i is the cell number in
the x-direction and j is the cell number in the y-direction. Assume for simplicity that row-
ordering is used to number the finite volume cells. This ordering starts numbering with cell

(1,1) and finishes numbering with cell (nx,ny) with i the fastest running index and nx and ny

denoting the maximum number of cells in the x-direction and y-direction, respectively, i.e.,

INUMG, j)=i+(j— 1) - NEQ (see Section 3.2.3.2). These assumptions enable the state

vector to be expressed in terms of the grid indices as follows,

T
X= [ul.l’vl.l’pl.l’Tl.l’u2.l’v2,l’p2.l’TZ,I""’un.x.xy’vnx.ny’pn:.ay’Tnx,ny] (107)

for incompressible flow, and

T
X= [ul.l’vl.l’pl.l’Tl.l’u2,l’v2.l’p2,l ’TZ.I""’uux.ny’vu.ny’pnx,ny’Tuz,ny] (108)

for compressible flow.
The vector, F(x), represents the nonlinear, discrete algebraic equations resulting from
the finite volume discretization of either the incompressible or the compressible flow

governing equations. Each component of F(x) is aligned with a component of the state

72

vector, x. In this work, the x-component of the momentum equation, which can be denoted
as fvmemm is aligned with u; while the y-component of the momenfum equation,
fromomensm is aligned with v. For incompressible flow, the continuity equation, f conindly is
aligned with pressure, p, while for compressible flow this equation is aligned with density, p.
Note that if the discrete pressure equation is solved in the case of incompressible flow, then
this equation replaces f conindty - Finally, the energy equation, ¥, is aligned with
temperature. For example, the state variable component, ¥, ;, is aligned with the row in the

Jacobian matrix associated with the x-component of the momentum equation discretized over

the finite volume cell (i, j), i.e.; }f;"‘""““""‘. With this notation the vector F(x) can be

expressed as,

F(x) = frmomnen, fromonesom prosiniy ooy puevanarom, r-monaren, peonindy, powr] (109)
corresponding to the state variable vector defined by Equation (107) or Equation (108). This
choice for the alignment of equations and variables on a structured grid results in a Jacobian
matrix with a sparse banded structure that can be easily exploited using non-zero diagonal
type storage schemes and sparse iterative linear equation solvers.

The alignment of discrete equations and variables described above is a natural choice,
but note that other alignments are possible. This possibility arises because the equations and
variables are solved in a fully coupled fashion. For example, Vanka and Leaf [29]
investigated aligning the incompressible continuity equation with the y-component of
velocity, v, and the y-component of momentum with pressure, p. This choice eliminated the
need for pivoting in the direct solve of Equation (98). The disadvantage in this approach,

however, is that the banded structure of the matrix is altered and enforcement of boundary

73

conditions can be more difficult. For these reasons, the simpler alignment choice described
above is employed in this study. .

The advantages of using fully coupled Newton's method include the ability to solve
the equations in a fully coupled fashion, and the characteristic quadratic convergence
exhibited by Newton's method [see 66]. The latter convergence feature distinguishes
Newton's method from other nonlinear solution techniques and makes it a very powerful
method. This convergence property implies that the error from one iteration to the next is
reduced quadratically as the true solution is approached, resulting in very rapid convergence.

The disadvantages in using Newton's method include [see 66]: the memory/CPU cost
and difficulty associated with forming the Jacobian matrices on each Newton step, the
relatively small radius of convergence of the method, and the possibility of very poorly
conditioned Jacobians arising on a given Newton step that will make solution of Equation
(98) very difficult. The quasi-Newton techniques described in the following subsections are
attempts to address and circumvent some of these disadvantages. The high memory cost

disadvantage is addressed in Section 3.2.

3.1.1. Numerical Jacobian Evaluation

The elements of the Jacobian in Equation (99) are evaluated numerically using finite

difference approximations,

7 _ Ffrow _ fRaw(xvxzv"’xcoz. + Axcoz.s--»xu) — Frow (xvxzv"vxn) (110)
roW.coL = 5 = Ax _ ,
coL coL

where

74

AXCOL=M'XCOL+bb, ’ 4 : (111)

and aa and bb are small perturbation constants that are on the order of the square root of
computer round-off [23, 32, 40, 66, 80, 114].

The advantages of using numerically evaluated Jacobians are simplicity and
flexibility. Analytic Jacobian evaluations are feasible for simple systems and can be
computed either by hand or by using symbolic manipulation packages. However, these
techniques become cumbersome in the case of complicated physical systems or in situations
where the physics of the problem or the discretization scheme may be frequently modified.

An algorithm is used in this study that maintains the flexibility of a standard
numerical Jacobian, but requires a minimum number of function evaluations [23]. The
energy equation is selected here to demonstrate the application of this numerical Jacobian
algorithm. In this case, derivatives of f““* with respect to its state variable dependencies
are of interest. Consider the typical finite volume stencil shown in Figure 18 centered about
cell (i, /). Shown in this figure are the state variable dependencies for f““®. This equation
can be expressed in terms its nine state variable dependencies as,

anergy __ penergy
i-j - ioi (Tinj_l ?

T ot jsY; Ti.j'uz’+l.j’Ti+l,j’vi.j+l’Ti,j+l)' (112)

(WA RE N A

In this example, JEQ =4, NEQ = 4, and the cell number is determined from the function,
INUM(, j). Consequently, derivatives of Equation (112) with respect to the indicated

variable dependencies compute Jacobian elements on the row number given by,

ROW =4 +(INUM(, j)—1)-4 (113)

JRGW .COL

Thus, the derivative of

Tijer
Vij1
|
s T;. T. ,.:
-1j l{ ltIJ
u;j () Uirlj
Vi
!
Tija

mmy (

8 with respect to v,

i-1,j? z/’ ij?

]’ i+] j’Tx+l/’ i, j+1 +A i,j+1?

Figure 18. Finite volume stencil for energy equation centered about grid cell (i,)).

from Equation (105), while the column number is dependent upon the state variable. For

COL = ROW —2+[INUM(, j +1)~ INUMG,)]- 4.

V; ju1 computes Jpop cor, 35,

Ay; SRR

75

example, consider the second to last state variable dependency, v, ;,,. In this case, JEQD = 2

and INUMD = INUM(i, j +1). The column number is determined from Equation (106) as,

(114)

(115)

76

where Av, ;,, =aa-v, ;,, +bb and the row and column numbers are given by Equation (113)

and Equation (114), respectively. Derivatives with respect to the remaining state variable

dependencies are computed in an analogous fashion. Computation of the remaining three

rows of the Jacobian for cell (i, j) corresponding to f;; . fi] ,and f{7°% are

identical to the process described for f{7™. However, the finite volume stencil or state

variable dependencies are, of course, different for each equation.

3.1.2. Adaptive Damping Strategy

The damping strategy used to scale the update in Equation (100) is designed to
prevent the calculation of negative thermodynamic variables, and to scale large variable
updates when the solution is far from the true solution [40, 44]. The damping strategy
restricts changes in the thermodynamic variables of interest to be less than a specified
percentage, o, where 0 < & <1. Note that more sophisticated scaling options are available
[see 25, 66, 70]. However, this simple scaling choice seems to work well in practice and it
requires little additional computational cost. Damping is especially important when a good
initial guess for the true solution is not available. In these situations, large updates may arise
that could lead to divergence. Damping is then effective in scaling the updates and
preventing divergence. Typically, the thermodynamic variables are not allowed to change by
more than say 20-25% on a given Newton step (i.e., & =0.2-0.25).

In the case of incompressible flow, this damping constant is based upon temperature
only. This choice follows from the fact that pressure in incompressible flow is really only
determined up to an additive constant. Pressure only appears in the governing equations in

the form of a gradient, which means that derivatives of pressure are the important quantities

77

not the magnitude of pressure itself. Consequently, pressure was neglected from the

definition of s. Therefore, the damping parameter is determined from,
. Min | oT;;
s=Min{1 - ~ (116)
] II s ’
{ all i](IAT"JI)}

when damping is activated, otherwise s =1.
In the case of compressible flow, the scale factor is determined from the following

expression that uses both temperature and density,
. Min | @p,; oT;;
s =Min{1, A e R vl 117
{ all i, J[I.Api.il IATi.i }} (117)

when damping is employed, otherwise 5= 1.
The scaling strategy reflected by Equation (116) and Equation (117) is adaptive in the
sense that as the true solution is approached and the variable updates become small, s will be

set equal to one.
3.1.3. Mesh Sequencing

Mesh sequencing is one technique for improving the overall convergence of Newton's
method [see 23, 33]. The technique consists of initially solving the problem on a coarse
mesh and then interpolating through a series of pre-defined meshes, solving the problem on
each mesh, until the desired mesh refinement is obtained. The radius of convergence of the
Newton algorithm typically decreases as the number of unknowns increases [3, 66] making a

good initial guess very important on the finer grids. The goal of mesh sequencing is then to

78

produce an initial guess on the final grid that lies within the radius of convergence. The
advantage in this approach is that the coarse grid iterations are typicain much less expensive
than the fine grid calculations. Consequently, the savings produced by a better initial guess
on the fine grid often far outweigh the cost of the coarse grid computations. Difficulties
arise, however, if the initial grid is too coarse to resolve the important features of the flow. In
those situations, there may be little benefit in using the interpolated coarse grid solution as an
initial guess.

In this implementation, the Lagrange form of the interpolating polynomials [see 115]
are used to interpolate a coarse grid solution up to a finer grid. In one dimension these

interpolating polynomials are defined by,

= (x-x,)
D, . (x)= I I——, 118
=) k=l, (%-x) 4

where (m—1) is the order of the interpolant, ®,, ;(x), passing through the m interpolation
points given by x;, i =1,...,m. Note that within this context, x refers to a spatial dimension
and is not in any way associated with the state variable. One advantage of the Lagrange form
of the interpolating polynomials is that the interpolation points need not be evenly spaced,
enabling application to non-uniform grids. Additionally, the polynomials exhibit the
following property,

d’n;(xk)={(1),’ hatd a9

which forces the interpolant to assume the nodal values of the function when evaluated at the

node points. Thus, the one-dimensional interpolation of a general function, «, takes the form,

79

u(x)=2u,<l>w(x), (120)

i=1

where u; represents the value of the function at x;.

Two dimensional interpolation is handled by inierpolating in the two dimensions

independently. Thus, one can define a second interpolant for the y-direction denoted as
¥,.; (), which passes through the m interpolation points y;, j=1 to m,ie.,

(=)
¥ 121
,.,,(y> kl_.ll(y, .t (121)
knj
with
¥, 00 = {0, £z (122)

Interpolation of the two-dimensional function, , to the point (X,y) then uses the (mxm)
interpolation points (x;,y;), where i =1,...,m and j=1,...,m. Here, this interpolation is
accomplished using two steps. First, « is interpolated to the desired y-location, ¥, at each of

the x; locations, i.e.,

U, F) = 3t ¥, (), i, (123)

j=l

Next, u is interpolated to the point (%,¥) using the m interpolation points computed in step

one, i.e., (x;,¥) where i =1,...,m. The final step can be written as

80

u(x,y) = iu(x,., y)- @, (%). (124)

i=l

These two steps are used to interpolate each of the dependent variables (i.e., ¥, v,p, Tor u, v,
p, T) from a coarse grid solution onto a finer grid.

Typically, a series of two or more grids are employed, where the finer mesh is
generated from the previous coarse grid by dividing each computational cell into four new
cells. However, since the Lagrangian interpolation process described above is sufficiently

general, the finer grid need not be dependent upon the coarse mesh.
3.1.4. Pseudo-Transient Relaxation

An alternative method for improving the initial guess supplied to Newton's method is
the use of pseudo-transient relaxation [see 34, 76, and 116]. This technique can be
implemented using both fixed time steps and variable time steps, controlled via an expression
similar to that used by the switched evolution relaxation algorithm (SER) [116]. This
technique involvesNadding artificial transient terms to the main diagonal of the Jacobian
matrix, specifically terms corresponding to time derivatives of the principal variables.

Consequently, when this technique is used, Equation (98) is replaced by,

(A‘t,“ + J")ax" =-F(x"). (125)

where V is a diagonal matrix whose entries are the volumes of the computational cell

corresponding to that equation row. Ar" must be chosen sufficiently small to ensure

81

convergence yet large enough to obtain efficient steady state calculations. Within the SER

algorithm, Az" is chosen adaptively as follows,

. HFGO, AL
A= Ee L

(126)
where the vector F(x) represents the residuals of the steady state equations. The initial time
step, Ar° is a user specified starting time step, usually selected near the explicit convective
and/or diffusive stability limits. The time step is further controlled by the scaling parameter,
7, which typically is taken to be 10. Equation (126) forces At” to be small when the transient
is far from steady state, but allows it to increase rapidly as steady state is approached. This
pseudo-transient technique can be combined with mesh sequencing or it can be used

indepéndently, thereby possibly avoiding computations on the coarse grids.
3.1.5. Parameter Continuation

A technique that is useful for obtaining difficult solutions is parameter continuation.
Oftentimes solutions are very sensitive to certain flow parameters such as Reynolds number,
Grashof number, Mach number, etc.... Thus, it may be more efficient to gradually vary these
parameters in moving from one converged solution to another converged solution. Thus,
several intermediate solutions may be obtained before the reaching the final desired solution.
This technique can also be used with the aforementioned convergence enhancement

techniques.

82

3.1.6. Defect Correction

The accuracy of a numerical solution is always important. Consequently, much
attention has been devoted to the construction of higher-order accurate finite volume
discretization schemes [for example see 14 and 107]. Use of these schemes is warranted in
situations where high accuracy is desired or required and the physical model is well
understood (i.e., governing equations, transport coefficients, etc...). In some instances, a
lower order discretization scheme introduces too much artificial diffusion, thereby smearing
and corrupting the true solution. On the other hand, the use of higher-order schemes is
relatively expensive, both in terms of memory requirements and CPU time, due to larger
finite volume stencils and adverse effects on convergence. Convergence is typically affected
because the higher order approximations lessen the diagonal dominance of the iteration
matrix, which in this study is the Jacobian matrix, thereby making the matrix more ill-
conditioned. This effect can make convergence more difficult by reducing the radius of
convergence of the Newton algorithm, and it can also make solution of the linear systems
given in Equation (98) much more difficult. The latter effect is especially important if an
iterative technique is used to solve these linear systems. Thus, if the numerical analyst is
primarily interested in qualitative effects, has only limited computer resources, or if
significant uncertainties exist with respect to the physical model, a lower order
approximation may suffice.

However, situations do arise where higher-order accurate solutions are required, but
computer memory limitations or convergence difficulties require a different computational
approach. One procedure for maintaining higher order accurate solutions in these situations
is based upon a simple defect correction method [11, 76, 77, 78, 107, 117, 118]. The basic
idea is to evaluate the coefficient (or iteration) matrix with a lower order discretization, while

including the higher-order corrections in the right hand side (source terms). Of particular

83

interest in this study is the application of the defect correction technique within the fully
coupled Newton algorithm. In this case, a converged solution can be obtained using a lower
order differencing scheme in forming both the Jacobian matrix and the residuals in Equation
(98). This solution can then be corrected by restarting the algorithm using a higher order
scheme in the evaluation of tﬁe residuals in Equation (98) [14]. Note that this replacement is
made only in the right hand side of Equation (98), and not in the Jacobian. Since the right
hand side of Equation (98) determines the accuracy of the final numerical solution, driving
these residuals to zero guarantees the solution will be of higher-order accuracy. The
drawback with this technique, however, is that the characteristic quadratic convergence
behavior of Newton's method depends upon the correctness of the Jacobian matrix with
respect to the discrete governing equations. Therefore, the price to be paid for increased
accuracy when using the defect correction technique is a loss of quadratic convergence. In
spite of the degraded convergence behavior, defect correction is often very useful in

maintaining higher order accurate solutions.
3.2. NEWTON-KRYLOV METHODS

The main drawback of direct-Newton methods is the large memory required to store
the factored Jacobian matrix. This drawback has been countered with advances in Krylov
subspace based iterative solution algorithms that enable the sparseness of the Jacobian to be
efficiently exploited. Specifically, the development of efﬁcient conjugate gradient-like
algorithms for the solution of nonsymmetric, non-positive definite linear systems [119, 120]
has enabled the implementation of "in memory", multidimensional, fully coupled Newton's
method solutions for the Navier-Stokes and energy equations. Since the use of an iterative
solver does not require the exact solution of the linear systems on each Newton step, the

tolerance of the linear equation solve can be relaxed - when far from the true solution, and

84

tightened as the true solution is appfoached. This feature is commonly referred to as an
"inexact” Newton iteration [121, 122]. The coupling of Newton's method with a Krylov
subspace based iterative technique gives rise to what is tenned a Newton-Krylov algorithm,
which in this study is assumed to be a specific algorithm from the more general class of
"inexact” Newton Methods. Note that Krylov subspace based iterative techniques are
described below and in more detail in the Appendix.

For completeness, it is noted that "out of memory" matrix solvers, such as the frontal
method can also be used to handle large Jacobian matrices that exceed available memory [81,
82]. Only a limited number of matrix entries (contributing to the active 'frontal matrix’) must
be stored in memory yet partial and full pivoting is possible in the frontal matrix. Einset and
Jensen found that despite the advantages of the frontal method, there is a break-even point in
front width above which iterative solutions become more efficient [81]. Their preconditioned
iterative method outperformed the frontal method in their tests when the frontal width
exceeded approximately 500. These results as well as those of other researchers [49] have
encouraged the work in this dissertation to focus on the performance of "in memory" Krylov
subspace based iterative algorithms.

Besides memory considerations, an advantage in coupling an iterative linear equation
" solver with Newton's method is that the linear system can be solved less accurately during the
initial Newton iterations when far from the true solution, and more accurately as the true
solution is approached. This is in contrast to the use of a direct solver, which requires the
same amount of work whether one is close to the true solution or not. In this study this
behavior is implemented via an inner iteration convergence criteria similar to that proposed
by Averick and Ortega [121] and Dembo [122]. Specifically, the inner iteration is assumed

converged when,

85

R = nJ~ox" + F(x")ll,
‘ HF(x™)l,

<g", (127)

where the subscript on the convergence parameter, R}, denotes the inner iteration, and the
superscript, in all cases, indicates the dependence on the Newton iteration. Note that
Equation (127) represents the ratio of the L,-norm of the residual of the linear system
expressed by Equation (98) and the L,-norm of the residual of the outer Newton iteration.
Thus, when the outer Newton residual is large, which normally occurs during the initial
stages of the calculation, the inner iteration convergence criteria is less restrictive. In
contrast, as the Newton residual norm becomes small, the inner iteration convergence criteria
becomes more restrictive, which enables superlinear convergence during the later stages of
the calculation. The selection of the best value of the tolerance, £", is a highly empirical
process. In Chapter 4, two options for setting £" are investigated. The first istoset £"toa
constant value and the second is to let £" vary on each Newton iteration in a prescribed

manner [67].
3.2.1. Krylov Subspace Based Iterative Methods

Equation (98) requires solution of large linear systems of dimension N on each
Newton step. Direct solution techniques often become impractical for large linear systems
because of high memory and CPU cost. An alternative in these situations is the use of
iterative techniques that can exploit the sparse structure of the Jacobian mawrix. Krylov
subspace based methods are powerful iterative techniques for solving these types of linear

systems. These methods compute new approximations to the solution, denoted as ox;, from

the affine (translated) subspace defined by

86

&%)+ K, (ro,d), (128)

where the Krylov subspace of dimension k is defined by
K, (rosJ) = 5pan(r,Jr o, JrgseeesJ*7'ry), (129)

and r, is the initial residual of the linear system determined from the initial solution guess,
Oxg, 1.e., Iy = (—F(x"))— Joxj. Recall that the superscript, n, refers to the Newton iteration
number, whereas the subscript (k or 0) refers to the inner iteration number.

There are some excellent references discussing Krylov subspace based methods.
Some of the more recent discussions are given in References 71, 80, 119, 123, 124, 125, and
126. Some earlier, but still extremely valuable, review articles are found in References 127,
128, 129, 130; and 131. A very interesting annotated, historical bibliography of the
conjugate gradient and Lanczos methods is presented in Reference 132. Information from
these sources and others are compiled in the overview of Krylov subspace based methods
presented in the Appendix. Consequently, only a brief discussion of these methods is
presented here. Listings of the various algorithms that are used in this work are contained in
the Appqndix. Additionally, the Appendix also explains the different perspectives from
which these algorithms are derived.

The classical conjugate gradient (CCG) method of Hestenes and Stiefel [133] is
probably the best known Krylov subspace based method. Interestingly enough, this
algorithm was originally derived as a direct method. Its full potential as an iterative '
technique was not realized until Reid revived it in 1971 [134], and latter Concus in 1976
[135]. However, the idea of using the CCG algorithm as a direct method illustrates an
important property of many Krylov subspace baséd algorithms not shared by other iterative

87

techniques, namely a finite termination property. Thus, with exact precision mathematics the
CCG method is guaranteed to converge within N i&mﬁons, but satisfactory convergence is
likely for much less than N iterations. The CCG algorithm also does not require iteration
parameter estimation to improve performance, unlike successive over relaxation (SOR),
many alternating direction implicit (ADI) schemes, and Chebychev iteration. Also, the CCG
algorithm typically converges more rapidly than typical matrix-splitting iterative schemes
such as Jacobi and Gauss-Seidel iteration. CCG is optimal in the sense that the residual norm
is minimized on each iteration and that new search directions are computed with economical
vector recurrences so that work and storage requirements per iteration are small. In fact,
these latter two properties define a "true" conjugate gradient method. However, the difficulty
associated with the CCG algorithm is that it is applicable only to symmetric, positive definite
matrices. As a result, considerable research has been devoted to generalizations of the
conjugate gradient method to more general systems.

" The two main options for generalization of the CCG ideas to nonsymmetric linear

systems are the following:

1. Application of the CCG algorithm to the normal equations.
2. Development of conjugate gradient-like algorithms.

The normal equations option can be applied in two different ways. First, is the
application of the CCG algorithm to systems of the form, J T§6x = —-J F(x), which resuits in
what is referred to as the CGNR algorithm [133]. The capital ‘N’ refers to the normal
equations and the capital 'R’ indicates that the residual norm is minimized over the Krylov
subspace. Secondly, one can apply the CCG algorithm to systems of the form,

1)y =-F(x), where ox=J"y. This latter choice is referred to as the CGNE algorithm

[136]. In this case the capital 'E' indicates that the norm of the errbr is minimized over the

88

Krylov subspace. The disadvantage of the normal equation approach is that the condition
number of the new system is squared, which can lead to very slow convergence in some
instances. Additionally, working with the matrix transpose is often undesirable because it
maiccs sparse storage and parallel/vector implementations more difficult, and because it
prohibits‘use of finite difference projection techniques to approximate matrix-vector products
within inexact Newton iterations [67], as discussed in Section 3.2.4. These reasons have
recently made the use of conjugate gradient-like algorithms a more attractive option.

Conjugate gradient-like algorithms are derived by relaxing either or both of the
properties that define a "true" conjugate gradient method, namely optimality and economical
vector recurrences. Some of the more popular and more recent transpose-free conjugate
gradient-like algorithms that are used in this work include: the generalized minimal residual
algorithm (GMRES) [4], the conjugate gradient squared algorithm (CGS) [5], the Bi-
CGSTAB algorithm [6], and the transpose-free quasi-minimal residual algorithm (TFQMR)
[7]. Note that the first algorithm is based upon the Arnoldi process [137], while the other
algorithms are based upon the nonsymmetric Lanczos process [138].

The Arnoldi-based GMRES algorithm [4] was derived so as to maintain optimality,
but at the expense of economical vector recurrences. Consequently, the work and storage
requirements of GMRES increase with the iteration count. Therefore, practical
implementations frequently require use of the restarted version, GMRES(m), where m is the
maximum dimension of the Krylov subspace. The restarted algorithm is then only optimal
within a cycle, and so frequent restarts can lead to slow convergence or even algorithm stall.

In contrast, the Lanczos-based algorithms were derived so as to maintain economical
recurrences, but at the expense of optimality. Additionally, the nonsymmetric Lanczos
process itself is susceptible to breakdowr;s, making algorithms derived based upon this
process also susceptible to breakdown. CGS was the first transpose-free algorithm of this
type developed [5]. It was derived by squaring the polynomial relations of the bi-conjugate

89

gradients (BCG) algorithm [138, 139]. CGS can exhibit very rapid convergence compared to
BCG, but its convergence is marred by sometimes very wild oscillations, which under certain
conditions can lead to inaccurate solutions [6]. This difficulty led to the development of both
Bi-CGSTAB [6], which uses local steepest descent steps, and TFQMR [7], which uses the
quasi-minimization idea, to obtain more smoothly convergent CGS-like solutions.

In this investigation each of the transpose-free conjugate gradient-like algorithms
mentioned above are coupled with Newton's method to yield a particular Newton-Krylov
algorithm. These different Newton-Krylov algorithms will be referred to as Newton-CGS,
Newton-BCGSTAB, Newton-TFQMR, and Newton-GMRES(k), respectively. Additionally,
if a direct solution technique such as Gaussian elimination is used to.solve Equation 98),

then this algorithm is referred to as direct-Newton.
3.2.2. Sparse Matrix Storage Scheme

The previous section indicated that an ifnportant advantage in the use of Krylov
subspace based iterative methods is the ability to exploit the sparse structure of the Jacobian
matrix. Chapter 2 indicated that the Jacobian matrix possesses a banded structure. This
structure results from the natural ordering of variables (uvpT or 'uvpT’), and the finite
volume discretization stencil employed. A simple scheme for exploiting this non-zero
sparsity pattern is to only store matrix bands or diagonals that contain non-zero matrix
components. Thus, matrix bands or diagonals with only zero components are not stored.
This storage scheme can be implemented using an array to store the non-zero matrix
diagonals [see 140]. Let this array be denoted as A(N,ndiag), where the leading dimension
is the total number of unknowns, defined as NC - NEQ , and the second dimension is the total
number of non-zero diagonals. Note that the total number of non-zero diagonals is a function

of the number of equations and variables, NEQ, the ordering of the variables and equations

within a finite volume cell, the ordering of the finite volume cells, and the coupling between
the variables and equations within the finite volume stencil. Also needed is an integer logic
vector to store the offsets of these non-zero diagonals with respect to the main diagonal,
denoted here by idiag(ndiag). The main diagonal is assigned the index mdiag, and
idiag(mdiag) = 0. By choice, all indices less than mdiag correspond to sub-diagonals (i.e.,
idiag(m) <0, m < mdiag), while all indices greater than mdiag correspond to super-
diagonals (i.e., idiag(m) >0, m > mdiag). In this manner, the entries in the logic vector are
arranged in ascending order for 1< m < ndiag. This integer logic vector is computed in a
preprocessing step. In converting the Jacobian matrix to the sparse storage scheme, row
indices are preserved while column indices are related to the ROW and non-zero diagonal

indices by,

COL = ROW + idiag(m). (130)

Thus, the elements of the sparse Jacobian array are related to the elements of the original
Jacobian matrix by the algorithm expressed in Equation (131).
Do 10 ROW =1,N
Do 20 m=1,ndiag
COL = ROW +idiag(m) 131)
AROW,m) = Jpow coL

20 Continue
10 Continue

Tests must be included inside the loops of Equation (131) to ensure that 1< COL < N. If this
condition is not satisfied then A(ROW,m)=0. Also note that the original Jacobian matrix is
never stored. As the elements of the Jacobian are computed they are immediately stored in

the sparse Jacobian array.

91

The Jacobian matrix is needed within the Newton-Krylov solution algorithm to
generate a preconditioning matrix and to compute Jacobian-vector products. The effect of
this sparse matrix storage scheme with respect to preconditioning is discussed in the next
section, while Jacobian-vector products can be computed in a straightforward manner using
an algorithm of the form shown in Equation (132) [see 140].

Do 10 m=1,ndiag
ILIM1= Max(1,1-idiag(m))
ILIM2 = Min(N,N —idiag(m))
JCOL = IROVW + idiag(m)
y(IROW) = y(IROW) + A(IROW,m) * b(JCOL)

20 Continue
10 Continue

One disadvantage in using a sparse storage scheme of this type is that some zero
entries are still necessarily stored: These zero entries arise from two different sources. The
first source corresponds to ROW and idiag(m) combinations for which the condition,
1<COL<N,is not satisfied. This situation arises because all diagonals in the original
Jacobian matrix, except the main diagonal, have fewer than N entries, but the sparse storage
array assumes that all have N entries. The second source follows from the fact that on each
row of the Jacobian, the same number of entries are stored, with this number being equal to
the total number of non-zero diagonals, ndiag. Since this number must account for all the
possible coupling between all variables and all equations, it is a conservative value that
represents the maximum possible number of non-zero entries that could occur on a given row
of the Jacobian. Although some rows of the Jacobian possess fewer non-zero entries than
ndiag, the non-zero diagonal storage scheme used here still requires storage of ndiag entries.
More compact storage schemes such as compressed row storage (CRS), compressed column

storage (CCS), and others [see 140] do exist that would eliminate this unnecessary storage of

92

zero elements. However, this additional, unnecessary storage is typically very small
compared to the large storage reduction obtained using the diagonal storage scheme.-
Additionally, these other storage schemes are necessarily more general and somewhat more
complicated than the simple diagonal storage scheme considered here. Consequently,
consideration of other more efficient yet more complicated storage schemes was not deemed

important for this investigation.
3.2.3. Preconditioning

An important issue with regard to the efficient implementation of conjugate gradient-
like algorithms is preconditioning. Preconditioning is a classical way to improve the
performance of these iterative techniques. The equivalent right preconditioned form of

Equation (98) is expressed by,
J'P; P 6x" =—F(x"). (133)

The goal of preconditioning, as its name implies, is to improve the condition number of the
new equivalent system. Inthe L, —norm, the condition number is defined as the ratio of the
largest eigenvalue to the smallest eigenvalue [126]. Thus, it is hoped that the matrix, J "P7,
has a lower condition number than J*. In order for this to occur, the preconditiqning matrix
must reasonably approximate J*. In fact, the ideal preconditioner is the matrix itself, since
then J"P7 =1, where I is the identity matrix. The eigenvalues of J "P; then equal one and
so the condition number of this new system matrix is also one. Implementation of right
preconditioning within a Krylov iterative algorithm, typically consists of replacing J” with
J"P; and 6x" with P, 6x". Thus, it is also very important that systems of the form

P,w =2z, where w and z are general vectors, can be inverted easily, since these types of

93

systems arise frequently within the Krylov iteration. Note that the norm of the residual of the

right preconditioned linear system is given by,

Il =](~Fx") - IPP,5x" , (134)

=|(-F(x*)-J76x"

which is identical to the residual norm obtained without preconditioning.

The equivalent left preconditioned version of Equation (98) can be written as,
P;'J"6x" = -P{F(x"). (135)

Implementation of left preconditioning within a Krylov iterative algorithm, typically consists
of replacing J* with P7\J" and the right hand side vector with —P7 F(x"). The norm of the

residual of the left preconditioned linear system is given by,

Iel=]Pz (-Fexm - 3ox), (136)

which is now dependent upon the inverse of the left preconditioning matrix. Since most
Krylov iterative algorithms generate a residual vector, and base convergence upon the norm
of this vector, it is important to realize that this convergence measure is influenced by the left
preconditioning matrix. This issue does not arise when right preconditioning is employed.

Note that both right and left preconditioning can be used simultaneously via,
P;' J'P; P, 6x" = -PF(x"), (137)

although this option is not employed in this study.

94

Some classical preconditioning choices are based upon simple matrix-splitting ideas.
These ideas stem from splitting the Jacobian matrix into separate lower diagonal, main
diagonal, and upper diagonal parts, which when summed together equal the original matrix,

ie.,
J=L+D+U. (138)

Recall that a Jacobi iteration [63] for solving Jéx =b [b=—F(x)], where the superscripts

have been dropped for clarity, can be expressed as,

Déx,,, =b —(L+U),. (139)

Jacobi type preconditioning is then based upon this simple Jacobi iteration scheme and
therefore assumes that the preconditioner, P (which could be applied from the left or the
right), is given by the Jacobi iteration matrix, namely P=D. Note that since P is simply a
diagonal, matrix systems of the form Pw =z are easily inverted. However, the effectiveness
of Jacobi preconditioning, like Jacobi iteration, is strongly tied to the diagonal dominance of
J. For completeness, additional preconditioner choices derived from other matrix splitting

based iterative techniques [see 63, 141] include:

fa—y
.

Gauss-Seidel (GS) based preconditioning, P = (L +D).
2. Symmetric Gauss-Seidel (SGS) based preconditioning, P= (L + D)D(D+U).
3. Successive-Over-Relaxation (SOR) based preconditioning, P = [L + (llw)D] , where

o is the SOR-based weighting parameter.
4. Symmetric Successive-Over-Relaxation (SSOR) based preconditioning,

p=—2 (L+—1—D)D“’(-1—D+U).
o o _

2-w

95

Note that in each of the above examples, systems of the form Pw =z can be solved simply
using forward elimination, backward substitution, and simple inversion of a diagonal matrix.
Although, these preconditioner options are simple in form and inexpensive with respect to
memory and CPU cost, their effectiveness (like Jacobi preconditioning) is tied to the
diagonal dominance of J. Consequently, these types of preconditioners are not generally

useful for the problems considered here, unless used in conjunction with a pseudo-transient

calculation, which may guarantee the diagonal dominance of the matrix, (A‘t," +J “).

Another technique to improve the effectiveness of these types of preconditioners is to
use block implementations [142] instead of the point implementations described above. In a
block implementation, the matrix is split into a block lower diagonal matrix, a block diagonal
matrix, and a block upper diagonal matrix. Thus, the elements of L, D, and U are no longer
single 'point' numbers, but rather sub-matrices. Block implementations of Jacobi and Gauss-
Seidel type preconditioning based upon domain decomposition are described in Section
3.2.3.3 below.

“There are also other types of preconditioners besides those based upon matrix-spitting
ideas. These include approximate factorization type preconditioning [143] and polynomial
based preconditioning [see 144, 145, 146, 147]. Note that polynomial based preconditioners
were not investigated in this study. However, those of the approximate factorization type
were considered, specifically the Incomplete Lower-Uppef (ILU) factorization family of
preconditioners, which are described in Section 3.2.3.1. Since many of these preconditioners
exhibit sensitivity to cell ordering, several simple ordering schemes are described in Section

3.2.3.2.

96

3.2.3.1. Incomplete Lower-Upper Factorization (ILU) Preconditioning

A very popular class of preconditioners are those of the incomplete lower-upper
(ILU) factorization type [143]. The basic idea is to express the Jacobian matrix as an

approximate factorization of upper and lower matrices, i.e.,
J=LU+E, (140)

where E is an error or remainder matrix associated with the approximate factorization. The
preconditioning matrix, P (which can be applied from the left or right), is then set equal to
the approximate factorization of J, namely LU. As long as the errors associated with this
approximate factorization are small, which means that the terms in E are small, then P
satisfies the requirements of an effective preconditioner outlined previously. Systems of the
form Pw = z are then solved using a simple two-step process, consisting first of a forward
solve and then a backward solve. This preconditioner class followed from the idea of
truncated direct elimination [148]. Note that the popular Strongly Implicit (SIP) iterative
scheme of Stone [62] can be viewed as a form of truncated direct elimination method. In
fact, within this context, P can be used to compute an initial guess for the Krylov iterative
solve [i.e., by setting 6x° =—P~'F(x°)]. However, Meijerink and van der Vorst [143] were
the first to apply this technique within the context of matrix preconditioning.

Specifically, in this work ILU preconditioners with various amounts of fill-in are
considered based on a modified version of the level of fill-in idea of Watts [148]. This idea
assumes that all original terms in the sparsity pattern are set to level-0. In this work, the
original sparsity pattern consists of all original non-zero diagonals of J that are stored in A.
Then, elimination of a level-0 term gives rise to a level-1 fill-in element. In general, the level

of a fill-in term is determined by the sum of the level of the term being eliminated and the

97

level of the term used to perform the elimination. This procedure can be continued up to say
level-m, resulting in a preconditioner denoted by ILU(m). Thus, the ILU(0) preconditioner
assumes the same non-zero sparsity pattern as the Jacobian matrix, while preconditioners of a
higher level contain additional elements outside the original sparsity pattern of the Jacobian.
Another way to view the determination of the different levels of fill-in is described by
Langtangen [46]. In this description, the original sparsity pattern is determined by the set of
non-zero matrix entries denoted by S} = {(ROW,COLY): Jyo cop # 0}, where the subscript
indicates that the sparsity pattern is with respect to the Jacobian matrix and the superscript
indicates level-0 fill-in. Using this notation the sparsity pattern for level-m fill-in can be

determined from level-(m-1) as follows. First, assume that the sparsity pattern for level-(m-1)

is given by S;~'. This requires that the approximate ILU(m-1) factors have sparsity patterns
given by S7~. Next form the product of these L and U factors. In general, this product will
contain non-zero fill-in terms not included in S ;‘" . Adding these non-zero (ROW,COL)
valugs to S;‘" then determines Sy, the sparsity pattern for the level-m preconditioner,
‘ILU(m) [see 46]. A general algorithm for computing ILU factorizations is given in Equation
(141) [see 149].

Do ROW =1,N
Do COL=1,N
If (ROW,COL)e Sy then
Min(ROW.COL)~1
SUMRGW,COL =]J ROW,COL onw.:U:.coz.
2=1
If (ROW=COL) L zow.co. =SUM ROW COL (141)
If (ROW <COL) Ugoycor = SUM,.owcor [Lrow, row
Endif :
End Do

End Do

In this work, the same non-zero diagonal storage scheme described in the previous

section is also used to store the preconditioning matrix, denoted by AM(N, ndiagm), where

98

again the leading dimension is the total number of unknowns while the second dimension is
the total number of non-zero diagonals in the preconditioning matrix (ndiagm 2 ndiag).
Preconditioner fill-in is then derived assuming this non-zero diagonal sparsity pattern. Thus,
if a preconditioner fill-in element does not lie on an original stored non-zero diagonal, then a
new non-zero diagonal must be added to the sparsity pattern in order to accommodate that
fill-in term. As a result, every element in the new non-zero diagonal is computed as a
preconditioner fill-in term. The more compact storage schemes mentioned in the previous
section could be used to avoid this additional fill-in, but in many cases the inclusion of these
additional fill-in terms may actually result in a more effective preconditioner [see 89]. The
new non-zero diagonal offsets are simply appended to the idiag logic vector, while the added
non-zero diagonals are appended to the AM array. In this manner, the diagonals
corresponding to indices between 1 and ndiag represent the original non-zero diagonals,
while indices greater than ndiag represent additional diagonals resulting from fill-in terms.
In terms of the process described by Langtangen [46], the level-0 sparsity pattern for the non-
zero diagonal storage scheme is defined by S:M ={(:N,m): Any AM(1:N,m) # 0}, which
indicates that an entire matrix diagonal is added to the sparsity pattern if a single entry in that
diagonal is non-zero. Determining the sparsity pattern for level-m fill-in from level-(m-1) is
then analogous to the process described above with Sy replaced by Sy,,. Note that no actual
multiplication of L and U is required, only simulated multiplication that generates the
additional non-zero diagonals due to fill-in terms. Thus, the new offsets that must be
appended to idiag are computed in a preprocessing step. This later feature is advantageous
in the sense that the sparsity pattern is known a priori before the calculation begins. This
feature is in contrast to threshold based ILU factorizations [see 140] where fill-in terms are
accepted or rejected according to whether their magnitude is greater than or less than a
specified threshold tolerance, respectively.. Although possibly resulting in a more effective

preconditioner, the threshold based ILU preconditioner sparsity pattern can differ from one

calculation to the next or even from one INewton iteration to the next. Consequently, this
work is concerned only with level of fill-in type ILU preconditioners.

One of the difficulties in solving the primitive variable forms of the incompressible
Navier-Stokes equations is that pressure does not explicitly appear in the continuity equation.
" Thus, if the continuity equation is aligned with pressure then a zero will appear on the main
diagonal in all of the rows in the Jacobian matrix representing the continuity equation. A
similar problem arises whenever a very small (nearly zero) term arises on the main diagonal
in the compressible flow applicatioﬁ. The primary concern in the latter case is that errors
caused by these very small pivot values will induce errors throughout the rest of the
factorization, thereby corrupting the effectiveness of the incomplete factorization as a
preconditioner. This feature renders the efficiency of incomplete factorization schemes of
this type dependent upon the ordering of the unknowns. Thus, the goal is to order the
upknowns such that small pivot values disappear or appear only near the end of the matrix,
thereby restricting the amount of induced errors that can occur.

This difficulty is often completely avoided when using LINPACK type full
factorization routines [17] that use pivoting, but pivoting is typically not practical when
computing incomplete lower upper (ILU) factorizations. Alternatives to pivoting in this case
include adding non-zeros to the diagonal using some sort of penalty function [37, 49, 50, 51],
and realigning the equations and variables to avoid zeros on the main diagonal [30]. In the
case of an iterative solver using ILU preconditioning, fill-in resulting from the incomplete
factorization will generate non-zero terms in most of these zero diagonal rows. However,
Chin et al. [76] pointed out that for a natural ordering (i.e. 'uvpT’) in the case of
incompressible flow, there will be no fill-in on the continuity equation row if the finite
volumg lies adjacent to a corner boﬁndafy such that the bottom- and left face coincide with the
boundary. They further note that if there is only one such cell (as is the case for the
incompressible natural convection problem) the difﬁculty can be removed by arbitrarily

100

fixing the pressure in that cell. However, problems arise when there more than one such cell
exists in the computational grid, or in situations where fixing pressure in a given cell is not
allowed such as for compressible flow applications or problems with inflow/outflow
boundaries where pressure is already specified.

Chin et al. chose to investigate clever alternative ordering strategies to solve this
problem [30]. An alternative technique, which avoids complex variable re-ordering schemes
of this sort, is the use of Kershaw's method for treating unstable pivots in incomplete LU
factorizations [150]. This method allows near-zero pivots to be adjusted in such a way that
the incomplete factorization algorithm is kept stable and the error associated with the pivot
adjustment is minimized [150]. One advantage in this approach is that very small pivots,
which may cause algorithm instability, are adjusted along with the hard zero pivots. Note
that the algorithm listed in Equation (141) is modified when this technique is implemented,
as shown in Equation (142) on the following page. Implementation of the algorithm listed in
Equation (142) requires use of the non-zero diagonal storage scheme described above. In
Equation (142), this requirement is reflected in the tests on whether a given row and column
pair are members of the ILU(m) sparsity pattern. The benefits of using this technique as well
as the use of simple alternative ordering schemes, such as those discussed below, are

investigated in Chapter 4.
3.2.3.2. Cell Ordering Strategies

This section describes some simple finite volume cell ordering schemes. The

- effectiveness of incomplete factorization schemes are often sensitive to the ordering of the

unknowns. Consequently, it is desirable to posses the ability to vary the unknown ordering
scheme so as to improve preconditioner effectiveness. The alternate cell ordering schemes

described in this section offer some limited flexibility in this regard. However, the cell

101

*Sweep down main diagonal
Do ROW =1,N
Orow = Kgow =0
COL = ROW
« Compute the COL* column of L
Do i=ROW,N

If (i,COL)e Sy then

Min(i.COL)-1
Lico = Jico— ZL. U, coL

=1
Ogow = Max{GROW’ILi.COL'}
Endif
End Do
« Compute the ROW* row of U
Do j=COL+1,N
If (ROW,j)e Sy then

Min(ROW ,j)-1
UROW. i J ROW,j 2 LROW,:U:, j

=1
Hrow = Max{#ROW’IUROW.jI}
Endif
End Do '
eTest for unstable plvots (¢t =# binary digits
used to store mantissa on computer)

If (LROW row <2 Orowhgow) then

L row.row = Sig ”(Lkaw row)*\ 27 Orowhrow

Stop if Ligow row =
Endif
o Finish computing row of U by dividing by Loy row
Do j=COL+1,N

If (ROW,j)e S;' then (142)
ROW.j
Usow.; = / ROW ROW
Endif
End Do
End Do

ordering schemes described here are selected so as to maintain the banded or diagonal
structure of the Jacobian matrix, so as to maintain the ability to use the sparse matrix storage
scheme described in Section 3.2.2. Note that an excellent description of a variety of other

cell numbering schemes is given by Duff and Meurant [151]. Their work also investigates

102

the effects of the various ordering schemes on the performance of preconditioned conjugate

gradient algorithms.

Recall from Section 3.1 above that the cell number was denoted by INUM . This

parameter can be defined in terms of a Cartesian grid with (i, j) indices corresponding to the

physical (x,y) coordinates, where 1<i<nx and 1< j<ny. In this case INUM becomes a

two-dimensional array denoted by INUM (i, j). Examples of the four cell ordering schemes

considered here are described below in terms of a simple rectangular Cartesian grid and

INUM(, j):

1.) Row Ordering. A schematic representation of row ordering is shown in Figure 19,
while the algorithm for setting INUM(i, j) is given by Equation (143).

Ay
13 14 15 i=
10 11 12 j=4
7 8 9 j=
4 5 6 j=
1 - 2 3 j=1
- >
i=1 i=2 i=3 X

Figure 19. Schematic description of the row ordering scheme on a square Cartesian grid.

icount =1
Do j=1,ny
Do i=1,nx
INUM(, j) = icount
icount = icount +1
End Do

End Do

103

(143)

2.) Reverse Row Ordering. A schematic representation of reverse row ordering is shown
in Figure 20, while the algorithm for setting INUM(, j) is given by Equation (144).

Ay
3 2 1 =
6 5 4 =4
9 8 7 =
12 11 10 j=
15 14 13 j=
-
i=1 i=2 i=3 X

Figure 20. Schematic description of the reverse row ordering scheme on a square Cartesian

grid.

104

icount =1
Do j=nyl,—-1
Do i=nx,1,-1
INUM(i, j) = icount (144)
. icount = icount +1
End Do
End Do

3.) Column Ordering. A schematic representation of column ordering is shown in Figure
21, while the algorithm for setting INUM(i, j) is given by Equation (145).

Ay
5 10 15 j=
4 9 14 j=4
3 8 13 J=
2 7 12 j=
1 6 11 =1
i=1 =2 i=3 x

Figure 21. Schematic description of the column ordering scheme on a square Cartesian grid.

icount=1
Do i=1nx
Do j=1,ny

INUM(i, j) = icount
icount = icount +1

End Do
End Do

105

(145)

4.) Reverse Column Ordering. A schematic representation of reverse column ordering is
shown in Figure 22, while the algorithm for setting INUM(, j) is given by Equation

(146).

Ay

11 6 1 j=
12 7 2 j=4
13 8 3 =
15 10 5 j=
- —»
i=1 i=2 i=3 X

Figure 22. Schematic description of the reverse column ordering scheme on a square
Cartesian grid.

106

icount =1 ,

Do i=nx,1,—-1

Do j=ny,1,-1
INUM(, j)=icount (146)
icount = icount +1

End Do

End Do

3.2.3.3. Domain-Based Preconditioning

Recall from Section 3.2.3 that one technique for improving the effectiveness of
matrix splitting type preconditioners is to use block implementations [142] instead of point
implementations. In a block implementation, the matrix is split into a block lower diagonal
matrix, a block diagonal matrix, and a block upper diagonal matrix. Thus, the elements of L,
D, and U are no longer single 'point' numbers, but rather sub-matrices. Block
implementations of Jacobi and Gauss-Seidel type preconditioning can be derived via domain
decomposition, which gives rise to another class of preconditioners. These include
preconditioners based upon both the one-level, algebraic additive and multiplicative Schwarz
algorithms [see 91, 152, 153, 154, 155, 156]. Blocked preconditioners have the advantage of
being more amenable to parallel implementation than the ILU type preconditioners discussed
previously [see 99, 100].

Block preconditioners derived via domain decomposition rely on a physical
decomposition of the computational domain to determine the matrix blocks. This idea is in
contrast to the approach whereby the matrix blocks are determined via matrix partitioning
after the matrix has already been formed. The use of domain decomposition to determine
matrix blocks enables greater flexibility and control in lumping computational cells that are

tightly coupled to one another into a single block. Domain decomposition techniques also

107

allow for overlapping domains so that at least some degree of coupling between
domains/blocks can always be maintained.

The one-level algebraic additive and multiplicative Schwarz preconditioners used in
this work are described below. Note that this description closely follows the discussion and
notation of Cai and Saad [153]. The first step in the development of a domain based
preconditioner is to partition the global coml.mtational domain into p sub-domains, whose
union is the global domain. The goal then is to solve the global linear problem defined by
Equation (98) using a preconditioner operator that incorporates solutions of the sub-domain
problems.

This global preconditioner operator is developed as follows. Let J 7 denote the sub-
block matrix portion of J that corresponds to the i* sub-domain. This sub-domain matrix is

often referred to as the restriction of J to the i* sub-domain. If it is assumed that the sub-

domain contains s state variable unknowns, then J{ has dimensions of sxs. Also, for each
sub-domain there exists a sub-domain identity matrix, I, of dimension N; whose diagonal
elements are equal to one if that state variable unknown lies within the sub-domain, but are
equal to zero otherwise. This sub-domain identity matrix serves to project a global vector

onto the i” sub-domain, and can also be used to compute the extension of the restriction of J

(J*) to the N-dimensional space defined by the global domain. This extension is denoted

by J;, and is computed from,
J,=LJL =R{J“R,, (147)

where R, is termed a restriction matrix, which has dimensions of sxN. J; is often referred

to as the section of J on the i* sub-domain. Note that the sub-domain matrix, J{, is

obtained via,

108

I =RJR]. (148)

The restriction matrix can be expressed in terms of the sub-domain identity matrix by the

following,
I,=RTI*R, (149)

where I is simply an identity matrix with dimensions of sxs. Within the context of

Equations (147) and (148), the restriction matrix can be viewed as a mapping between the i*
sub-domain and the global domain. Thus a (ROW,COL) entry in R, is equal to one only if
the sub-domain component number given by ROW is mapped to the global component
number given by COL, otherwise the entry is zero. Practical implementatioﬁ of these
techniques subsequently requires establishing mapping arrays that convert local sub-domain
variable unknown numbers into global variable unknown numbers and vice versa. |

Figure 23 illustrates the partitioning of a global domain into four overlapping
domains, whose union is the global domain. In this simple example, row ordering of the -
finite volume cells is assumed for both the global domain and within the four sub-domains.
Additionally, for simplicity it is assumed that there is only one cell-centered variable

unknown per cell. These assumptions enable the global state vector to be expressed as,
T
x= [xl’-xz’xs’x4’xs’xs’x'hxs’xwxm’xu’xxz’xxs’xwxmxls] ’ (150)

while the restrictions of this global state vector to the four sub-domains (expressed in terms

of the global component numbers) are given by:

N

N [

e
X

109

Domain 1

Domain 2

Domain 3

Domain 4

Figure 23. Schematic illustration of the partitioning of a global domain into four

overlapping sub-domains.

b T
X, =Rlx=[xl:xz’xz’xs’xs’x7'x9’x10’xu] >
sub __ — h T
X3 "'sz"[xzsxs’xuxs’xrxs’xlo’xmxlz])

b _ _ T
X3 =Rx= [xs,xs’x’nx9’x10sx11’x13’x14’x15] , and

T
x;*=R,x= [xs’xvxs’xxo’xmxxzvxwxls’xls] .

as1n

(152)

(153)

154)

110

The restriction matrices used in Equation (151) through Equation (154) are defined as:

(155)

~

(156)

cocococoocococo
coocococooo
cococococooo
coocococoocoo
cooccooooo
coocococooO
coocococoOo~O
cooccoo~oo
coococococooo
coococo~oOoo
cooco~oOoOO
coow~oooOoo
coococococooo
co~ococOCOoOO
co~ocoocOoOoOoO
)

cocococcocooco
coococoocooo
coococoocooo
coocococococo
coccOoCOO~
coococococo~O
cocooco~OO
coocococoocoo
coococo~o0O
cooco~oCcOoO
coo~oOo00O
coococococooo
co~ocoOo00O
o~ococOoCO0O00O
~ocOocOo00O0O
CO00000OO

-t

-

il
&

(157)

,and

cocococoocooo
Y= 1-1-1-1-1-1-L
CO00O0OO~O
cCOoCOoCO—OO
cooooOo0OO
cCoCOoO~OOO
=== 1=
cCooOmOOOOO
cCoooOooOOO
co~oOoCcOoOoO
o~oCcCOo0oOo
Y1111
cococoococooo
coococococooo
coococococooo
cococo00000

T
=~

(158)

cocococcococo~
Y1111 -]
cococococo~oO
cococcoocooo
coococOo~oOO
cooco~oOoCO
coomoocOoOoQ
cococcoocooo
comocoOoO0CO
o~ocOoO000CO
~o00000OO
cocococococooo
cocoooooo
coocococoocoo
cococcoococoo

SO0 0OO0OOO0CO
Il

4

-4

111

The restrictions of the Jacobian, J*, corresponding to the sub-domains shown in Figure 23
are computed via Equation (148), resulting in four 9x9 sub-domain matrices.

The notation introduced thus far enables the description of two different constructions
of global preconditioner operators based upon the local sub-domain solves, which can be
denoted by (Jf"")-1. In this work, these sub-domain solves are computed using LINPACK
banded Gaussian elimination [17]. The global preconditioner operator [in this case applied
from the left as in Equation (135)] can then be derived from sub-domain contributions

defined by,

J =R7(J*)"R.. (159)

The algebraic additive Schwarz algorithm is obtained by defining the left

preconditioning matrix in Equation (135) as,

Pl =1+)+ I] = iJ,." . (160)

i=l

Equation (150) illustrates the parallel nature of the additive Schwarz preconditioners.
Whenever P} is required to act upon a general vector, this action can be separated into p-
simultaneous operations. Each of these separate actions, in turn, are computed using the sub-
domain solutions, which generally represent much smaller linear systems. Note that if no
domain overlap is allowed, then this algorithm can be regz.xrded simply as a block Jacobi
preconditioner.

In the case of algebraic multiplicative Schwarz preconditioning, the left

preconditioned Jacobian matrix in Equation (135) takes the form,

112

Py =1-(1-J;3)(1-3;3)...(1- 37'T)...(1-J;'J) = I—ﬂ -J;J). (e

i=1

The calculation of the preconditioner operation upon a general vector, i.e. w= P;'v, canbe

implemented as in Cai and Saad [153] by:

2. Do i=2,p
w=s+J(v-1Js), 162)
S=w
End Do

where s is just temporary vector. In the absence of overlap, the multiplicative Schwarz
preconditioner can be viewed as being analogous to a block Gauss-Seidel preconditioner.
The notation used above is extremely valuable in demonstrating the process of

developing a global preconditioner operator from local sub-domain solves. However,

practical implementation of these preconditioner operators precludes generating all of the J;*
section matrices that appear in Equation (160) through Equation (162) because of prohibitive

memory cost. Fortunately, the operations required of these section matrices can be shifted to

sub-domain calculations. For instance, the J;* appear only in operations of the form, J;'u,

where u is a general global vector. Using Equation (159), these operations can be written as,

Pu=[RI) R Jo=RI{(7) [Ra}. 163

The significance of this expression is that it implies that only the sub-domain inverses,

(Jf"")"l , need be explicitly computed and stored. In fact, the terms inside the brackets
represent a sub-domain solve, with the restriction matrix, R;, extracting the portions of the

u-vector corresponding the to the i* sub-domain (i.c., the restriction of u onto the i* sub-

113

domain). The outer action of the restriction matrix transpose serves to map the resulting sub-
domain vector back to the global domain (the extension of the sub-domain vector to the
global domain). The use of Equation (163) then enables practical implementations of the
one-level, algebraic additive and multiplicative Schwarz preconditioner operators. A
comparison of these preconditioners with the previously described ILU type preconditioners,

with respect to parallel implementation, clearly favors these domain-based preconditioners.

3.2.4. Finite Difference/Inexact Newton Projection Methods (Matrix-Free

Implementations)

The Krylov subspace based algorithms used in this investigation require the Jacobian
matrix only in the form of matrix-vector products. These products may be approximated by

finite difference projections of the fonﬁ,

- F(x+ ew)-F(x)
8 ;]

Jw (164)

where € is a small perturbation constant [not to be confused with the convergence tolerance,
€", used in Equation (127)] and w is a typical Krylov vector. Use of this approximation
leads to so-called matrix-free inexact Newton iteration [see 67, 157, 158, and 159]. When
preconditioning is employed, J is replaced by JP' and the finite difference approximation

to JP;'w is computed from,

ey = F(x + eP7'w)—F(x) .

R p (165)

114

Implementation of this approximation is acc;omplished by replacing matrix-times-a-vector
operations within the Krylov algorithms with calls to a routine that uses Equation (164).
Thus, each time this routine is called during the inner iteration the discrete governing
equations vector must be evaluated with perturbed values of the state variable. Since these
function evaluations can be expensive, the number of required inner iterations should be kept
as low as possible. This can be accomplished by limiting the maximum number of inner
iterations, using pseudo-transient calculations, and by using effective preconditioning.

The potential benefits of this approximation is significant considering it enables the
action of the Jacobian without requiring explicit formation or storage of the Jacobian matrix.
This feature can be extremely advantageous in problems where forming and storing the
Jacobian is a very costly. However, problems such as those considered here require effective
preconditioning and so the full Jacobian matrix is often still needed, at least periodically, to
compute a new preconditioner. In this situation, the primary advantage of the matrix-free
implementation is in reducing the total required function evaluations by amortizing the cost
of forming the Jacobian and preconditioning matrices over many Newton iterations [15]. The
use of this technique is demonstrated in Section 4.1.4.3 and in Reference 15.

A simple analysis can be used to predict a "break-even" average inner Krylov
iteration count with respect to required function evaluations. This analysis simply counts the
required number of function evaluations for » standard Newton-Krylov iterations and the
required number of function evaluations for » matrix-free Newton-Krylov iterations. During
the standard Newton-Krylov iteration, the numerical Jacobian, as described in Section 3.1.1,
is formed on each Newton step; whereas during the matrix-free implementation, the Jacobian
is formed only every d Newton steps. The matrix-free Newton-Krylov implementation also
assumes an average of /7 inner iterations per Newton step. Equating these two function

evaluation counts and solving for 7 gives the "break even" average inner iteration value,

115

m,,. Average inner iteration counts below this value will yield lower required numbers of
function evalﬁations for the matrix-free implementation.

As an example, consider the case of incompressible flow with heat transfer described
in-Section 2.1. The finite volume stencils used in the discretization of the equations for this
case were shown in Figures 4 through 8. Based upon the numerical Jacobian evaluation
scheme described in Section 3.1.1 and the variable dependencies shown in these figures, the
following function evaluations are required in each computational cell: 14 for each of the
discretized momentum equations (i.e., f*™™™**™ and f*~™™"*™), 5 for the discretized
continuity equations (i.e., f conimdtyy and 10 for the discretized energy equation (i.e., f“®).
Note that the discretized pressure equation requires 27 function evaluations (i.e., f7™%").
These individual function evaluations can be sqmmed over all the computational cells (NC)
to give a total number of required function evaluations per standard Newton-Krylov step.
When using the discrete continuity e:quation, this total is 43- NC, while the use of the
discrete pressure equation formulation gives 65-NC. In general, this total can be written as
NF -NC, where NF denotes the number of function evaluations required in each
computational cell.

In order to obtain an estimate for the required function evaluations for a single matrix-
free Newton-Krylov step, assume that the GMRES algorithm is selected. This Krylov
algorithm requires one Jacobian-vector product per GMRES iteration and one additional
Jacobian-vector product to compute the initial GMRES residual as described in the
Appendix. Each Jacobian-vector product requires an additional NEQ- NC function
evaluations [ie., (m +1)(NEQ- NC)]. This number is in addition to the NEQ- NC function
evaluations required for the initial Newton residual evaluation. Thus, on each matrix-free
Newton-Krylov step, (7 +2)- NEQ- NC function evaluations are required, assuming the

Jacobian is not evaluated. However, if the Jacobian is evaluated in order to generate a new

116

preconditioner, then an additional NF - NC function evaluations are required on that
particular Newton step.

The matrix-free implementation often allows the Jacobian and preconditioner to be
frozen for d Newton steps without degrading the convergence of the Newton iteration. In this
manner, the cost of these additional function evaluations can be amortized over d Newton
steps. In this case, 7, can be found from the following expression that equates the required
number of function evaluations for n standard Newton-Krylov iterations with the required

number of function evaluations for » matrix-free Newton-Krylov iterations:

n(NF - NC) = n(f,, +2)(NEQ- NC) +§-(NF- NC). . (166)

Solving for m,, gives,

= (1 L\ NE__ ‘
m,,,-(l d)NEQ 2. (167)

CPU efficiency improvements are possible with the matrix-free implementation if the

average number of inner iterations (77) is significantly below 77,, and d >1. Note that the
expression for 77,, in Equation (167) does ﬁot depend upon the number of computational
cells, NC. Consequently, 7, remains constant as the grid is refined, while the required
number of inner iterations often increases with NC. As a result, use of effective \
preconditioning and/or pseudo-transient calculations is typically required for CPU efficient
matrix-free implementations, especially on finer grids. Values of m,,, computed from
Equation (167), are given in Table 1 below for various values of d using both the discretized

continuity equation and the discretized pressure equation. Use of the discretized pressure

equation results in higher values of 7, due to the larger number of variable dependencies

117

(i.e., stronger coupling) associated with the discretized pressure equation. In general,

problems represented by a large number of strongly coupled governing equations (i.e., large

values of NF/NEQ) will assume higher values of 7,,, and so more significant reductions in

the number of required function evaluations are possible [e.g., see 15].

Table 1. Estimated "break even" inner iteration values.
E

mbc
d
Discrete continuity eq. Discrete pressure eq.
(NF =43) _(NF =65)

2 34 6.1

5 6.6 11.0

10 7.7 12.6

15 8.0 132

20 8.2 134

oo 10.8 16.3

Equation (164) indicates that the accuracy of the matrix-free approximation is
strongly dependent upon the vector, w. Since this vector changes within the inner Krylov
iteration, the accuracy of the matrix-free approximation is subject to some uncertainty. In our

matrix-free implementation, the perturbation constant, &, is chosen as follows,

1<
f— Y -y . 168
e==Y ¢ (168)

i=1

where

118

& =aa-x, +bb. (169)

x, is the i** component of the state vector of dimension N and aa is a perturbation constant
whose magnitude is on the order of the équare root of computer round-off. It is noted for
completeness that alternative options exist for determining & [66, 67, 157, and 160]. The use
of the matrix-free approximation requires a new definition of the inner iteration convergence

criteria expressed by Equation (127). This new convergence criteria is expressed as,

+F(x")

F(x" +&6x") - F(x")
£

R*= <", (170)

! HFx"M

where once again the distinction between £, which is a perturbation constant, and £°, which
is the convergence tolerance parameter, should be noted. The use of this "matrix-free”

approximation is investigated in Chapter 4.

119

CHAPTER 4

NUMERICAL RESULTS

The goal of this chapter is to investigate the various features of the numerical solution
algorithm and to evaluate algorithm performance based upon solutions to incompressible and
compressible fluid flow and heat transfer problems. Consequently, algorithm performance
data and results are presented from solutions to the model problems described in Chapter 2
using the numerical techniques described in Chapter 3. The problems of incompressible and
compressible flow are treated separately in order to isolate the specific issues relevant to each

case. Thus, Section 4.1 considers incompressible fluid flow and heat transfer applications;

specifically the natural, mixed, and forced convection model problems presented in Chapter

2. Next, Section 4.2 demonstrates the application of Newton-Krylov solution techniques for
low Mach number compressible flow past a backward facing step. This latter section focuses

primarily upon effective preconditioning strategies for low Mach number flow regimes.
4.1. INCOMPRESSIBLE FLOW

In this section, Newton-Krylov algorithms and finite volume discretization are used to
solve thefsteady, incompressible Navier-Stokes and energy equations that were presented in
Section 2.1.1. The problems of natural convection in an enclosed cavity (see Section 2.1.3),
mixed convection flow past a backvyard facing step (see Section 2.1.4), and forced
convection flow past a backward facing step (see Section 2.1.5) are conéidered. Solutions to
these three different incompressible fluid flow and heat transfer problems are used to

investigate different aspects of the overall numerical algorithm.

120

4.1.1. Important Computational Issues

_One important computational issue requires specific attention when solving the
primitive variable form of the steady, incompressible Navier-Stokes equations. This issue
arises because for incompressible flow, pressure does not appear explicitly in the continuity
equation, although it is strongly linked to this equation through its influence on the velocity
components. Additionally, there is no equation of state for incompressible flow, from which
pressure can be determined. Thus, the problem is determining how to best calculate pressure.
If a direct linear solver with efficient pivoting is used with a simultaneous solution technique,
pressure can be aligned with the continuity equation because pivoting will handle the zero
main diagonal entries that arise. Since pressure does appear in the momentum equations,
another option is to re-align the equations and variables so that pressure is determined from
one of the momentum equations. This option was successfully employed by Vanka [30]
using a direct sparse matrix package that avoided expensive pivoting operations [161].
However, Clift and Forsyth found that this option did not perform well when an iterative
solver was used in place of a direct solver, and suggested that efficient cell ordering strategies
be used to avoid this problem [65]. Other techniques used to solve this problem of indirect
pressure linkage include use of a derived pressure equation in place of the continuity equation
[21, 22, 104], stream function/vorticity formulations [19, 20, 78], penalty methods [37, 49],
and artificial compressibility methods [59, 60].

. This difficulty is treated in several different ways in this investigation. Recall from
Section 3.2.3.1, that Kershaw's method [150] for treating unstable pivots in incomplete LU
factorizations is one way to mitigate the problems associated with zero (or near zero) terms
appearing on the main diagonal of the Jacobian matrix, which is used to derive the ILU
preconditioner. Another technique is the use of alternate cell ordering strategies as suggested

by Chin et al. [76] and Clift and Forsyth [65], although\ the cell ordering schemes considered

121

here are restricted to the simple cases described in Section 3.2.3.2. The third technique
considered here is the use of the discrete pressure equation formulation described in Section
2.1.2.2.

Another important computational issue concerns the buoyancy force term in the
momentum equations that couples these equations to the energy equation using the
Boussinesq approximation [31]. This source of nonlinear coupling can cause convergence
problems for some segregated solution approaches, esbecially at high Rayleigh numbers [25,
29]. In this work, however, full coupling is retained between these equations, which has
shown to be advantageous in past work using a direct linear equation solver [25, 29]. The
results below demonstrate fully coupled solutions of high Rayleigh number problems using

Krylov subspace-based iterative solvers.
4.1.2. Natural Convection in an Enclosed Cavity Model Problem

The natural convection model problem solved in this section is described in Section
2.1.3. Solutions to this problem are used to evaluate several different Newton-Krylov solvers
with respect to computer memory requirements, standard algorithm performance, and
performance using the matrix-free implementation described in Section 3.2.4. Note that
much of the numerical results presented in this subsection can also be found in References
10, 13, and 12.

In the case of the natural convection problem, one 'problem’ cell exist (lower left
corner assuming row ordering), where a zero appears on the main diagonal of the Jacobian
matrix that cannot be filled in during the generation of the ILU preconditioner (recall the
discussion in Section 3.2.3.1 and above). This difficulty is overcome here by simply fixing
the pressure to a constant value in that cell, which is justified for this model problem and the

incompressible flow assumption [104].

122

The convergence criteria for the outer Newton iteration for all test cases shown here
are given in Equation (102). The inner iteration convergence criteria defined by Equation
(127) is used with a limit on the maximum number of inner iterations. In the numerical
experiments presented here, this upper limit was set equal to two-hundred. Situations where
this upper limit is encountered frequently are presented, which demonstrate that the selected
iterative algorithm should not display erratic convergence behavior such as that exhibited by
BCG [138, 139] and CGS [5]. Various techniques for setting the tolerance in Equation (127)

are considered below.
4.1.2.1. Computer Memory Considerations

Because the inexact Newton algorithms considered here use conjugate gradient-like
algorithms to solve Equation (98), significant reductions in computer memory requirements
are possible. Table 2 demonstrates this memory advantage for the natural convection
problem, comparing the memory required for a preconditioned Newton-Krylov algorithm
with LINPACK banded Gaussian elimination [17] (direct-Newton). The direct-Newton data
represents the memory required to store the factored Jacobian matrix, while the Newton-
Krylov data represents the memory required to store the sparse Jacobian matrix and the ILU
preconditioner. Four different levels of fill-in are considered for the ILU(k) preconditioner,
where k denotes the level of fill-in. Table 2 shows that tﬁe potential memory advantage
increases with gl;id refinement. For the 60x60 grid, the memory required for the direct solve
is roughly an order of magnitude larger than that required for the iterative solve. For the
coarsest grid listed, the direct solve memory requirement is a factor of two larger than the
iterative solve with ILU(3) preconditioning and a factor of five larger with ILU(0) -

preconditioning. Note that direct-Newton computations were run on a CRAY X-MP/216

123

with 16 megawords of memory. Thus, the 60x60 grid was the finest allowable grid for
calculations with the direct solver.

Table 2. Comparison of algorithm memory requirements using direct vs. iterative linear
equation solvers (in megawords).

Iterative Solver
Grid Direct ILU(0) . ILU@) ILU®Q2) ILUEG)
solver
15x15 0.174 0.0342 0.0414 0.0558 0.077
30x30 1.343 0.1368 0.166 0.2232 0.31
60x60 10.56 0.547 0.662 0.8928 1.24

120x120 83.69 2.189 2.65 3.57 4.95

f

This data clearly demonstrates the computer memory advantage associated with the
use of the Krylov iterative techniques. Recall, however, that "out of core” matrix solvers,
such as the frontal method can also be used to handle large Jacobian matrices that exceed
available "in core" memory. Only a limited number of matrix entries (contributing to the
active 'frontal matrix') must be stored in core memory yet partial and full pivotiﬁg is possible
in the frontal matrix [82]. Einset and Jensen found that despite the advantages of the frontal
method, there is a break-even point in‘ front width above which iterative solutions become
more efficient [81]. Their preconditioned iterative method outperformed the frontal method
in their tests when the frontal width exceeded approximately five-hundred. These results as
well as those of other researchers [49] have encouraged the focus on "in core" solvers in this

investigation.

124

4.1.2.2. Standard Newton-Krylov Algorithm Performance

In this section the performance of inexact Newton's method is benchmarked against a
direct-Newton iteration using LINPACK banded Gaussian elimination. The performance of
the inexact Newton's method using ILU preconditioned TFQMR is studied with respect to the
inexact Newton convergence parameter (£"), the level of fill-in used in the ILU(k)
preconditioner, and the use of mesh sequencing. In addition, the performance of the
algorithm using TFQMR is compared with the performance obtained using the CGS
algorithm. The TFQMR algorithm was selected for the first part of this investigation because
it is a recently developed algorithm that has not yet received much attention for these types of
applications. It is compared against the CGS algorithm because TFQMR was developed in
an attempt to obtain more smoothly convergent CGS-like solutions. Thus, it is instructive to
determine how successful TFQMR is in this regard. Note that the TFQMR algorithm
provides an upper bound for the residual norm that was not used in this study (see the
Appendix). Use of this upper bound could make the TFQMR algorithm less expensive
because the calculation of the residual norm could be postponed until this upper bound was
small enough. The calculations presented in this subsection were obtained using a CRAY X-
MP/216 computer. .

Performance data using LINPACK banded Gaussian elimination is presented in Table
3 for Ra = 10*. The required number of Newton iterations (») as well as the required CPU
time are listed for three different mesh sizes. The last row represents data using mesh .
sequencing. In this case the required number of iterations on each grid is listed in the second
column. Table 3 shows that the required CPU time increases significantly as the grid .
dimensions are doubled in both directions. Note also that the use of mesh sequencing
reduced the required CPU time by roughly 34%. Mesh sequencing enables this savings by

providing a better initial guess on the finest grid. This results in fewer iterations when the

125
CPU cost per iteration is high. For this problem, the CPU cost of a single iteration on the
finest grid was equivalent to approximately seventy-five iterations on the coarsest grid. This
behavior is consistent with previous results [23] where CPU savings of approximately 45%
were observed. Differences between these results and those of Reference 23 are due to the

use of different convergence criteria.

Table 3. Performance data using LINPACK banded Gaussian elimination for Ra = 10%.

Newton Iterations CPU
Grid ‘ (n) Time (seconds)
15x15 7 3.52
30x30 7 30.72
60x60 7 262.82
15x15 > 30x30 > 60x60 7,4,4 1729

The efficiency of an inexact Newton iteration is closely tied to the proper selection of
£". If & is chosen too small, needless extra work will be performed when the Newton
_ iteration is not within the radius of convergence of the algorithm. Conversely, if £ is chosen
too large, the convergence of the Newton iteration will be slow. Here, we investigate two
options for setting £". The first is to set £" to a constant value and the second is to let €"
vary on each Newton iteration using an expression similar to that proposed by Reference 157.
Table 4 demonstrates the effect of varying £ on algorithm performance. The results
presented in Table 4 were obtained for Ra = 10* on a 60x60 grid starting from a flat initial
guess (u=v=0, T=0.5) using ILU(2) preconditioned TFQMR to solve Equation (98). The
expression used for £, the required number of Newton iterations (r), the average TFOMR

iterations per Newton iteration (/72), and the total CPU time are given. The results suggest

126

that £" < 1073 is too restrictive during the initial Newton iterations. Conversely, £" > 1071
was not sufficiently restrictive when the Newton iteration was close to the true solution,
resulting in a larger number of required Newton iterations. The best overall results were
obtained using £" = (lﬂ)Mh‘{'T'lol. For this selection, £" initially assumes the value of 1/2
and is reduced with the Newton iteration number until it reaches a minimum value on the
order of 107, Thus, £* becomes more restrictive as the true solution is approached. The
effect of varying £" on the algorithm convergence behavior is shown in Figure 24. Observe
that £* = 0.5 results in slow convergence, while mdu;:ed £" values yield much faster
(superlinear) convergence. Another important observation is that " = (1/2)Min{n'm},

although large initially, still produces very favorable convergence behavior. Similar

performance was observed for coarser grids and other levels of ILU fill-in.

Table 4. Effect of varying £" on algorithm performance (60x60 grid, flat initial guess).

e" n m CPU Time (s)
10* 7 62 568.8
103 8 51 536.6
102 9 38 4744
107 11 25 408.76
% 24 12 5459

1 Min(n.10} 9 32 403.8

1
2
(%)”‘“"”“" 8 40 4417

127

10-2

10-6

f——r—]r r v e S SR SN I me Zur s s
o 2 4 6 8 10 12 14 16 18 20 22 24
n

Figure 24. Effect of £" on algorithm convergence.

Analogous results obtained using mesh sequencing are shown in Table 5, where a
60x60 grid solution for Ra = 10* was obtained using a 15x15 and 30x30 grid sequence. In
this case, values for n and 7 are presented for each grid. A comparison of Tables 4 and 5
again demonstrates the benefits of mesh sequencing. For example, using " = 102, mesh
sequencing enabled a CPU time savings of approximately 42% (i.e., 474.4 sec. versus 278.8
sec.). Table 5 also suggests that when using mesh sequencing a more restrictive convergence

criteria is needed during the initial Newton iterations in order to take advantage of the

128

improved initial guesses on the finer grids. The adaptive convergence selections did not
work as well with mesh sequencing. In fact, a constant value of £" = 102 yielded the best

overall results. Potential savings using £" = (1 foyMintn.10}

on the initial grid is not warranted
because the CPU cost of the initial grid solution is typically a small fraction of the cost of the

total calculation.

Table 5. Effect of varying £" on algorithm performance when using mesh sequencing.

& n m CPU Time (s)
10 7.4.4 10,18,50 321.7
103 744 8,16,45 275.4
102 8,5,5 6,12,34 272.8
10! . 9,7,8 3,7,20 293.9
% in{n,10} 778 57,31 390.5
(%j"“““""” 7,6,6 6,12,33 3217

Based on the results presehted in Tables 4 and 35, it appears that the selection of £" =

102 is advisable when a good initial guess is available. However, when a good initial guess ‘

is not available, the adaptive convergence criteria of £"= (1 /2)Mi“{“'1°}

appears the best
overall selection.

Effective preconditioning is essential in improving the performance of the TFQMR
algorithm, as well as the other Krylov algorithms considered in this dissertation. In this
section, the effectiveness of ILU-type preconditioning is investigated. Qne measure of an
effective preconditioner is how well it approximates the system matrix. For an incomplete

LU factorization, allowing more fill-in will most likely improve this approximation. The

drawback, however, is higher CPU and memory storage cost. This suggests an optimal level

129

of fill-in that balances CPU time and memory considerations against preconditioner
effectiveness. Table 6 demonstrates the effect of different levels of fill-in (k) versus grid size
for Ra = 10%. Listed for each grid are the required number of Newton iterations (n), the
average TFQMR iterations per Newton iteration (), and the total CPU time in seconds (z).
The solution on each grid was obtained from a flat initial guess (u=v=p=0, T=0.5).
Although the use of k>0 on the 15x15 grid reduced the average TFQMR iterations, the total
CPU time actually increased. For the 30x30 grid, a small reduction in CPU time was
observed using ILU(1) and ILU(2). On the 60x60 grid the benefits of k>0 became more
significant. ILU(2) preconditioning reduced the average TFQMR iterations by a factor of
four and the total CPU time by approximately 30% compared with ILU(0) preconditioning.
Note that the CPU performance of ILU(3) was poor on the coarser grids and was not as
efficient as ILU(2) on the 60x60 grid. For this problem, use of ILU(2) preconditioning
provides a good compromise between CPU time and memory considerations and

preconditioner effectiveness.

Table 6. Effect of higher levels of ILU fill-in on algorithm performance (a flat initial guess
was used on each grid).

15x15 Grid 30x30 Grid 60x60 Grid

'k n m t n m t n m t
0 8 11 3.96 9 37 47151 9 121 563.6*
1 8 5 495 9 16 4698 8 60 5216
2 7 5 6.23 8 11 4054 9 32 4038
3 9 6 14.63 8 13 7076 9 26. 4873

* indicates the TFQMR iteration limit of 200 was encountered

130

It is instructive to benchmark the performance of the inexact Newton algorithm using
the TFQMR algorithm against the use of the CGS algorithm. In addition, the performance of
the inexact Newton iteration is compared with a direct-Newton iteration using LINPACK
banded Gaussian elimination [17]. Table 7 compares the CPU performance of these different
algorithms versus grid size for Ra = 10*. The inexact Newton algorithms use ILU(0) on the

coarsest grid and ILU(2) on the two finer grids. £" = (1/2)Mi“[“'1°}

is used as the inner
iteration convergence criteria. The last two columns of Table 7 present ratios of the required
CPU time using the iterative solvers to the required CPU time using the direct solver. Thus,
RTroMR represents the ratio of total CPU time using the Newton-TFQMR algorithms to the
total CPU time using the direct-Newton algorithm. Similarly, Rcgs represents the ratio of
total CPU time using the Newton-CGS algorithm to the total CPU time using the direct-
Newton algorithm. The results indicate that the Newton-CGS algorithm was more efficient
than both the direct-Newton and Newton-TFQMR algorithms. The Newton-TFQMR
algorithm was less efficient than the direct Newton iteration, but still competitive. For both
inexact Newton algorithms, forward-backward solve operations associated with the ILU
preconditioning dominated the CPU time. "Our implementation of the CGS algorithm
requires three of these operations per iteration, while the TFQMR algorithm requires five
such operations. In addition, the TFQMR algorithm performs three more vector additions per
iteration than the CGS algorithm. These differences roughly account for the increased CPU
times observed for the TFQMR algorithm since the iteration counts for the two algorithms
were similar. As noted previously, the TFQMR algorithm could be made more efficient by
making use of the available upper bound for the residual norm.

The reduced CPU efficiency of TFQMR compared with CGS is compensated with
smoother convergence behavior. CGS displays rather erratic convergence behavior as is

discussed in the Appendix. The TFQMR algorithm attempts to smooth the convergence

characteristics of CGS. Smooth convergence is important within the context of an inexact

131

Table 7. Comparison of CPU performance of two inexact Newton algorithms and a direct
Newton algorithm (flat initial guess on each grid). .

CPU Time (s)
Direct- Newton- Newton-
Grid Newton TFQMR CGS RTFOMR Rcas
15x15 -3.52 . 396 2.25 - 1.125 - 0.64
30x30 30.72 40.54 28.3 1.32 0.92

60x60 262.82 403.76 221.54 1.54 0.84

Newton iteration because the inner iteration may be terminated before convergence (i.e., after
reaching the maximum iteration limit of two-hundred). In this situation, it is important for
the inner iteration to at least return a reasonable update that may eventually enable the
Newton iteration to converge. Because of the erratic CGS convergence behavior, the return
of an extremely poor Newton update in this situation is possible. In fact, if ILU(0)
preconditioning is used to solve é higher Ra number problem (Ra = 10°) on a 60x60 grid with
£" = 1073, the Newton-CGS algorithm fails after only the second Newton iteration, while the
Newton-TFQMR algorithm converges after 13 Newton iterations. The cause of the Newton-
CGS failure is the erratic convergence behavior of the CGS algorithm. On the second
Newton iteration both the CGS and the TFQMR algorithms encountered this upper limit.
While the erratic convergence behavior of CGS returned a very poor approximate solution to
Equation (98), the TFQMR algorithm returned an acceptable solution that allowed the
eventual convergence of the algorithrh. This behavior is illustrated in Figures 25 and 26,
which show the convergence behavior of CGS and TFQMR on the first two Newton steps.
Figure 25 shows that both algorithms converged to the desired tolerance on the first Newton
step, although the convergence of the CGS algorithm is very erratic. Note how the TFQMR

algorithm successfully controls and smoothes the erratic CGS conver;;rence behavior.

132

104
103
i
102 ii gi
LY ;? »
10! fE gl i
. ViE i; &ggi 3 i
R} Rinwr
100 “;! IR W kis’&
T e
10-1 . Nl 5% ’i; i

0eqse
es0eerss

10-3] |—— TFaMR(n=1)
, CGS (n=1)
10-4 | | v I 1] d ¥ *
0 50 100 150 200

Inner Iteration Number

Figure 25. Convergence comparison between TFQMR and CGS on first Newton iteration.

Figure 26 shows that during the second Newton iteration neither algorithm converged to the

desired tolerance after two-hundred iterations.

The CGS algorithm terminated with R}

approximately equal to forty-five. This means that the residual norm of the linear system

[Equation (98)] was forty-five times larger than if the Newton update was assumed zero.

This poor update resulted in the failure of the algorithm on the subsequent Newton iteration.

The TFQMR algorithm, on the other hand, terminated with Rl approximately equal to 0.043,

133

which represented an acceptable approximate solution to Equation (98). This behavior might
be avoided in some instances by using better preconditioning to improve the convergence
behavior of the iterative algorithms. However, this option may not always be feasible due to
memory limitations or to the lack of a better known preconditioner. For this reason, the
advantage of robustness associated with the use of TFQMR may often be more important

than the CPU efficiency advantage obtained with CGS.

104
by |
103 f:}%
!g!i
; N .
) WD D
o UL T
ERCAT - gHp
T
i
T
10-1 :
i ~—
10°2 TFQMR (n=2)
CGS (n=2)
10-3 Y ' ; . . -
50 100 150 200

Inner Iteration Number

Figure 26. Convergence comparison between TFQMR and CGS on second Newton
iteration.

134

4.1.2.3. Matrix-Free Newton-Krylov Algorithm Performance

The Krylov methods considered in this work require the J. acobian matrix only in
matrix-vector products of the form Jw. This feature becomes very important within the
context of an inexact Newton iteratipn because these products may be approximated by finite
differences using Equation (164). The existence of this approximation is significant because
it suggest the possibility of matrix-free implementations of Newton's method, thereby
circumventing the main drawback associated with its use, namely high computer memory
cost. The performance of this matrix-free implementation compared with the standard
implementation is the focus of this subsection. The standard implementation computes
matrix-vector products in the normal manner and uses Equation (127) to determine when the
inner iteration has converged. In contrast, the matrix-free implementation computes matrix-
vector products using Equation (165) since right ILU(0) preconditioning is employed.
Convergence of the inner iteration for the matrix-free implementation is determined from
Equation (170). Based on the results of the previous section, the inner iteration convergence

tolerance is set from &" = (1/2)" 10}

when starting from a flat initial guess, and from " =
102 when starting from a reasonably good initial guess (i.e., a the interpolated solution from
a coarser grid). |

The advantages and disadvantages of the matrix-free implementation are studied with
respect to performance and robustness. The computer memory advantages of the matrix-free
implementation are obvious. Although in many practical applications formation of the
Jacobian, or parts thereof, are still needed in order to generate an effective preconditioner.
The potential performance advantage lies in reducing the CPU cost of forming and using the
Jacobian matrix, without inhibiting or degrading convergence. Performance is studied using
both Lanczos-based iterative solvers (CGS, TFQMR, and Bi-CGSTAB) and an Arnoldi-

based iterative solver [GMRES(20)]. Note that in applications with a large number of

135

equations, where the cost of forming the Jacobian matrix is a significant fraction of the total
CPU time, the potential advantages of the matrix-free implementation are very appealing
[e.g., see 15]. Performance data is obtained for the steady state solution of the natural
convection test problem with Ra = 10¢ and Pr =0.71. All computations were run on an IBM
RISC/6000 model 320 workstation. Calculations were initiated from a flat initial guess (i.e.,
u=v =p=0, T=0.5). ’

Tables 8 through 11 present performance data for solutions of the natural convection
problem using both standard and matrix-free implementations on three different sized grids
of increasing refinement. This data includes the required number of Newton iterations (n),
the average number of inner iterations per Newton iteration (), the required CPU time, and
the number of times the maximum inner iteration limit (7,,.4x) was encountered. The
maximum inner iteration limit was set equal to the square root of the number of unknowns, a
selection that was empirically found to perform well with the matrix-free implementation.
Note that the matrix-free implementation used here is not practical in the sense that a new
ILU(0) preconditioner was formed each Newton iteration, which in turn requires the
formation of the Jacobian matrix. A more practical implementation might use the same
preconditioner for several Newton iterations (i.e., see Reference 15 and Section 4.1.4.3), or a
less expensive preconditioner. that does not require forming the complete Jacobian matrix.
The former option is especially attractive when pseudo-transient calculations (see Section
3.1.4) are needed to ensure convergence [for an example see Reference 15 and Section
4.1.4.3]. However, the main purpose of this study is to investigate the effects of the matrix-
free approximation. With this goal in mind, a more practical implementation was not
absolutely necessary, and consequently ILU(0) was selected as the only preconditioner.
Thus, CPU times should not be used as a basis for comparing the two implementations, but
rather as a basis for comparing the performance of the different iterative solvers.

Convergence behavior is used as a basis of comparison for the standard and matrix-free

136

implementations. Recall that the TFQMR algorithm provides an upper bound for the residual

norm that was not used in this study. Use of this upper bound could make the TFQMR

algorithm less expensive because the calculation of the residual norm could be postponed

until this upper bound was small enough. In this implementation, however, the residual norm

was computed on each iteration in order to provide a more accurate convergence check as

well as to provide information regarding convergence history.

Table 8. Comparison of standard and matrix-free implementations on a 10x10 grid (mmax=

20).
Standard Implementation Matrix-Free Imp_l_cmentatioﬁ-
CPU CPU
Iterative _ Time Mpax _ Time Mpax
Solver n m (sec) hits n m (sec) hits
CGS 7 7 2.3 0 9 9 6.4 2
TFQMR 8 7 29 0 8 12 7.2 3
Bi-CGSTAB 8 7 25 0 7 8 44 1
GMRES(20) 8 8 2.6 0 8 8 33 0

Table 9. Comparison of standard and matrix-free implementations on a 20x20 grid (Mmax=

40).
Standard Implementation Matrix-Free Implementation
CPU CPU
Iterative n _ Time Mypax n _ Time Mimax
Solver m (sec) hits m (sec) hits
CGS 8 17 16.7 0 - - - -
TFQMR 8 21 24.4 0 10 34 854 6
Bi-CGSTAB 8 18 17.3 0 10 27 60.3 4
GMRES(20) 9 25 16.3 3 9 25 26.3 3

137

Table 10. Comparison of standard and matrix-free implementations on a 40x40 grid (mpma =
80).
M

Standard Implementation Matrix-Free Implementation
CPU CPU
Iterative n _ Time Mmax n _ Time Mpax
Solver m (sec) hits m (sec) hits
CGS 9 55 188.2 3 - - - -
TFQMR 10 61 305.7 4 58 79 43134 57
Bi-CGSTAB 13 69 322.0 8 - - - -
GMRES(20) 19 74 320.0 16 21 74 631.2 18

Table 11. Comparison of standard and matrix-free implementations on a 40x40 grid using a

10x10, 20x20, and 40x40 mesh sequence (Mmax = 20, 40, and 80, resgectivelz).

Standard Implementation Matrix-Free Implementation
CpPU CPU
Iterative n _ Time Mumax n _ Time Momax
Solver m (sec) _ hits m (sec) hits
CGS 5 62 1317 O - - - -
TFQMR 5 70 195.1 3 29 80 22499 29
Bi-CGSTAB 7 71 196.6 4 28 79 1841.1 26
GMRES(20) 15 80 290.9 15 16 80 538.7 16

Table 8 presents performance data for a coarse 10x10 grid solution for each of the
selected Krylov algorithms. Corresponding convergence plots are shown for both the
standard and the matrix-free implementations m Figures 27 and 28, respectively. These
figures plot the maximum relative Newton update, RS, as a function of the Newton iteration
count. The performance of the different iterative solvers is similar for both the standard

implementation and the matrix-free implementation for this coarse grid.

CGS
TFQMR
Bi-CGSTAB
GMRES(20)

[a—ry
o
)
-

Figure 27. Standard inexact Newton iteration convergence behavior (10x10 grid).

138

139

CGS

s TEQMR

--------- Bi-CGSTAB

101 N GMRES(20)
kY

107!
1072
1073

107
10°
107
10°®

Figure 28. Matrix-free inexact Newton iteration convergence behavior (10x10 grid).

140

Tables 9 and 10 investigate the effect of grid refinement. Use of the Lanczos based
iterative algorithms with the matrix-free approximation led to a marked degradation in
performance as the grid was refined; while the Arnoldi based method (GMRES) performed
similarly for both implementations. In fact, for the 40x40 grid (Table 10) no solutions were
obtained using the matrix-free approximation with CGS or Bi-CGSTAB. The use of mesh
sequencing in Table 11 led to a solution using Bi-CGSTAB, but still did not enable a solution’
using CGS. ‘

Convergence plots for the 40x40 grid solutions in Table 11 are shown in Figures 29
and 30. These figures further illustrate the degradation in performance for the matrix-free
implementation with the Lanczos-based algorithms. Note from Figure 29, the relatively slow
convergence obtained using GMRES(20) for the standard implementation. This behavior
follows from the choice for the dimension of our Krylov subspace (k=20). Twenty iterations
was not sufficient to satisfy the inner iteration convergence criteria. This necessitated
periodic algorithm restarts, which in turn slowed the convergence of the GMRES algorithm.
This observation is evidenced by the large number of 7,4 hits encountered in Tables 10 and
11, and the convergence flattening trend shown in Figure 31 for the GMRES(20) curve.
Figure 31 is a plot of R! versus the inner iteration number for the first Newton iteration on
the 40x40 grid corresponding to the standard implementation solutions in Table 11. Note
that the first iteration was chosen because then each of the iterative algorithms are roughly
solving the same linear system. GMRES(20) convergence is excellent during the first twenty
iterations, but thereafter begins to flatten or stall as more periodic algorithm restarts are
needed. Increasing the dimension of the Krylov subspace would improve performance, but it
would also further increase algorithm memory requirements, which were already -

approximately twice that of the Lanczos-based algorithms.

141

—— CGS
== TFQMR
N Bi-CGSTAB
----- GMRES(20)

1077

10°8

Figure 29. Standard inexact Newton iteration convergence behavior (40x40 grid).

142

103
CGS-No solution
102 o{ ~ —
= TFQMR
LR WAS T Bi-CGSTAB
N GMRES(20)
0 ‘i
10 JD‘[\
107! i\
R® %
" 10 %
1073
107
1073
106
1074 r r r T r
0 5 10 15 20 25 30

Figure 30. Matrix-free inexact Newton iteration convergence behavior (40x40 grid).

143

104
CGS

103 TFQMR
Bi-CGSTAB
GMRES(20

102 (20)

. 1
gi 10

10°

1071

1072

10-3 1 ¥ T Y T T T

0 20 40 60 80

Figure 31. Inner iteration convergence on the first standard Newton iteration (40x40 grid).

144

Several additional observations can be gleaned from Figure 31. Notice again the
rather erratic convergence behavior of the CGS algorithm that was shown previously. In
spite of this behavior, the tabulated data shows that when the CGS algorithm converged it
was more CPU efficient than the other algorithms. Figure 31 shows that for this problem,
TFQMR is more successful than Bi-CGSTAB at controlling the erratic CGS convergence
behavior, but at a noticeable higher CPU cost as can be seen in the tabulated results. The
TFQMR convergence curve tends to temporarily stall or flatten out when CGS is displaying
very erratic convergence behavior. The Bi-CGSTAB convergence curve, although more
controlled than the CGS curve, still exhibits some erratic convergence behavior.

These observations may lend some insight into the relatively poor performance of
matrix-free implementation when the Lanczos based methods are used. This performance is
illustrated in Figure 30, which once again corresponds to the solutions presented in Table 11.
Recall that no solution was obtained using the CGS algorithm with the matrix-free
approximation. In the case of GMRES(20), replacing the standard implementation with the
matrix-free approximation resulted in nearly identical convergence behavior. This suggests
that Equation (165) yielded acceptable approximations for the needed matrix-vector products.
In contrast, the convergence behavior using TFQMR‘ and Bi-CGSTAB degraded appreciably
when the standard implementation was repla.ced with the matrix-free approximation. In an
attempt to relate this behavior to the observations cited above, consider the convergence
behavior of the iterative solvers as shown in Figure 32 for the first Newton iteration. The
erratic convergence behavior of CGS coupled with the use of Equation (165) results in very
poor approximations for the needed matrix-vector products. The CGS algorithm could not
recover from the erratic jumps and eventually returned a very bad Newton update that led to
divergence. Note that this behavior has also been recently observed in Reference 96. Once
again, the TFQMR algorithm is observed to stall out when the CGS iteration is behaving
badly. During this Newton iteration, TFQMR stalls with a value of R1 near one. This

145

behavior, although resulting in poor convergence, does not cause divergence of the
algorithm. During this first Newton iteration it is fortuitous that Bi-CGSTAB converged,
because during later iterations it most often encountered the My limit as shown in Table 11.
In addition, note that a solution could not be obtained using the matrix-free approximation
with Bi-CGSTAB on the 40x40 grid starting from a flat initial guess. In that case, behavior

similar to that of CGS over several Newton iterations led to divergence.

CGS
—— TFQMR
--------- Bi-CGSTAB
-------- GMRES(20)

146

Recall that the accuracy of the matrix-free approximation in Equation (165) is
dependent upon the Krylov vector, w. In the case of the Lanczos based algorithms, the
characteristics of this vector may vary wildly as evidenced by the sometimes erratic CGS
convergence behavior. In the case of GMRES, however, an prthonormal basis is constructed
for the Krylov subspace so that only normalized (L, — norm) vectors appear in matrix-vector
products. Presumably, this is one feature that enables Equation (165) to generate acceptable

approximations for the required matrix-vector products needed within the GMRES algorithm.
4.1.2.4. Solutions

The solutions to the natural convection problem for Ra = 10* are compared with the
benchmark solution of de vahl Davis [109] in Table 12. Note that the velocity data from
Reference 109 were multiplied by the factor Pr! to account for the different choices in
scaling. Additionally, the positions were adjusted to account for the reversed circulation
direction in Reference 109. Table 12 presents the maximurr.1 horizontal velocity component
() and its corresponding y-location along the line x=0.5, and the maximum vertical velocity
component (v) and its x-location along the line y=0.5. Data from four different grids of
increasing refinement are compared with the benchmark solution of Reference 109. Table 12
shows the improved agreement with the benchmark solution as the grid is refined. Excellent
agreement between the benchmark solution and the 120x120 grid solution is obtained. Based
upon the results of Section 4.1.2.2, ILU(2) preconditioning was selected with an inner
jteration convergence tolerance of £* =1x1072. Note that the solutions were run using the
standard Newton-Krylov implementation. This calculation employed a four mesh sequence
(uniform 15x15, 30x30, 60x60 and finally 120x120 mesh), and required 6 Newton iterations
with an average of 114 TFQMR iterations per Newton step on the finest 120x120 grid. Note

that these average inner iteration counts are quite high compared to earlier results. Based

147

upon previous results, one would expect that efficient use the GMRES algorithm in this
situation would require either a very large specified Krylov subspace dimension, or a
reduction of the average inner iteration counts via better preconditioning and/or pseudo-
transient relaxation. The required Newton iterations on the intermediate grids were 8, 6, and
5, respectively (coarse grid to fine grid). The corresponding average TFQMR iterations on
the three intermediate grids were 6, 12, and 35, respectively. The average TFQMR data for
the four grid sequence illustrates a difficulty often associated with ILU type preconditioning,
namely the poor scaling (measured by inner iteration counts) as the‘ problem size is increased.

The total required CPU time was 3464.1 seconds on an HP Model 735 workstation.

Table 12. Comparison with benchmark solution of de vahl Davis [109] for Ra = 10%.

Current Solution
Benchmark
Solution 15x15 30x30 60x60 120x120
Umax 22.786 22.663 22.738 22.784 22.788
y 0.177 0.167 0.183 0.175 0.179
Vmax "27.630 27.599 27.657 27.594 27.640
X , 0.881 0.900 0.883 0.875 0.879

Data for Ra = 10° and Ra = 10 are presented in Tables 13 and 14, respectively (note
that Ra = 10 data was the highest Rayleigh number data presented by Reference 109). Both
of these calculation employed the same four grid sequence used for the Ra = 10* calculation.
The difference between the 120x120 gﬁd data and the benchmark data in these tables is less
than 1% for each of the different Rayleigh numbers. On the final 120x120 grid, the Ra = 10°

148

solution required 6 Newton iterations and an average of 112 TFQMR iterations per Newton
step. The intermediate grid Newton iteration counts were 8, 6, and 5, respectively; while the
corresponding average TFQMR iteration counts were 6, 12, and 35, respectively. The total
CPU time for the entire calculation was 3438.1 seconds. In order to obtain the Ra = 10°
solution, the adaptive damping strategy described in Section 3.1.2 was needed with & in
Equation (116) set to 0.25. The Ra= 10° solution required 6 Newton iterations and an
average of 88 TFQMR iterations per Newton step on the 120x120 grid. The intermediate
grid Newton iteration counts were 17, 10, and 8, respectively; while the corresponding
average TFQMR iteration counts were 11, 15, and 23, respectively. A total of 2937.0 CPU
seconds were required for this calculation. The higher Rayleigh number solutions presented

in Tables 13 and 14 demonstrate the robustness of the overall solution algorithm.

Table 13. Comparison with benchmark solution of de vahl Davis [109] for Ra = 10°.

Current Solution
Benchmark
Solution 15x15 . 30x30 60x60 120x120
Umax 48.916 - 49.038 49.564 . 49.103 48.978
y 0.145 0.167 0.150 0.142 0.146
Vimax 96.606 96.633 95.157 96.196 96.571

X 0.934 0967 - 0.950 0.942 0.937

149

Table 14. Comparison with benchmark solution of de vahl Davis [109] for Ra = 105,

Current Solution
Benchmark
Solution 15x15 30x30 60x60 120x120
Umax 91.028 98.139 94.101 92.635 91.622
y 0.150 0.100 0.117 - 0.142 0.146
Vmax 308.958 319.892 290.839 309.300 311.421
X 0.962 0.967 0.983 0.958 0.962

For completeness, note that the higher Rayleigh number solutions could have also
been obtained from lower Rayleigh number solutions using parameter continuation (see
Section 3.1.5). For example, restarting the 120x120 grid, Ra = 10° solution with the
Rayleigh number increased to 10 required 12 Newton iterations with an average of 75
TFQMR iterations per Newton step. The required CPU time for this calculation was 4425.1
seconds. Thus, for this specific case, the use of mesh sequencing proved to be somewhat
more efﬁciegn Note additionally, that higher order discretization schemes can often be
employed to obtain accurate solution resolution using coarser meshes than a lower order
discretization scheme would require [see 14]. Use of one such scheme with a defect
correction technique is the topic of the following section. Also, the use of non-uniform grids
with cells clustered in regions where the solution is rapidly changing, is another technique for
improving accuracy for a fixed number of computational cells. An example of the use of a

nonuniform grid is given in Section 4.1.3.2.

150

4.1.3. Mixed Convection, Backward Facing Step Model Problem

The mixed convection, backward facing step model problem solved in this section
was described previously in Section 2.1.4. In contrast to the previous natural (free) .
convection problem, this problem is characterized by a combination of both forced and free
convection. The relative importance of these two effects are determined by the parameter,
Gr/Re?, appearing in Equations (2) and (3). For this benchmark problem, the Grashof
number (Gr) is 1000, while the Reynolds number (Re) is 100, making Gr/Re?*=0.1.
However, the case of only forced convection (i.e., Gr=0) is also considered to help identify
the effects of buoyancy. Additionally, several calculations are run with Re = 200.

Higher order accurate solutions to this problem are obtained using the defect
correction technique described in Section 3.1.6. The use of higher order discretization
schemes often enable a certain level of accuracy to be obtained on a hésh that is coarser than
a lower order discretization scheme would require for the same level of accuracy. This
feature helps to alleviate computer memory difficulties by enabling more accurate solutions
on coarser grids. The intent of this section is to demonstrate the use of a higher order
discretization scheme within the context of a fully coupled Newton-Krylov solution
algorithm, and to evaluate its effect on algorithm performance. Note that much of the
numerical results presented in this subsection can also be found in References 11 and 14.

In the case of this backward facing step problem, pressure cannot be fixed to a
constant value in the interior of the computational domain because it is already specified on
the outflow boundary. Consequently, the remedy used in the case of the natural convection
problem to avoid the 'problem’ cell cannot be used in this case. Alternatively, Kershaw's
method for treating unstable pivots and the use of an alternative cell ordering scheme (see
Section 4.1.4.1) are relied upon to remedy this difficulty. Recall that the former technique

was described in Section 3.2.3.1. Although this technique was activated in the case of the

151

natural convection problem discussed above, the fixing pressure in the 'problem’ cell made
pivot adjustments unnecessary in all but a few cases. The cell ordering scheme employed is
illustrated in Figure 33 below. Note that this figure is not intended to accurately portray the
grid, but rather only to describe the cell ordering scheme employed. Note that cells
numbered 37, 38, 41, and 42 lie inside the step and would be assumed inactive if the grid
represented by Figure 33 were actually employed. |

The convergence criteria for the outer Newton iteration for all test cases considered
here are given in Equation (102). The inner iteration convergence criteria defined by
Equation (127) is used with a limit on the maximum number of inner iterations. A value of
500 was used when investigating various numerical techniques in the next section, while a
value of 200 was used when computing the solutions in Section 4.1.3.2. Note that ILU(0)

preconditioning was employed unless otherwise specified.

Y

43 | 39 35 1 31 27 23 1 19 {15 11

42 | 38 34 | 30 26 i 22 1 18 § 14 {10
41 | 37 33129 | 25 21 1 17 | 13 9 .

Wmioni-~ {oo
=iNiwid

X

Figure 33. Schematic of the reverse row ordering scheme used with the mixed convection
model problem. :

152

4.1.3.1. Defect Correction Technique

The procedure used here to maintain overall second order accurate solutions is based
upon a simple defect correction method (see Section 2.1.2.3). Often, a converged solution is
initially obtained using a lower order discretization scheme, such as upwind differencing [see
19] or the simple power law convection-diffusion differencing scheme of Patankar [21]. The
low order scheme is used in forming both the Jacobian matrix and the residuals in Equation
(98). This low order accurate solution can then be improved by restarting the algorithm
using a higher order discretization scheme for the calculation of the residuals in Equation
(98). Note that this replacement is made only in the right hand side of Equation (98), not in
the Jacobian. Alternatively, the defect correction technique can also be applied without using
an initial low order accurate solution as an initial guess. The defect correction technique,
although sometimes resulting in slow convergence during the final stages of the calculation,
is very useful in maintaining overall second order accurate solutions. In this work, an
implementation of the third order accurate CUI convection discretization scheme [see Section
2.1.2.3] is used along with conventional central differences for the diffusion terms. This
implementation results in an algorithm that overall yields second order accufate solutions.

Before proceeding with solutions to the mixed convection, backward facing step
model problem, it is instructive to review the natural convection results of Johnson et al. [14].
These results can be summarized by the following observations, obtained for values of the

Rayleigh number ranging from 10° to 10 [see 14]:

1. Defect correction is a useful technique for obtéining higher order accurate
solutions, but the CPU expense can be considerably higher than the cost for a
lower order solution using a conventional Newton iteration. Consequently, use of
this technique is not warranted on fine grids where the solutions produced by both
low and high order discretization schemes are comparable. Rather, its benefit lies

153

in improving the accuracy of the solution on a grid, for which the low order
discretization scheme cannot achieve a comparable level of accuracy.

2. For highly nonlinear problems (i.e., high Rayleigh numbers), improved efficiency
was obtained if the defect correction calculation was restarted from a lower order
solution on the final desired grid. However, for lower Rayleigh numbers mesh
sequencing with defect correction used on each mesh proved efficient.

4. Defect correction computations of higher order solutions were less expensive than
a conventional Newton iteration where the higher order discretization scheme was
used in both the residual and the Jacobian evaluation. This result was attributed to
several factors. First, the higher order discretization scheme made the Jacobian
and residual evaluations more expensive. Second, ILU(0) preconditioner was less
effective when derived from the less diagonally dominant Jacobian, which was
evaluated with the higher order discretization scheme. And finally, a more ill-
conditioned Jacobian matrix resulted from the use of the higher order
discretization scheme, especially at higher Rayleigh numbers, making
convergence more difficult.

5. The defect corrected Newton-TFQMR algorithm solved a 40x40 grid, natural
convection problem with Ra = 10%, five times faster than an analogous
implementation using the SIMPLE algorithm.

These observations help identify the important issues regarding the use of the defect
correction technique to obtain higher order accurate solutions.

As with the third observation above for the natural convection problem, the use of a
conventional Newton iteration to obtain higher order accurate solutions for this benchmark
solution did not prove effective. Note that another option, not considered here, is the use of a
lower order scheme to generate the preconditioner, while still using the higher order scheme
in the Jacobian and residual evaluation [see 78]. One difficulty in this approach is that the
Jacdbiaﬁ must be evaluated twice, once for the preconditioner and once using the higher
order discretization scheme. However, there is the possibility that this difficulty could be

avoided by using the matrix-free implementation discussed previously. Although these

154

techniques deserve further study, the higher order accurate solutions presénted in this section
rely upon the defect correction techniques discussed in Section 3.1.6.

Several different technigues for improving the efficiency of computing higher order
accurate solutions are investigated in this section for Gr =1000 and two Reynolds numbers
(100 and 200). The solution of the mixed convection test problem on a 140x40 [(x-cells) by
(y-cells)] uniform grid is selected to test these various numerical techniques. Efficiency is
measured with respect to the total required CPU time. In order to provide a reference point
for evaluating efficiency, calculations using upwind differencing (see Section 2.1.2) were
obtained starting from a flat initial guess (u=1, v=p=0, T=0.5) on the 40x140 grid. The
Re = 100 solution required 8 Newton iterations, an average of 126 TFQMR iterations per
Newton step, and a total required CPU time of 2744.8 seconds on an IBM RISC/6000
workstation. The Re =200 solution required 9 Newton iterations, an average of 128
TFQMR iterations per Newton step, and a total required CPU time of 3110.3 seconds. These
calculations serve as reference points for determining the additional CPU cost required to
obtain a higher order accurate solution.

Starting the defect correction technique from a flat initial guess on the 140x40 grid
did not result in a converged solution for either Reynolds number considered. Consequently,
the upwind solution was used as the initial guess for the defect correction tecﬁnique. The
improved initial guess supplied by the initial upwind solution enabled convergence for both
Reynolds number calculations. The restarted Re =100 solution required 21 Newton
iterations, an average of 93 TFQMR iterations per Newton step, and a required CPU time of
6222.4 seconds. Thus, the total CPU time necessary to compute the higher order solution is
the original upwind solution time plus the restarted calculation time, or 8967.2 seconds. This
total time is 3.3 times the reference upwind solution time. The restarted Re =200 solution
required 27 Newton iterations, an average of 108 TFQMR iterations per Newton step, and a

total required CPU time of 8747.4 seconds. Thus the total time for the higher order accurate

155

solution was 11,587.7 seconds, or 3.8 times the first order accurate, upwind solution time.
Although, additional CPU cost was incurred, a second order accurate solution was obtained.
Mesh sequencing was subsequently employed in an effort to improve the efficiency
of these initial higher order accurate solutions. The grids employed were uniform 35x10,
70x20, and 140x40 meshes. Several different mesh sequencing options were investigated,

these included:

1. Starting the mesh sequencing calculation from a flat initial guess using the
defect correction technique.

2, Starting the calculation using the upwind differencing scheme and a
conventional Newton-Krylov iteration to obtain an initial upwind solution on
the coarse 35x10 mesh. Next, mesh sequencing was initialized from this
upwind solution using the defect correction technique.

3. Starting the mesh sequencing calculation using upwind differencing and a
conventional Newton-TFQMR iteration to obtain an upwind solution on the
final 40x140 grid. Next, the defect correction scheme is started using this
40x140 upwind solution as an initial guess.

Table 15 presents performance data for the Re =100 test run. Included in this table are the
required number of iterations and average inner iteration counts per Newton step for each
grid during both the conventional Newton-Krylov part of the calculation using upwinding
(UDS) and the defect correction part of the calcﬁlation using the CUI scheme (CUI). Note
that dashed lines indicate that the entry was not part of the calculation for that option.
Additionally, CPU time associated with each part of the calculation and the total CPU time
are also listed. The numbers listed in the last column of the table present the ratios of the
total CPU time to the reference upwihd solution CPU time idenﬁﬁed above. The results for
this test run indicate'that swifching to the defect correction technique after obtaining an initial

35x10 grid upwind solution proved to be the most efficient option.

156

Table 15. Performance data using several defect correction calculation options with mesh

sequencing (Re =100).
35x10 grid 70x20 grid 140x40 grid Total

Option , CPU | CPU | Ratio
n i n T n 7 (sec) | (sec)
T 0DS| — — | — = -
CUL| 42 26 | 4 39 | 16 81 |6704.6]/6704.6] 2.44
2 UDS 6 22 - — p— — | 475
CuUl 36 27 42 38 16 82 |6603.0]6650.5] 2.42

3 UDS 6 22 5 57 4 130 | 1723.1

CUL --- o == - 21 99 |6448.018171.1] 2.98

The performance data obtained for the Re =200 test runs are shown in Table 16.
This case is different than the lower Reynolds number éase in that no converged CUI
solutions were obtained on the coarse 35x10 grid. The CUI solutions on the 35x10 grid
failed to converge even after 500 Newton iterations. Even though convergence was not
obtained on these grids, the unconverged solutions were still interpolated up to the next level
grid, where convergence was eventually obtained, although with considerable effort. Thus,
the best results for this Reynolds number were obtained by using the upwind solution on the

140x40 grid as an initial guess.

Table 16. Performance data using several defect correction calculation options with mesh

scguencing (Re=200).

35x10 grid 70x20 grid 140x40 grid Total
Option CPU | CPU | Ratio
n m n m n m__| (sec) | (sec)

T UDS | — — | — - =
cut {500 35 | 206 57 | 25 105 | 2428024280 | 7.81

2 UDS 7 24 - -- -—- - 56.4
CUI | 500* 34 182 58 25 106 | 23020 | 23077 | 7.4
3 UDS 7 24 6 39 5 124 |2014.1
CUI — -— -—- —- 27 106 |8649.11 10663 | 3.4
*Solution did not converge within the allowed 500 Newton iterations on this grid, but this
unconverged solution was still interpolated up to next level grid.

157

The results for these two different Reynolds numbers indicate that the optimal grid
size, to switch over to the defect correction technique, is likely problem dependent.
However, the results in Table 16 demonstrate that if the switch is made on too coarse a grid,
the overall efficiency is severely degraded. Recall that similar observations were made by
Johnson et al [14] in solving the natural convection model problem. Thus, a lower risk
option may be to delay the switch to the defect correction technique until an initial low order
accurate solutipn is obtained on the fine grid. At that point, the analyst can determine if
additional accuracy is deemed necessary; and, if so, the defect correction technique can be

initiated to improve solution accuracy. This is the solution approach adopted below.
4.1.3.2. Solutions

This section presents solutions obtained for this mixed‘ convection, backward facing
step test problem. The values assumed for the nondimensional parameters are once again
given by Re=100, Pe=70, and Gr=1000. Solutions to this mixed problem as well as a
solution for Gr=0 (no/buoyancy forces) are presented, along with memory and CPU
requirements. The solutions presented here differ from those discussed above in that these
solutions employed a nonuniform grid (described below), a reversed ordering scheme (i.e.,
numbering from the inlet first instead of the outlet), and a low order scheme based upon the
power-law convection-diffusion discretization scheme instead of pure upwinding for the
convective terms. Additionally, these runs were made using a version of the pilot code with
Jacobian evaluation routines that were more CPU efficient (but also more problem specific)
than those used to obtain the results presented above. Consequently, the CPU times
presented below (which are smaller) should not be compared with those presented above.

Lin et al. {162] demonstrated that solutions to problems of this type are strongly

dependent upon the value of the buoyancy parameter, Gr/ Re?. Based upon the results of

Al

158

Lin et al. and the value of this parameter for the benchmark problem (0.1), one would expect
the solution to be characterized by a primary recirculation zone behind the step and a
secondary recirculation zone that occurs at the step corner. In order to resolve these
recirculation zones, we employed a non-uniform grid. The mesh spacing in the y-direction
assumes a cosine-type distribution. The x-direction spacing is controlled such that the finest
mesh region occurs two step heights downstream of the step. Away from this region the
mesh spacing increases linearly towards both the flow inlet and outlet. The schematic of the
mesh for a coarse 35x10 grid is shown in Figure 34. The results presented in this section
were obtained using a 140x40 nonuniform grid. Note that no noticeable changes in the
presented figures were observed when the number of grid cells were doubled in both
dimensions. (i.e., using an 280x80 nonuniform mesh). Note that all figures associated with
these solutions are accumulated at the end of this subsection.

The results for Gr=0 are presented first in order to better study the effects of mixed
convection. Figures 35 through: 37 show the principal velocity, transverse velocity, and
temperature profiles at x = 0, 3, 7, 15, and 30, respectively. Figure 38 presents the Nusselt

number variation along both the hot and cool walls, where the Nusselt number is defined by
Equation (49). Figure 39 presents the variation of the friction coefficient C;, Re along both

the hot and cool walls, which is defined by Equation (52). The results indicate that the flow

reattaches to the hot wall at x = 4.976. The length of the secondary recirculation zone at the
step corner was calculated to be approximately 0.1. The peak Nusselt number along the hot
wall was 1.8 at x = 5.084. At the outlet, the hot wall Nusselt number was 0.7, while the cool
wall Nusselt number was 0.3.

The mixed convection results with Gr=1000 are shown in figures 40 through 42,
which present principal velocity, transverse velocity, and temperature profiles again at x = 0,

3,7, 15, and 30, respectively. Figure 43 presents the Nusselt number variation along both the

hot and cool walls, while figure 44 presents the variation of the friction coefficient C, Re

159

along both the hot and cool walls. In this case, the flow reattaches to the heated wall at x
=2.91, and the length of the second recirculating zone at the step corner was approximately
0.6. Another recirculation zone appeared along the cool wall starting at x = 3.985 and ending
at x = 4.763 (length = 0.778). The peak Nusselt number along the hot wall was 2.2 atx =
4.075. At the outlet, the hot wall Nusselt number was 0.8, while the cool wall Nusselt_
number was 0.3. 4 ‘

Compared with the forced convection solution (Gr=0), the mixed convection results
predicted a 71% reduction in the flow reattachment length, but a six fold increase in the
length of the secondary recirculating zone occurring at the step corner. Additionally, a
secondary recirculation zone along the cool wall appeared in the mixed convection solution,
but not in the forced convection solution. Further differences included: a 10% larger outlet
peak velocity located away from the channel center and near the hot wall, a 20% increase in
the peak Nusselt number. Also, the mixed convection wall friction coefficient was much
larger along the hot wall, but much smaller along the cool wall compared with the forced
convection solution. Note that the reasonable agreement obtained between this solution and
others (using various numerical schemes) can be seen in Reference 110.

The memory requirements for this problem are illustrated in Table 17. The memory
required to store the Jacobian matrix and the ILU preconditioner is shown as a function of
grid size and level of ILU fill-in. The table shows that even for the finest grid considered, the
algorithm memory requirements are relatively modest, especially considering that it is a fully
coupled solution algorithm.

Mesh sequencing was once again used to improve the efficiency of this inexact
Newton-TFQMR algorithm Thus, the solutions presented above for the 140x40 grid were
obtained using a 35x10, 70x20, and a 140x40 ﬁlesh sequence. The total required CPU time
for the initial power-law solution was 1308.1 seconds on an IBM RISC/6000 model 320
workstation with 16 megabytes of main memory. On the final 140x40 grid, only 4 Newton

160

Table 17. Memory requirements of the inexact Newton algorithm versus grid size and level

of ILU fill-in.
Memory (MW)
grid
ILU0) ILU(1) ILU@)
35x10 0.053 0.064 0.087
70x40 0.21 0.26 0.35
140x40 0.85 1.0 14

iterations were needed for convergence, with an average of 171 TFQMR iterations per
Newton iteration using ILU(0) preconditioning. The use of ILU(1) preconditioning reduced
the average TFQMR iterations to 112 but the required CPU time increased to 1412.8
seconds. This implies that ILU(0) preconditioning was sufficient for the 140x40 grid and so
ILU(2) was not considered. However, for other grid sizes the benefits of increased fill-in
may become significant, as was the case for the natural convection model problem. Note that
the additional computer time needed to correct the initial solution was 2604.4 seconds,
approximately twice the computational time needed to obtain the initial solution. This
additional CPU cost §vas due to the 8 additional Newton iterations that were needed on the
final 140x40 grid. Thus, the total required CPU time was 3912.5 seconds. Note that far
fewer Newton iterations were required to correct the power-law solution on the 140x40
nonuniform grid, than were required to correct the previously considered upwind solution on
the 140x40 uniform grid (8 iterations versus 21 iterations). This observation indicates that
the power-law solution on the nonuniform grid was a significantly better approximation to

the corresponding CUI solution than was the upwind solution.

161

TV T

Figure 34. Schematic of coarse 35x10 nonuniform mesh.

30

162

2.0

1.5

0.5 -

0.0 e B S . . —
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

Figure 35. Steady state principal velocity profiles atx =0, 2, 7, 15, and 30
(Re=100, Pec=170, Gr=0).

2.0

1.5+

1.0 4

—o— x=0
Eianten * anasened x=2
———— x=T
lj-————- x=15
- x=30

0.5 -

0.0 ~r—r—

ey Ty

e e e B R e w e a
-0.12 -0.100 -0.075 -0.050 -0.025 0.000

Figure 36. Steady state transverse velocity profiles atx =0, 2, 7, 15, and 30

(Re=100, Pec=170, Gr=0).

v

0.025

163

0 v v T > T L)
0.00 0.25 0.50 0.75 1.00

Figure 37. Steady state temperature profiles atx =0, 2, 7, 15, and 30
(Re=100, Pec=70, Gr=0).

164

165

2.00
175~
1.50 ‘.
125 ':
w01 Hot wall
0.75
0.50 ‘:

0.25 -
T Cool wall

0.00

-0.25 Y T T T ¥ T 1 4 T T T

Figure 38. Steady state Nusselt number variation along both hot and cold walls
(Re=100, Pec=70, Gr=0). ‘

166

Cf*Re

-5 4] 5 10 15 20 25 30

Figure 39. Steady state variation of the friction coefficient, C, Re, along both hot and cold
walls (Re =100, Pec =70, Gr=0).

-0.2 -0.0 02 04 06 08 10 1.2 14 1.6

Figure 40. Steady state principal velocity profiles atx =0, 2, 7, 15, and 30
(Re=100, Pec=70, Gr=1000).

167

2.0

1.5

—o— x=0
e x=2

0.5 -
e x=T

==== x=15

— x=30

0.0
-0.24

Figure 41. Steady state transverse velocity profiles atx =0, 2, 7, 15, and 30
(Re=100, Pec=170, Gr=1000).

T T Y T Y T Y T Y T
-0.20 -0.16 -0.12 -0.08 -0.04

0.00

0.04

168

Figure 42. Steady state temperature profiles atx =0, 2, 7, 15, and 30
(Re=100, Pec=170, Gr=1000).

169

Figure 43.

Nu 1 Hot wall

2.25
200 -
1.75 -
1.50 -
1.25 -
1.00 -
0.75 -
0.50 -

0.25 /
' Cool wall

0.00

-0.25 Y T T T Y T T Y T Y T

Steady state Nusselt number variation along both hot and cold walls
(Re=100, Pec=170, Gr=1000).

170

171

12.0
10.5 1
9.0 -

754

Cf*Re 6.0~

4.5

-5 o 5 10 15 20 25 30

Figure 44. Steady state variation of the friction coefficient, C, Re, along both hot and cold
walls (Re =100, Pec =70, Gr=1000).

172

4.1.4. Forced Convection, Backward Facing Step Model Problem

The forced convection, backward facing step model problem considered in this
section was described previously in Section 2.1.5. In contrast to the previous backward
facing step problem, this problem is characterized by a much higher Reynolds number (300).
Consequently, it is reasonable to assume that the relative importance free convection effects
are relatively small. Thus, for this benchmark problem, the Grashof number (Gr) is set to
zero. The Prandtl number is again assumed to be 0.7 so that the Peclet number assumes a
value of 560. Heat transfer boundary conditions also differ between this step problem and
the previous one. Previously, isothermal upper and lower walls were assumed; whereas in
this case a constant heat flux into the channel is assumed as described in Section 2.1.5.

The high aspect ratio associated with the physical geométry and the high Reynolds
number combine to make this test problem especially challenging. The difficulty is
manifested primarily in the preconditioned Krylov portion of the Newton-Krylov iteration,
but nonlinear convergence troubles were also observed. Note that similar difficulties have
also been experienced recently by Clift and Forsyth [65], with regard to the solution of the
hydrodynamic portion of this problem. They attempted several numerical techniques to
overcome these difficulties, including: a hybrid iteration scheme where a Picard-like
iterative scheme is coupled with a full Newton iteration, several cell ordering strategies, and a
use of what can be referred to as a pre-eliminated ILU(k) precondiﬁdning with relatively high
levels of fill-in (4-5). The required number of nonlinear iterations and inner iterations were
found to be strongly dependent upon both grid size and Reynolds number [65]. Additionally,
Gartling [113], who originally published solutions to the hydrodynamic portion of this
problem, used parameter continuation to enable a solution at a Reynolds number of 800.

The problem considered here is further complicated by the addition of heat transfer

effects. The numerical techniques employed in this section include: study of the

173

combination of the different cell ordering strategies discussed in Section 3.2.3.2 and different
levels of fill-in for the ILU preconditioner used in this work. Additionally, the effects of
using the discrete preésure equation, described in Section 2.1.;2.2; are also considered. Note
that the discrete pressure equation formulation employed here may, in some sense, yield a
preconditioner that is similar to the one produced by the pre-eliminated ILU preconditioner
of Reference 65. Additionally, the benefits of mesh sequencing (see Section 3.1.2), adaptive
damping (see Section 3.1.3), and pseudo-transient relaxation (see Section 3.1.4) are also
considered. Note that the calculations performed in this section were run on HP Model 735

workstations.
4.1.4.1. Cell Ordering Effects on ILU(k) Preconditioner Effectiveness

In this section, different cell ordering strategies are investigated with the goal of
improving the effectiveness of the ILU(k) preconditioners for this test problem. The four
different cell ordering strategies described in Section 3.2.3.2 are considered. However, these
ordering schemes are defined somewhat differently for this model problem geometry. The

different cell ordering schemes applied to this model problem are presented in Figures 45

through 48.
\Y
1 5 9 13 17 21 | 25 29 i 33
2 6 10 14 18 22§ 26 30 ; 34
3 7 11 15 19 23 27 31 {35 | x
4 8 12 § 16 20 | 24 28 32} 36

Figure 45. Schematic of the row ordering scheme as applied to the forced convection
model problem.

174

M

36 | 32 | 28 24 1 20 | 16 | 12
35 131 {27 1 23] 19115 |1
34 130 {1 26 | 22 1 18 1 14 | 10
33 120 {25 | 21} 17 113} 9

i oo
—infw s

Figure 46. Schematic of the reverse row ordering scheme as applied to the forced
convection model problem. ’

by

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 X
28 29 30 31 32 33 34 35 36

Figure 47. Schematic of the column ordering scheme as applied to the forced convection
model problem.

Ly

36 | 35 34 1 33 32 | 31 30 V29 28
27 26 25 24 23 22 ¢ 21 20 i 19
18 17 16 § 15 14 13 12 11 t 10 S

Figure 48. Schematic of the reverse column ordering scheme as applied to the forced
convection model problem.

175 -

As with the previous backward facing step problem, pressure cannot be fixed to a
constant value in the interior of the computational domain because it is already specified on
the outflow boundary. Thus, if the row or column ordering schemes are adopted for this
problem, zero elements appear on the main diagonal that are not filled in during the
incomplete factorization process. Consequently, techniques such as Kershaw's method for
treating unstable pivots (see Section 3.2.3.1), the use of alternative cell ordering schemes (see
Section 3.2.3.2), and the discrete pressure equation formulation (see 2.1.2.2) must be used to
remedy this difficulty. The use of the first two options is the topic of this section.

Table 18 shows performance data obtained for solutions to this forced convection
model problem using various cell ordering strategies and four different fill-in levels with ILU
preconditioning. The power-law discretization scheme was employed. The number of
required nonzero diagonals for storing the preconditioner is indicated in parenthesis for each
of the qell ordering strategies. A three mesh sequence is used to solve this problem. This
sequence consists of a 30x8 grid, a 60x16 grid, and a 120x32 grid. The mesh spacing in the
x-direction and the y-direction are both constant, but assume different values. Shown in this
table for each grid solution are the total required number of Newton iterations (n), the
average number of required TFQMR iterations per Newton iteration (77), the number of
times the inner iteration limit of 200 was encountered (m_,, hits), whether or not Kershaw's
method for treating unstable pivots was necessary, and the total required CPU time for the
three mesh sequence. The symbol 'NS' implies that no solution was obtained within the
allowed 50 Newton iterations, while the symbol 'DIV' implies that the algorithm diverged. A
dashed line indicates the solution was not computed due to failure to converge on a previous
grid. Algorithm divergence was often due to the appearance of a non-adjustable pivot in the
ILU preconditioner following one or more encounters with the upper limit for the inner

iterations. Note that the code terminates on this condition before a divide-by-zero can occur.

176

The results in Table 18 demonstrate that column ordering was a poor choice, while
reverse row and reverse column ordering performed favorably whén convergence was
achieved. The reverse row and reverse column orderings were also successful in eliminating
pivots that needed adjusting by Kershaw's method. Additionally, a marked reduction in inner
iteration counts was observed when the level of ILU fill-in was increased from 0 to 1.
However, the benefits of higher fill-in levels appeared to diminish beyond level 1, while the
memory requirements continued to grow. Thus, the coarse grid information in Table 18
suggests that ILU(1) preconditioning is a good compromise between effectiveness and
memory cost, especially if used with either reverse row or reverse column ordering.

Note from Table 18, that only two solutions were obtained for the 120x32 grid. This
observation illustrates the computational challenge associated with this test problem. Itis felt
that the convergence difficuities on the 120x32 grid were caused by a combination of
problems with both the Newton iteration and the Krylov iteration. The Newton iteration on
this grid yielded some especially difficult linear systems that the preconditioned Krylov
algorithms could not solve within the allowed 200 iterations. In most cases this behavior
either led to very slow convergence or eventually caused algorithm divergence. In only two
cases was the algorithm able to recover and eventually converge within 50 Newton iterations.
It should be noted, however, that those two solutions did encounter the inner iteration limit
during the course of the Newton iteration and so convergence may have been fortuitous. One
possible cause of this undesirable behavior is that the secondary recirculation zone that exists
along the upper wall is not yet resolved on the two coarse grids and so does not appear in
these solutions. However, the 120x32 grid is fine enough to predict the appearance of this
secondary recirculation zone. Consequently, the solutions yielded by the two coarser grids
do not represent a good initial guess with respect to predicting the existence of this secondary
recirculation zone. Thus, the quality of the initial guess is one likely reason for the lack of

performance on the 120x32 grid.

3

177

Table 18. Effect of ordering and level of ILU fill-in on preconditioner effectiveness in

solving the forced convection model groblem.
120x32 Grid

ILU
(k) | Order

30x8 Grid

60x16 Grid

m,,
n @ his Piv.
t’

m
W hits Piv.

n

mm .
m hits P}?V.

CPU
Time
(sec)

oW
(19)

8 39 0 Yes

165

Yes

DIV DIV DIV

Yes

ev.

TOW
0 | 25)

8 24 0 No

74

No

16

170

2

No

2595

col.
(21)

8 20 0 Yes

98

Yes

15

198

13

Yes

2417

Tev.
col.
(23)

DIV DIV DIV No

——

oW
27

8 30 0 Yes

133

Yes

NS

NS

NS

Yes

rev.

row
1 | 45

27

No

DIV

DIV

DIV

No

col.
(33

DIV DIV DIV Yes

rev.
col.
(39)

8 9 0 No

No

DIV

DIV

DIV

No

ToW
43)

9 22 0 Yes

Yes

NS

NS

NS

Yes

Tev.
oW
2 1.33)

No

DIV

DIV

DIV

No

col.
(33)

NS NS NS Yes

Tev.
col.
(63)

8 5 0 No

19

No

DIV

DIV

DIV

No

oW
67

8 0 0 Yes

147

Yes

NS

NS

NS

Yes

Tev.
oW
3 115

8 0 0 No

12

No

DIV

DIV

DIV

No

col.
(83

DIV DIV DIV Yes

Tev.
col.
99)

8 4 0 No

DIV

DIV

No

W

179

Table 19. Effect of ordering and level of ILU fill-in on preconditioner effectiveness in

solving the forced convection model groblem with adagtive_ damEing.
30x8 Grid 60x16 Gnid 120x32 Grid
ILU m,,, m,,, m,,. CPU
(k) |Order] n 7@ hits Pivv] n m hits Piv.] n @ pigs Piv. | Time
? ? ? | (sec)

oW

(19) 134 40 O Yes| 11 165 5 Yes|NS NS NS Yes]| -

Tev.

row |34 26 0 Nojl11 74 O No| 20 170 4 No |3260
0 (25)

col.

21) |34 21 O Yes| 11 98 0 Yes] 22 200 22 Yes |3581

Tev.

co. {NS NS NS No| — = == ce} = = e e | —-

(23)

Tow

2|34 26 0 Yes| 11 133 O Yes|NS NS NS Yes| --

rev.

row |34 11 O No|10 27 O No| 20 66 O No |2343
1 (45)

col. i

(33) NS NS NS Yes| - = = =] - — oo oo | -

Tev.

co. |34 9 0 Noj|10 22 0 No}{ 20 57 O No |1763

(39) :

oW

43) 134 20 0 Yes| 11 99 0 YesiNS NS NS Yes| -

rev.

row {34 0O 0 No|10 28 0 No| 20 59 O No |3656
2 (73)

col.

(53) | 34 NS NS Yes| - = oo e} oo e e e | -

rev.

co. [NS 6 0 Noj|10 22 0 No}{ 19 32 0 No {1980

(63)

TOW

N 134 O 0 Yes|{13 174 9 Yes| NS NS NS Yes| -

rev.

row |34 0 O No|10 15 O No| 20 36 0 No }4495
3 | (115)

col.

(83) NS NS NS Yes| == o= wee e | com oo oo e | e

rev.

2:9091) 34 4 0 Noj|10 48 0 No| 19 98 4 No |7696

178

These observations motivated the use of other techniques to modify the Newton
iteration on this grid. ‘The first of these techniques was use of an adaptively damped Newton
iteration. Table 19 presents analogous performance data for the same runs shown in Table
18, except that the damping strategy of Section 3.1.2 is activated. Damping enabled many
more solutions on the 120x32 grid than were previously possible. Note especially that all of
the solutions, using either reverse row or reverse column orderings with higher levels of ILU
fill-in (k>0), converged within the allowed 50 iterations. Also note that all of the instances of
algorithm divergence observed in Table 18 were avoided with the use of damping. The best
combination of ordering and preconditioning in Table 19 was the use of reverse column
ordering with ILU(1) preconditioning. This calculation resulted in a 27% speed-up compared
_ with the best undamped calculation in Table 18.

In some cases, however, severe damping caused slow convergence. An alternative
that appeared to remedy this difficulty was the switch from the power-law discretization
scheme to the upwind differencing scheme in both the evaluation of the Jacobian and the
residuals (right hand side). This switch (still using mesh sequencing) enabled the number of
required Newton iterations on the 120x32 grid to be reduced from 20 to 10, for the case of
reverse column ordering and ILU(1) preconditioning. The average inner TFQMR iterations
was reduced from 57 to 47. The corresponding CPU time was reduced by a factor of 2.2 to
798.4 seconds. In order to further investigate the effects of grid scaling upon algorithm
performance, this 120x32 upwind solution was then interpolated up to a 240x32 grid. This
finer grid restart calculation required 8 Newton iterations, an average of 119 TFQMR
iterations per Newton iteration, and 3217.5 CPU seconds. In comparing this solution with
that of Gartling [113], it was deemed that additional grid refinement was necessary in order
to obtain quantitative agreement. Finer grid solutions (960x64 grid) are presented in Section
4144.

180

4.1.4.2. Discrete Pressure Equation Formulation

The discrete pressure equation formulation described in Section 2.1.2.2 is another
remedy for avoiding zero elements on the main diagonal of the Jacobian matrix caused by the
lack of pressure explicitly appearing in the continuity equation. Table 20 presents
performance data using this discrete pressure equation formulation (using the power-law
discretization scheme) with various ordering strategies and ILU(k) preconditioners. The
same data presented in Tables 18 and 19 are included in Table 20 for comparison purposes.
Note that use of the pressure equation proved effective in avoiding pivot adjustments during
the incomplete factorization process used to generate the preconditioner. This observation
was true for all the cell ordering strategies considered. The price paid for this benefit,
however, was additional computer memory (as reflected in the larger numbers of nonzero
diagonals requiring storage) and somewhat more complex Jacobian and residual evaluations
due to the enlarged finite volume stencil associated with the discrete pressure equation.
Based upon the two coarser grid solutions, it appears that ILU(1) with column ordering
represents a good compromise between preconditioner effectiveness, memory requirements,

and CPU cost.

e e e e e

181

Table 20. Effect of ordering and level of ILU fill-in on preconditioner effectiveness in
solving the forced convection model problem using the discrete pressure equation

formulation. _ L
30x8 Grid 60x16 Grid 120x32 Grid
LU - m_. M, CPU
k) |Orderf n m hits Pivi] n m hits Piv.] n m hits Piv.] Time
? ? | (sec)
oW -
28) § 11 17 0 No| 10 64 0 No|DIV DIV DIV No| --
rev.
row | 12 42 0 No|DIV DIV DIV No| -~ = = | -
0] (32)
col.
(30) | 12 18 0 No| 10 66 0 No|DIV DIV DIV No| ---
rev.
col.]| 15 131 6 No| O 163 1 No| 29 198 28 No|]6763
(32) |
oW
481 12 10 0 No| 10 35 0 NojDIV DIV DIV No{ ---
Tev. . :
row | 11 7 0 No| 9 25 0 No|DIV DIV DIV No| ---
1 | (66) ‘
col.
G4 | 11 4 0 Noj 10 12 0 No|DIV DIV DIV No| ---
Tev.
col. | 11 7 0 No} 10 25 0 No|DIV DIV DIV No| -
(59)
TOW
(85) [DIV DIV DIV No| -~ == o= coe | coe oo coe eee | e
Tev.
row | 10 0 0 Noj 10 19 0 No|DIV DIV DIV No}| ---
2 13121
col.
99 | 11 2 0 No| 11 7 0 No|DIV DIV DIV No| ---
rev.)
col. | 12 5 0 Nol| 10 82 2 No|DIV DIV DIV No| -
(108)
TOW
(1471 10 0 0 No| 10 72 1 No|DIV DIV DIV No| ---
TEV.
row | 10 0 0 No| 11 2 0 No|DIV DIV DIV No| ---
3 1(213)
col.]
(173)] 10" 1 0 No| 11 4 0 Noi{DIV DIV DIV No| --
Tev. \
(cg}i) 12 3 0 No| 12 57 2 No|DIV DIV DIV No| ---
1

182

, A discouraging aspect of these results is the appearance of the same conkvergence
problems on the 120x32 grid that were experiénced pre‘viously. Consequently, adaptive
damping was once again activated in attempt to overcome these convergence difficulties.
The performance data using damping with ILU(1) preconditioning is shown in Table 21. In
this case, a damped Newton iteration avoided the algorithm divergences that appeared in
Table 20, but convergence was slowed to the point that no calculation converged within the
allowed 50 iterations. This trend again suggested the switch to upwind differencing in place
of the power-law discretization scheme. This switch proved effective again in that
convergence on the 120x32 grid using mesh sequencing was enabled after just 10 Newton
iterations using column ordering. The required inner TFQMR iterations per Newton step was
19, and tht;, total required CPU time was only 760.8 seconds. This solution was again
interpolated up to a 240x32 grid in order to further investigate performance on a finer mesh.
This restarted calculation required 9 Newton iterations, an average of 44 inner TFQMR
iterations per Newton step, and 2191.1 CPU seconds. Thus, the 240x32 grid solution
obtained using the discrete pressure equation formulation was 32% faster than the previous
solution obtained using the continuity equation. This improved efficiency motivated the use
of the discrete pressure equation formulation, upwind discretization, ILU(1) preconditioning,

and column ordering for all subsequent calculations.

¥ 4

Table 21. Performance data obtained using an adaptively damped Newton iteration with the
discrete pressure equation formulation and ILU(1) preconditioning.

30x8 Grid 60x16 Grid 120x32 Grid
m.,.. Y m,.. Moy
Order n M hits Pg'v. N m his Pi?v. nm his P}’v
row (48) 45 16 0 No|1ll 40 O No|NS NS NS No
rev.row(66)| 45 10 O Noj 11 31 O No|{NS NS NS No
col. (54) 45 5 0 Nofli1l 11 O NoINS NS NS No
rev.col.(59)| 45 9 6 No|11 25 0 No|NS NS NS No

183

4.1.4.3. Pseudo-Transient Calculations

The pseudo-transient calculation technique discussed in Section 3.1.4 is another
technique that helps to improve the robustness of a Newton-type algorithm. This technique is
especially useful if mesh sequencing and adaptive damping prove to be either ineffective or
unreasonable. For example, if one has a solution on a fine grid and only wants to perturb a
flow parameter in order to obtain a different solution on the same grid, mesh sequencing may
not be warranted. Furthermore, mesh sequencing is a valuable tool only if the coarse grid
solution is a good approximation to the fine grid solution. Additionally, a damping strategy
based only on temperature changes (such as that employed here) may not prove efficient in
certain instances. In these situations, a pseudo-transient calculation can be a useful tool to
improve the convergence behavior of the Newton-Krylov algorithm.

Consider the 120x32 grid solution to the forced convection flow model problem of
interest in this section. Recall from previous discussions that convergence difficulties were
experienced on this grid unless the adaptive damping strategy was activated, even with the
use of mesh sequencing. It is of interest to investigate the use the pseudo-transient
calculation technique to overcome the;e convergence difficulties instead of the use of
adaptive damping. Consequently, a pseudo-transient calculation was initiated on this 120x32 '
grid starting from a flat initial guess (u=1, v=p=0, T=0.5) using the discrete pressure equation
formulation, upwind discretization, ILU(1) preconditioning, and column ordering. In this
case the GMRES(20) algorithm was selected as the Krylov solver in order to enable
consideration of efficient matrix-free implementations. The time step was initialized to a
small value (4.2x1073) near the explicit stability limit and then allowed to vary according to
Equation (126). The standard (no matrix-free) pseudo-transient calculation required 86
Newton iterations with an average of 6 GMRES(20) iterations per Newton step. The total

required CPU time was 2540.1 seconds. The final time step size was on the order of 1x105,

184

Note that the CPU time required for this calculation is more than 3 times larger ;han the
previous calculation using mesh sequencing and ac}aptive damping. However, this
calculation offered the advantage of starting from the fine grid and did not require a damped
Newton iteration. ’

One technique that is commonly employed to improve the efficiency of a Newton
iteration is the use of a simplified or modified Newton where the Jacobian is frozen for one
or more iterations. The underlying idea is that the number expensive Jacobian evaluations
and, in the case of a direct-Newton iteration, expensive factorizations can be reduced. In the
case of a Newton-Krylov algorithm the factorization expense is relevant only with regard to
the formation of the preconditioner, but the Jacobian evaluation expense still applies directly.
Consequently, the idea of evaluating the Jacobian and preconditioner only every tenth
pseudo-transient Newton iteration was considered (i.e., d =10). This calculation required
242 pseudo-transient Newton iterations with an average of 13 inner GMRES(20) iterations
on each outer iteration. The total required CPU time increased from the previous value of
2540.1 seconds to 2802.0 seconds. Thus, this technique did not prove effective because the
reduced number of Jacobian and preconditioner evaluations was outweighed by the slower
convergence caused by the lagged Jacobian.

A remedy for this convergence degradation, however, is the use of the matrix-free
implementation. This implementation enables the effects of the true Jacobian to be captured
in the Jacobian-vector products of the inner GMRES(20) iteration without explicitly forming
the Jacobian. Thus, the Jacobian and preconditioner can be frozen without suffering the
significant slow down in convergence observed previously. The main consequence in this
approach is that the preconditioner is still lagged, and so the average inner iterations per
Newton step may rise compared to the situation when the preconditioner is updated on each
pseudo-transient Newton iteration (e.g., 13 versus 6). The significance of this consequence is

that the number of function evaluations [Equation (95)] is now directly tied to the average

185

number of inner iterations because of the use of Equation (165). The goal of this approach is
to keep the number of inner iterations low, while still lagging the Jacobian and
preconditioner. In this manner, the cost of these evaluations are amortized over many
pseudo-transient Newton iterations. The benefits of this amortization, however, will be
significant only if the total number of function evaluations are reduced. As an example, the
previous calculation was re-run using the matrix-free implementation. In this case, the total
number of required pseudo-transient Newton iterations was 84, the average inner
GMRES(20) iterations per outer iteration was 12, and the total CPU time was 2382.5

seconds. Recall from Table 1 in Section 3.2.4 that the "break even" value for the average

inner iteration count (77,,) for this case was 12.6. Since the average number of inner
iterations (77) was only 5% less than 77,,, only a 6% reduction in total CPU time was
observed. In this case, the CPU time reduction was also partly due to the fact that two fewer
pseudo-transient Newton steps were required. Note that this savings could likely be
improved if additional effort was expended to determine the optimal Jacobian evaluation
frequency, and to effeciently lower m through the use of more effective preconditioning or
the use of smaller time steps. For completeness, note that this approach is extremely
attractive in other applications where the Jacobian evaluation is the dominant portion of the
overall calculation [e.g., see 15]. These applications are typically characterized by a larger
system of strongly coupled governing equations (i.e., multi-species flow) that requires many
function evaluations to explicitly form the Jacobian matrix. As a result, 77, is typically .
much higher than the value of 12.6 encountered for the model problem of this section. In
these situations, the use of the matrix-free implementation within a pseudo-transient
calculation may enable a significant reduction in the total required number of function

evaluations, thereby improving CPU efficiency [e.g., see 15].

186

4.1.4.4. Solutions

Solutions to the forced convection model problem obtained using a 960x64 grid are
presented in this section. This fine grid solution was obtained in three stages starting from
the 240x32 grid solution mentioned previously. At each stage the hydrodynamic solution
was compared with the results of Gartling [113] in order to determine if additional grid
refinement was necessary. The discrete pressure equations formulation was employed in all
cases using upwind discretization, ILU(1) preconditioning, column ordering, and adaptive
damping. The steady state equations were solved directly without any pseudo-time
marching. First, the 240x32 grid solution was interpolated up to a 480x32 grid.
Convergence on that grid required 7 Newton iterations, an average of 103 TFQMR iterations
per Newton step, and 6873.1 CPU seconds (using a slightly faster HP Model 735 workstation
than previously employed). Next, this solution was interpolated up to a 960x32 grid; which
required 9 Newton iterations, an average of 143 TFQMR iterations pér Newton step, and-
24,279 CPU seconds (6.7 hours). The final stage of the calculation refined the mesh in the
transverse direction so that convergence was obtained on a 960x64 grid. This calculation-
required only 6 Newton iterations, but an average of 335 TFQMR iterations per Newton step
(the maximum inner iteration limit was increased to 500 for this single run). The CPU time
required to obtain this solution was 22.5 hours. Note that all figures associated with this
latter solution (as discussed below) are accumulated at the end of this subsection.

The stream function and temperature contours for this 960x64 grid solution are shown
in Figures 49 and 50, respectively. Both of these contour plots were truncated at x=10 for
clarity and because this is the region where most of the interesting flow phenomena occur.
The stream function contours show that the flow detaches at the step causing a primary
recirculation zone to form at the step corner. The flow reattaches to the lower wall at

approximately x=5.6. Note that Gartling's solution predicted this reattachment length at

187

x=6.1 [113] (approximately an 8% difference). This figure also shows the secondary
recirculation zone that appears along the upper wall. Downstream from the end of this
figure, the flow reattaches and begins to resemble a fully developed channel flow. The
temperature contours in Figure 50 illustrate the high temperature regions that occur in the
recirculating zone at the step corner and, to a lesser degree, the recirculating zone along the
upper wall. Also visible is the lower temperature core flow surrounded by higher
temperature fluid near the walls. These contours also show the rise in the temperature of the
fluid as it moves downstream from the step.

The principal u-velocity profiles at x=7 and x=15 are shown in Figures 51 and 52,
respectively. The secondary recirculation zone appearing along the upper wall is apparent in
the velocity profiles shown in Figure 51, as is the shift in the location of the peak velocity
towards the lower wall. Reasonable agreement with Gartling's solution is obtained
(approximately 8.5% difference in peak velocities), especially considering that the position of
the secondary recirculation zone occurs slightly further upstream in the current solution
compared with Gartling's solution. Figure 52 shows that at x=15, the flow begins to resemble
a fully developed profile. Again, reasonable agreement is obtained with Gartling's solution
(less than 6% difference in peak velocity).

The heat transfer aspects of this solution are reflected in the Nusselt number data of
Figure 53 and the temperature data of Figure 54. The Nusselt number along both the upper
and lower walls are shown in Figure 53. Along the upper wall, the Nusselt number is
initially high because of the higher velocities associated with the narrower inlet channel. Its
value quickly drops until a minimum is reached in the region of the secondary recirculation
zone along the upper wall. Further downstream, the upper wall Nusselt number approaches
8.235, the value expected for fully developed channel flow with a uniform wall heat flux [see
2 and 111]. The lower wall Nusselt number is low in the region of the primary recirculation

zone at the step comner, but then reaches a peak value in the region of the secondary

188

recirculation zone, where the peak fluid velocity is located nearer to the lower wall. Again,
further downstream the lower wall Nusselt number approaches the expected vaIQe for a fully
developed channel flow with a uniform heat flux. Figure 54 shows that bulk fluid
temperature increases monotonically because of the uniform heat flux into the channel. The
upper wall temperature rises in the secondary recirculation zone, while the lower wall
temperature is especially high at the step corner because of the primary recirculation zone.

The agreement between the current solution and the hydrodynamic solution of
Gartling improved each time the grid was refined. On the 960x64 grid, the reattachment
point data and peak velocities at x=7 and x=15 differed by less than 10%. This agreement is
reasonable considering that Gartling used an adapted finite element mesh with a second order
accurate discretization scheme and very fine meshes. However, in retrospect, it is not clear
whether the additional accuracy obtained on the finest grid (compared with the coarser mesh
solutions) really warranted the additional CPU cost. The use of the defect correction
procedure discussed previously in order to obtain a higher order accurate solution on a
coarser grid may have been a better alternative in this case. On the other hand, the 960x64
grid solution (245,760 unknowns) demonstrates the viability of Newton-Krylov solution

algorithms for solving large problems.

189

Figure 49. Stream function contours [-0.298692 (0.025) 0.201308] from the 960x64 grid
solution to the forced convection model problem. The stream function is set to
zero along the upper wall.

190

0.25 '

Figure 50. Temperature contours [0 (0.25) 5] from the 960x64 grid solution to the forced
convection model problem.

191

Gartling Solution

—o0— 960x64 Grid

Figure 51. Principal velocity (4) profile at x=7 from 960x64 gnd solution to the forced
convection model problem.

0.5

041
031
021

0.1~

0.1 -
-0.2 -
-0.3

-0.4 -

— GQartling Solution
—o— 960x64 Grid

6.0 0.2

Figure 52. Principal velocity (u) profile at x=15 from 960x64 grid solution to the forced

convection model problem.

0.6 0.8

1.0

192

193

20

16 4
Lower Wall

12 +

Nu

8 -
Upper Wall

4 -

0 T T

0 10 20 30
X

Figure 53. Axial Nusselt number variation along both the upper and lower walls in the case
of the forced convection model problem.

194

Lower Wall

0 10 20 30

Figure 54. Axial upper and lower wall and bulk temperature variation in the case of the
forced convection model problem.

195

4.2. COMPRESSIBLE FLOW

The objective of this section is to demonstrate the effectiveness of inexact Newton-
Krylov solution techniques for steady state calculations of low Mach number compressible
flow problems. Generally, a flow is considered incompressible if the Mach number is
approximately less than 0.3 [8]. However, solution of the compressible flow equations in this
Mach number regime is still important in instances where: the low Mach number region is
imbedded within a high speed flow, and other flow situations where density variations are
important, i.e., chemically reacting flow and flow with significant heat transfer. Thus, the
purpose of this section is to investigate the efficiency of the numerical techniques described
in Chapter 3 when confronted with these low Mach number flow regimes.

Newton-Krylov algorithms and finite volume discretization are used to solve the
steady, compressible Navier-Stokes and energy equations that were presented in Section
2.2.1. The main problem of interest is the problem of low Mach number flow pasta
backward facing step that was described in Section 2.2.3. Solutions to this problem are used
to investigate performance differences among the various Krylov algorithms considered and
the to determine effective preconditioning strategies for these Krylov algorithms at low Mach

numbers.
4.2.1. Important Computational Issues

Mathematically, the time dependent compressible Navier-Stokes system of equations
becomes very stiff (i.e., a wide disparity in the system matrix eigenvalues) at low values of
the reference Mach number [see 163]. This stiffness is observed in the form of a wide
disparity in the time scales associated with convection and those associated with acoustic

waves. Consequently, explicit numerical schemes must honor the more restrictive Courant

196

limit associated with the acoustic speed [164]. Thus, use of an explicit time marching
scheme for steady state calculations becomes inefficient at low Mach numbers. An
alternative is the use of implicit schemes that avoid this overly restrictive stability limit.

' However, many implicit schemes are based on some sort of approximate factorization
technique [36, 61]. Typically, errors associated with the approximate factorization restrict
the Courant-Fredricks-Lewy (CFL) [see 19] number to a certain value above which
convergence slows. This optimal CFL number for low Mach number flows is elusive
because the wide disparity in system eigenvalues causes a wide disparity in optimal CFL
numbers [see 163, 165, 166, 167, 168]. As a result, the CFL number is often restricted to
small values at low Mach numbers. The use of a fully coupled, simultaneous solution
technique, without use of any approximate factorizations, introduces no such errors, and so
its convergence is not strongly dependent upon the CFL number. However, the problem
persists to some extent, in that the ill-conditioned linear systems that arise on each iteration
may be difficult to solve, especially using iterative techniques. The source of this difficulty
is the pressufc dependence in the momentum equations. Pressure is not taken to be one of
the dependent variables in this work, and so it is replaced with Equation (67), the state -
equation. The result of this substitution is that large off-diagonal terms appear in the
Jacobian matrix on rows corresponding to the momentum equations. These terms are
inversely proportional to the Mach number squared, whereas the other terms (if properly
scaled) are of order unity. This situation leads to poorly conditioned Jacobian matrices that
are difficult to solve iteratively, making selection of an appropriate preconditioner an
important task. This selection is given considerable attention in Section 4.2.2.2 below.
Additionally, the use of the pseudo-transient relaxation technique described in Section 3.1.4
can also be an effective way to alleviate problems associated with iteratively solving these ill-

conditioned linear systems.

197

For completeness, it is important to mention other techniques for dealing with the
disparate time scales associated with low Mach number flow. The first of these are
perturbation methods, in which flow variables are expanded in terms of a small parameter,
typically the Mach number or its square [see 167, 168]. The problem with these methods is
that they are only valid at low Mach numbers and not at moderate or high Mach numbers.
Other techniques, which are valid for a wide range of Mach numbers, are referred to as
"preconditioning” methods [see 163, 164, 166, 165, 168, 169]. These methods should not be
confused with the preconditioning discussion contained in Section 3.2.3. Typically these
methods represent some sort of generalization of the‘ artificial compressibility méthod to
compressible flows, with the goal of reducing the acoustic speed to levels comparable to the
fluid speed in order to overcome the stiffness problems rﬂentioned previously [164]. The
basic technique is to modify certain time terms in such a way that the alterations vanish at
convergence [see 163, 164, 166, 165, 168, 169]. The reason for the term "preconditioning” is
because the modified time term can often be expressed as a new matrix multiplying the
original time term [163]. Because this investigation is primarily interested in direct steady
state calculations (i.e., not time marching), these techniques for "preconditioning” certain
troublesome time terms have not been considered. Although, it is noted that these techniques
may be useful within the context of transient and pseudo-transient calculations.

Another troublesome issue that arises for low Mach number flows is associated with
the absolute value of pressure. The magnitude of the pressure scales proportionately with the
inverse of the square of the Mach number according to Equation (67). Thus, while other flow
variables are typically of order unity, the pressure can become quite large [163, 164, 168].
The difficulty is then manifested in round-off errors that occur when differences in pressure
are computed to approximate derivatives that are used in the momentum equations. These
errors can accumulate to produce inaccurate solutions. Ramshaw and Mousseau {164] and

Pletcher [163] have estimated that this issue is important (assuming reasonable machine

198

precision) when the Mach number is below approximately 10 —107. Since the lowest
Mach number considered in this work (2.5x107%) is well above these values, this issue is not
an immediate concern. However, for smaller Mach numbers, remedies such as the
introduction of the gauge pressure as a dependent variable should be considered [see 163,

164, 168].
4.2.2. Backward Facing Step Model Problem

Solutions to the low Mach number backward facing step model problem described in
Section 2.2.3 are presented here. Algorithm performance is investigated using different
Krylov algorithms and preconditioning strategies for various values of the reference flow
Mach and Reynolds numbers. The Newton iteration convergence criteria specified by
Equation (102) was employed, while the inner iteration corlvergence tolerance in Equation
(127)is €" =1x1072. An upper limit of two-hundred is specified for the number of inner

iterations on each Newton step.
4.2.2.1. Comparison of Different Krylov Algorithms

The advantages and disadvantages of the Lanczos-based and Armoldi-based
algorithms are compared and contrasted in this subsection. Figure 55 shows the outer
Newton iteration convergence history for five different Newton-Krylov algorithms in solving
a 16x80 problem [(x-cells) by (y-cells)] from a flat initial guess with an inlet Mach number of
0.25 and a Reynolds number of 100. Note that ILU(2) preconditioning was used to
precondition each of the Krylov algorithms.’ Although convergence was obtained using each

algorithm, the Lanczos-based Krylov algorithms enabled better convergence for this specific

199

10!
—— Newton-CGS
100 —+— Newton-TFQMR
' —o0— Newton-BCGSTAB
10-1 —— Newton-GMRES(20)
2 —+— Newton-GMRES(40)
10°
, 103
o
R, 10-4
10°5
10-6
10-7
10-8 | S ¥) | 1 * ¥ * [§ * 1 hd |]

0 5 10 15 20 25 30

Newton Iterations

Figure 55. Convergence history of five different Newton-Krylov algorithms.

.problem. This difference in convergence behavior was traced primarily to the second
Newton step, which in all cases yielded an especially difficult linear system. The GMRES
ﬂgoﬁ&xms experienf:c*;d stall because of their restricted Krylov subspace dimensions, and so
did not converge within the allowed two-hundred inner iterations. In fact, the GMRES(20)
algorithm also did not converge on the first Newton step. The Lanczos algorithms, although

200

requiring a large number of iterations, were able to converge within this inner iteration limit.
This feature enabled these latter algorithms to move past this difficult linear system by the
next Newton step. In contrast, the GMRES algorithms returned relatively poor Newton
updates, which subsequently required damping. Consequently, more iterations were needed
to move past this difficult part of the calculation. Damping was initiated for the GMRES(20)
algorithm on the first Newton step so that the severity of the poor update returned on the
second step was mitigated in comparison with the GMRES(40) algorithm. As a result, more
stringent damping was needed in the case of the Newton-GMRES(40) algorithm, thus
explaining why it required the most iterations. Keep in mind, however, that the initial guess
strongly affects the convergence of Newton algorithm, and that preconditioning strongly
affects the performance of the Krylov algorithms. In fact, results in the next section suggest
that ILU preconditioning is likely not the most effective preconditioner for problems of this
type.

The behavior discussed above demonstrates how the Krylov iteration can
significantly affect the overall performance of the Newton-Krylov algorithm. Thus, it is
instructive to examine the behavior of these different Krylov solvers. Figure 56 presents the
convergence history of the different Krylov algorithms in solving the linear system on the
first Newton step of this calculation. The first Newton step was selected because this is the
only Newton iteration where each of the Krylov algorithms are solving the same linear
system. Observations indicate that GMRES(p) converges rapidly if the required inner
iterations are less than the specified dimension of the Krylov subspace, p. If frequent restarts
are necessary, however, the convergence curve may flatten considerably to the point of stall.
Specifically, notice that the convergence of GMRES(40) is very strong on this first Newton
step, whereas the convergence of GMRES(20) is very poor beyond 20 iterations because of
algorithm restarts. Recall from the discussion above, however, that GMRES(40) also
encountered stall on the next Newton step. The CGS algorithm works well overall, but does

201

exhibit very erratic convergence behavior as shown in Figure 56. The Bi-CGSTAB exhibits
more smoothly converging solutions, but can still exhibit oscillatory behavior. The TFQMR

convergence curve is smooth, although somewhat flat during the intermediate iterations.

105
CGS

104 TFQMR

103 Bi-CGSTAB
GMRES(20) |

102 GMRES(40)

101

i
R n 10 0

Converged after
135 iterations

10-2 f 2
-3 . .
10 Convergence Criteria b
10-44 . Y . r .
0 20 40 60

Inner Iterations

Figure 56. Comparison of cbnvergence behavior of different Krylov solvers.

202

The TFQMR algorithm was selected for subsequent calculations in the next section
because of its smaller storage requirements compared with the GMRES algorithms and its
observed smootiwr convergence behavior compared with the other Lanczos based algorithms.
Note that the storage requirements for the GMRES(40) algorithm is roughly four times that
of the Lanczos-based algorithms and twice that of GMRES(20) (just considering Krylov

algorithm memory requirements).
4.2.2.2. Preconditioner Effectiveness

The efficiency of the overall solution is strongly tied to preconditioner performance.
Consequently, the effectiveness of ILU(k) and domain-based additive/multiplicative Schwarz
preconditioners are investigated in this section for various values of the flow Mach and
Reynolds numbers. Preconditioner effectiveness is measured not only by lower inner
iteration counts, but also by CPU efficiency and memory cost. The latter two measufcs also
being dependent upon either parallel or serial implementation; however, only a serial
implementation is considered here. Note that ILU preconditioning was applied from the
right, while the domain based preconditioners were applied from the left. Numerical
experiments, howe\.rer, suggested that solution performance was not sensitive to this choice,
mainly because the true inner residual was computed on each iteration so that the
preconditioner was not allowed to influence the inner iteration convergence criteria.

Table 22 presents the memory requirements for both ILU(k) and domain-based
preconditioning on a uniform 16x80 grid. The ILU data assumes a reverse row type ordering
(see Section 3.2.3.2). This ordering scheme performed better than the other schemes
described in Section 3.2.3.2. Recall that these types of ordering schemes were the only ones
considered here because of their simplicity and because they yielded banded matrix structures

that were easily exploited using a non-zero diagonal storage scheme. The ILU preconditioner

e e e SUNUS e ————

203

memory fequirements are presented as a function of the level of fill-in, &, and represent the
storage required for the non-zero diagonals listed in the second column. Note that ILU(3) is
equivalent to a full factorization of lthe Jacobian without pivoting, and as such it can no
longer be considered an incomplete factorization.

The domain-based preconditioner storage requirements in Table 22 are listed as a
function of the selected sub-domain blocking strategy and the amount of overlap shared by
adjacent sub-domains. The data was obtained using a full LU factorization for each sub-
domain using LINPACK banded Gaussian elimination [17]. The same preconditioner
memory is required regardless whether additive or multiplicative Schwarz type
preconditioning is selected. Reference names used to identify the different domain-based
preconditioner selections in subsequent discussions are listed in column seven of Table 22.
The direct solve memory requirements using the LINPACK routines is given by the limiting
1x1 blocking case (8.3MB). This number is larger than the ILU(3) case because of the
additional memor); used for pivoting. Note that the 1x5 blocking selecﬁon without overlap
incurs the same storage requirement as the direct solve, and if a two-cell overlap is chosen
the storage requirements actually exceed that of the direct solve. Although, from a storage
point of view, these two selections are impractical on a single processor, they may be good
selections on a distributed memory system where the per processor storage requirements
would be considerably less. Note that the blocking strategies listed in Table 22 were selected
to ensure that each subdomain contained the same number of cells in both the x and&
directions. Although, this domain-decomposition is a convenient choice, it may or may not
be the best choice regarding preconditioner efficiency. The optimal blocking strategy is
likely problem and geometry dependent. Consequently, some numerical experimentation
may be needed before the optimal domain decomposition is determined for a given problem

and geometry.

204

Table 22. Preconditioner memo uirements for a uniform 16x80 grid.
ILU(k) Preconditioning Domain Based Preconditioners
(reverse row ordering) [Additive Schwarz (AS) and Multiplicative Schwarz (MS)]
non- # blocks | # blocks
k zero | Memory in in overlap Reference Name Memory
diagonals | (MB) x-dir. y-dir. cells : (MB)*
0 35 14 4 20 0 4x20-0-AS & 4x20-0-MS 2.4
1 59 24 2 10 0 2x10-0-AS & 2x10-0-MS 4.3
2 94 39 4 20 2 4x20-2-AS & 4x20-2-MS 53
3 138 2 10 2 2x10-2-AS & 2x10-2-MS 6.8
1 5 0 1x5-0-AS & 1x5-0-MS 83
1 1 0 1x1 8.3
1 5 2 1x5-2-AS & 1x5-2-MS 9.3

Bascd on the use of LINPACK banded Gaussian elimination (with pivoting)
** Results in a full LU factorization (no pivoting).

Table 23 presents performance data for the preconditioners listed in Table 22 in
solving six different flow conditions identified by three different inlet Mach numbers and two
different flow Reynolds numbers. The required number of Newton iterations (n), the average
number of TFQMR iterations per Newton step (77), and the total CPU time (sec.) are
presented for each preconditioner selection. >This data was obtained on a sihgle HP Model
735 workstation using a uniform 16x80 grid. The 'NS' abbreviation in Table 23 indicates that
no solution was obtained within the allowed twenty-five Newton iterations, while a
superscript dn the Newton iterations counter indicates the number of times the inner
iterations encountered the upper limit of two hundred iteratiéms. Nofc that the preconditioner
selections are listed in ascending order with respect to memory requirements as indicated in

Table 22.

205

Table 23. Algorithm performance data for various flow Mach and Reynolds numbers on a
uniform 16x80 grid (n = total Newton iterations, 7 = average inner iterations per Newton
iteration, NS = No Solution).

—_———___—_—-————:—._'—'—_'—_—__—_————————-_—'_——

Mach #=0.25 Mach # = 0.025 Mach # = 0.0025
Precond. CPU CPU CPU
Re | Selection n m (sec) n m (sec) n m (sec)
ILUO) NS NS NS NS NS NS NS NS NS
4x20-0-AS| 8 93 178 T 140 222 75 184 325
4x20-0-MS| 7 50 124 7 73 168 NS NS NS
ILU) NS NS NS NS NS NS NS NS NS
ILU2) 8 39, 431 NS NS NS NS NS NS
2x10-0-AS| 8 41 120 7 62 145 7 110 235
2x10-0-MS| 7 21 81 7 30 103 NS NS NS
4x20-2-AS| 8 82 251 7 109 305 8 141 435
100 | 4x20-2-MS} 7 28 132 7 44 188 7 72 286
ILUQ3) 7 0 178 7 0 180 7 0 179
2x10-2-AS| 7 40 134 7 54 169 7 71 210
2x10-2-MS| 7 18 93 7 26 120 7 47 188
1x5-0-AS 8 19 106 7 26 114 7 39 151
1x5-0-MS 7 9 70 7 11 76 7 19 103
1x1 7 0 43 7 0 43 7 0 43
1x5-2-AS 7 18 96 7 21 107 7 33 142
1x5-2-MS 7 7 70 7 8 72 7 12 147
ILU(0) 9 109 319 NS NS NS | NS NS NS
4x20-0-AS| 7 85 145 6 140 191 62 166 222
4x20-0-MS} 7 48 121 6 64 131 NS NS NS
- ILU®) 7 6 71 NS NS NS NS NS NS
ILUQ2) 7 2 105 NS NS NS NS NS NS
2x10-0-AS} 7 38 101 6 58 120 6 86 164
2x10-0-MS} 7 22 85 7 22 85 NS NS NS
4x20-2-AS| 7 58 179 6 73 184 5 97 197
10 | 4x20-2-MS} 7 22 115 7 25 125 5 40 126
ILUQ@B3) 6 0 153 4 0 103 5 0 128
2x10-2-AS| 6 30 96 6 39 114 5 49 115
2x10-2-MS| 6 14 69 6 15 74 5 28 92
1x5-0-AS 7 15 86 6 21 89 5 23 79
1x5-0-MS 6 - 8 63 5 9 56 6 12 73
1x1 6 0 38 4 0 26 5 0 32
1x5-2-AS 7 13 82 6 11 67 4 16 55
1x5-2-MS 6 5 56 6 5 54 5 7 51

—

206

The ILU(k) preconditioners were generally less reliable for lower valqes pf the flow
Mach number as seen in Table 23. In fact for k<2, solutions using ILU(k) preéoﬁditioning
were obtained only for an inlet Mach number of 0.25, and only ILU(2) enabled a converged
solution for Re=100 at that Mach number. Since the effectiveness of the ILU(k)
preconditioners is dependent upon the problem size, the poor performance of these
preconditioners worsens as the grid is refined. Comparing the full factorization, ILU(3) data
with the full factorization, 1x1 blocking data shows that the LINPACK routines are about 4
times faster than the ILU routine when computing full LU factorizations. For this reason,
ILU(3) is not a practical choice ﬁoﬁ a CPU efficiency point of view. In contrast to the ILU
data, the domain based preconditioners generally performed well at the lower Mach numbers
as indicated in Table 23.

Multiplicative Schwarz preconditioning outperformed additive Schwarz
preconditioning in most cases, except at the lowest inlet Mach number considered when
using the 4x20 and 2x10 blocking suategies without overlap. In those cases, both additive
and multiplicative Schwarz preconditioners experienced difficulty solving the linear system
of the first Newton step. However, the TFQMR algorithm using the multiplicative Schwarz
preconditioners returned a poor Newton update that resulted in a singular sub-domain matrix
on the next Newton step. A possible remedy for this behavior might be to start the |
calculation from a better initial guess using mesh sequencing, parameter continuation,
pseudo-transient relaxation, or some other convergence enhancement technique.

The use of overlap among sub-domains reduced inner iteration counts, but this effect
did not always mean lower CPU times as shown in Table 23. Note, however, that only a
small amount of overlap was allowed. Further investigation is needed before more specific
observations regarding the benefits of overlap can be determined. Specifically, the optiinum
amount of overlap that balances preconditioner effectiveness with memory requirements and

CPU cost needs to be determined.

P PR

207

Generally, the fewest number of sub-domains produced the best results on this coarse
16x80 grid. In fact the 1x1 blocking (single sub-domain) produced the best results for all 6
flow conditions. However, on finer grids this selection may be impractical for several
reasons: first, the high memory storage cost; second, the full LU factorization becomes more
expensive as the grid is refined [12] so that this trend is not expected to continue indefinitely;
and third, a single domain is not amenable to parallel implementation. The last reason
highlights another important advantage of the domain-based preconditioners, namely parallel
implementation. The additive Schwarz preconditioners can be parallelized readily, while the
multiplicative Schwarz algorithms can be parallelized using multi-coloring schemes. In this
manner, both preconditioners allow the CPU and memory costs to be distributed over several
processors. See Reference 16 for examples of parallel implementations of these specific

domain-based preconditioners on both distributed and shared memory computers.
4.2.2.3. Solutions

This Section presents physical solutions for this backward facing step test problem
using a 32x160 uniform grid. Solutions are presented for each of the considered Mach
ﬁumbers appearing in Table 23 and a Reynolds number of 100. Based upon the results in
Table 23, the 1x5 blocking strategy was selected with no overlap for use with the
multiplicative Schwarz algorithm. Because of the low Mach numbers considered, the
velocity field and Mach number variation are of primary interest because the scalar
temperature, density, and pressure fields are relatively flat. Consequently, only flow Mach
number contours and velocity vectors are presented for each Ma;:h number at the fixed
~ Reynolds number. Figure 57 presents these plots for an inlet Mach number of 0.25, while
Figure 58 and Figure 59 present these plots for inlet Mach numbers of 0.025 and 0.0025,
respectively. Note that the velocity vectors presented in these figures have been spaced

208

(four-cell spacing in each direction) for better clarity. Especially noticeable in the each of
these plots is flow separation that occurs just downstream from the step and the subsequent
zone of flow recirculation that occurs near the step corner. Note the marked reduction in the
flow Mach number within the region of recirculating flow. The flow eventually reattaches
(at approximately y=2.8), and at the outlet, the flow profile appears to be fully developed.
Because all the Mach numbers considered lie within the incompressible flow regime, the
velocity flow patterns do not change significantly as the Mach number is reduced (as one
would expect). However, the computational effort required to obtain these solutions is
different because of the higher condition numbers of the Jacobian matrices that arise for the
lower Mach numbers. For an inlet Mach number of 0.25, 5 Newton iterations were required
to converge to the 32x160 grid solution using the 16x80 grid solution as an initial guess. An
average of 10 TFQMR iterations per Newton iteration and 409.8 seconds of CPU time were
required . When the Mach number is dropped by an order of magnitude to 0.025, the
required Newton iterations were 4, but the average TFQMR iterations increased to 17. The
required CPU time increased by 6% to 434.6 seconds. This trend was continued when an
inlet Mach number of 0.0025 was ﬁsed. In this case 5 Newton iteratiohs were required, while
the average TEQMR iterations was 16 and the required CPU time was 693.4 seconds (@70%.
increase from the highest Mach number case). This data and that presented in Table 23
clearly demonstrate that the higher condition numbers of the Jacobian matrices at low Mach
numbers makes solutions of the linear systems at each Newton step more difficult. This
feature, in turn, makes effective preconditioning a very important task at these low Mach

numbers.

0.0 s
0.5

x 1.0 = —02

J) —
1.5 F¥025 G 0.075 ———=
2.0 —

Y

0.25

0.125

.2 4 6 8 10
y

(a) Mach number contours.

0.0 p—

0.5 |

— — — — ——p — A . T S — . s e e S T S e i ity i

N amnc e e i ac Jas Am

X 1.0}

15"

EaodEe e e S S o e e dna i el

I T e

D T T N e e e d

. e e e e e s e w s s e s e e e e . e mm e s = e e S e S e S SR TS SO

209

0

N 4 6 8 10
y

(b) Velocity Vectors (four-cell spacing used in both directions).

Figure 57. Mach number contours () and velocity vectors (b) for an inlet Mach number of

0.25 and flow Reynolds number of 100.

0.0 pe———

210

0.005

1
025
X 1 -0 F—— 0

1.5 [0.0025

0.015

2.0 -

S S — N : .

6 8 10

(a) Mach number contours.

0.0

0.5

A —— — — — — — — — — — — — — —p A} TS D — s TS ey

e - an g

e e e e

X 10}

\]

4 T T e eSS
Y s s .

1.5

SN N S et e

P

0 2

4

6 8 0

(b) Velocity Vectors (four-cell spacing used in both directions).

Figure 58. Mach number contours (a) and velocity vectors (b) for an inlet Mach number of
0.025 and flow Reynolds number of 100.

211

y

0.0 Pre—— 0.0005
05T ___00025—>S a;
X 1.0 P — Oé,
1.5 0.00025 0.0015
204 —2 s 6 8 10
y
(a) Mach number contours.
o
0.5 e
X 1.0 | ———rraaara——
15F .« T
0o T2 4 —% 8 30

(b) Velocity Vectors (four-cell spacing used in both directions).

Figure 59. Mach number contours (a) and velocity vectors (b) for an inlet Mach number of

0.0025 and flow Reynolds number of 100.

212

CHAPTER §
CONCLUDING REMARKS

This final chapter is devoted to summarizing the information and results discussed in
previous chapters. An overall summary of the important aspects of this work is presented in
Section 5.1. Next, Section 5.2 reviews the important observations and conclusions made in
Chapter 4. Finally, a list of suggested topics for further study is presented and discussed in

Section 5.3.
5.1. SUMMARY

Fully coupled inexact Newton-Krylov algorithms were implemenied and investigated
for solving several strongly coupled, nonlinear systems of partial differential equations that
arise in the field of computational fluid dynamics. Specifically considered were the steady
state, incompressible and compressible Navier-Stokes and energy equations describing the
flow of a laminar, Newtonian fluid in two-dimensions. These equations were solved
numerically, in primitive variable form, by integrating them over discrete finite volumes.
The resulting nonlinear algebraic equations were then solved using various fully coupled
Newton-Krylov algorithms. Preconditioned Krylov subspace based iterative algorithms were
used to invert the linear systems that arise on each Newton iteration. The Krylov subspace
based algorithms considered in this study include the Generalized Minimal RESidual
(GMRES) algorithm, the Conjugate Gradients Squared algorithm (CGS), the Bi-CGSTAB
algorithm, and the Transpose-Free Quasi-Minimal Residual (TFQMR) algorithm. Note that

this study was among the first of this sort to consider the latter two recently developed

213

Krylov algorithms. Both ILU and domain-based preconditioning strategies were studied for
improving the performance of these Krylov algorithms.

The capabilities of the fully coupled Newton-Krylov algorithms were demonstrated in
~ solving the coupled equations describing fluid flow and heat transfer. Specifically, natural,
mixed, and forced convection of an incompressible fluid were investigated for different flow
geometries and parameters. The natural convection problem consisted of a high Rayleigh
number, thermally driven flow in an enclosed square cavity. The mixed and forced
convection (high Reynolds number) test problems consisted of channel flow past a backward
facing step. Additionally, the cﬁallenging problem of low Mach number subsonic flow was
also addressed; speciﬁéaﬂy, low Mach number compressible flow past a backward facing
step.

The Newton-Krylov algorithms were made more attractive by employing various
numerical techniques to improve convergence and efficiency. These techniques include the
use of mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter
continuation. Useful observations and guidelines regarding implementation and use of these
techniques were presented. Additionally, implementation was simplified considerably
through the use of an efficient numerical Jacobian evaluation. Furthermore, the effect of
varying the inexact Newton convergence tolerance was studied and suggested values were
recommended.

The Krylov algorithms selected in this work did not require working with the matrix
(Jacobian in this case) transpose. Coﬁsequently, matrix-free implementations of the various
Newton-Krylov algorithms were possible. This implementation approximated the Jacobian-
vector products that appear within the Krylov algorithm with finite difference projections.
The advantages and disadvantages of this approach were discussed and the effectiveness of
this technique was evaluated with respect to the use of different Krylov algorithms.
Specifically, this research represented the first detailed comparison of Lanczos-based and

214

Amoldi-based Krylov algorithms within the context of matrix-free Newton-Krylov solvers
for incompressible fluid flow and heat transfer problems. Furthermore, practical matrix-free
Newton-Krylov implementations, where the cost of periodic Jacobian and preconditioner
evaluations are amortized over many pseudo-transient Newton steps, were demonstrated in
solving the forced convection backstep model problem.

Efficient higher-order accurate solutions were obtained using the defect correction
procedure. Specifically, research presented in this dissertation investigated algorithm
efficiency issues associated with the use of the third order accurate cubic upwind
interpolation (CUT) convection discretization scheme within a Newton-Krylov algorithm.
Overall second order accurate solutions for a mixed convection benchmark problem were
obtained. Recall that various CPU performance enhancement techniques were studied to
improve the performance of the defect correction procedure, including the use of different
mesh sequencing options.

Different preconditioning strategies were investigated to improved the performance of
the Krylov algorithms. The first preconditioners considered were of the incomplete lower-
upper factorization (ILU) type. These preconditioners were derived based upon the non-zero
diagonal storage scheme employed in this work and allowed various levels of fill-in.
Additionally, the effect of several different simple cell ordering strategies was investigated
with respect to ILU preconditioner effectiveness. The second class of preconditioners
studied were the domain-based Schwarz preconditioning methods. Both additive and
multiplicative Schwarz methods were studied both with and without sub-domain overlap.
Additionally, the memory requirements and effectiveness of these preconditioners were
studied for various domain decomposition selections. These latter methods were specifically
used to effectively precondition the linear systems arising during the solution of the low
Mach number compressible flow test problem. This study was the first (to the author's

knowledge) that demonstrates the superiority of domain-based preconditioning strategies -

215

over more conventional incomplete lower upper (ILU) type preconditioning schemes for
direct steady state calculations (i.e., no time stepping) of low Mach number compressible
flows. Note also that the Mach numbers selected were well below those considered

elsewhere using Newton-Krylov type algorithms.
5.2. OBSERVATIONS AND CONCLUSIONS

The first model problem considered in this work was the well known problem of
natural convection in an enclosed cavity. The fluid in this problem was assumed
incompressible even though the flow was thermally driven. Thus, the only density variations
allowed were in the buoyancy force terms in the momentum equations using the Boussinesq
approximation. This problem was solved for values of the Rayleigh number rahging from
10% to 105. Solutions to this problem demonstrated that the inexact Newton-Krylov
algorithms were able to reduce work in solving the linear systems during the initial Newton
jterations when far from the true solution, but still enabled more accurate solutions as the true
. solution was approached. Several choices for the convergence parameter, £" , which
controls this behavior were investigated. Among these choices, £° = (1/2)"""("10) (where n is
the Newton iteration number), was the best choice when a good initial guess was not
available, but £" =102 worked best overall when a good initial guess was available.

Effective preconditioning is an essential ingredient in the successful use of the Krylov
algorithms employed in this work. Thus, in the case of ILU(k) preconditioning, the optimal
level of fill-in that balanced CPU efficiency with preconditioner effectiveness was
determined for this natural convection problem. It was found that ILU(2) preconditioning
provided a good compromise between CPU efficiency, memory considerations, and
preconditioner effectiveness for moderately refined grids. For coarse grids (i.e., 15x15),

ILU(0) preconditioning was determined to be sufficient. Using this convergence tolerance

216

and preconditioning recommendations, the inexact Newton algorithms were found to be CPU
competitive with a direct Newton iteration using LINPACK banded Gaussian elimination,
yet significantly more efficient from a memory standpoint.

In solving this same natural convection problem, the matrix-free Newton-Krylov
implementation was compared to the standard Newton-Krylov implementation. In general,
GMRES(20) outperformed the Lanczos based methods when the matrix-free approximation
was employed. GMRES was able to maintain an acceptable level of performance when the
standard implementation was replaced with the matrix-free approximation. In contrast, the
Lanczos based methods Krylov algorithms considered (CGS, TFQMR, and Bi-CGSTAB)
were not able to maintain the same level of pgrformance. Among these methods, CGS was
found to be poorly suited to matrix-free implementations of inexact Newton's method
because of its erratic convergence behavior. TFQMR and Bi-CGSTAB performed better
than CGS because of their smoother convergence behavior, but still suffered a notable drop
in performance when the matrix-free approximation was used. The matrix-free
implementation used in this work was primarily designed to compare and contrast the
performance of the different Krylov algorithms when used in this context. As such, the
Jacobian and preconditioner were formed on each Newton iteration. However, for problems
where ew)aluating the Jacobian and preconditioner are CPU intensive operations, amortizing
the cost of forming these matrices over several Newton iterations is an attractive alternative,
especially during a pseudo-transient calculation. The matrix-free implementation enables
this option without sacrificing the rapid convergence characteristics of the Newton-Krylov
algorithm. This technique is well suited for strongly coupled systems with a large number of
governing equations, such as those that arise in multi-species chemice;lly reacting flow
applications.

Standard implementations using the Lanczos based algorithms seemed to outperform
the standard implementation using GMRES(20) when the grid was refined (number of

217

unknowns increased). Convergence of the GMRES(20) algorithm was not ensured within 20
iterations, the selected dimension of the Krylov subspace. Consequently, periodic algorithm
restarts were necessary, leading to slower convergence. The GMRES(20) iteration frequently
encountered the upper limit for the number of inner iterations on the finest grid. This
resulted in the return of mediocre Newton updates and slower convergence of the outer
Newton iteration compared with the use of the Lanczps based methods. In certain instances,
the Newton-TFQMR algorithm was shown to be more robust than the Newton-CGS
algorithm because of the smoother convergence of the TFQMR algorithm.

The second model problem considered was a mixed convection flow past a backward
facing step. The fluid in this test problem was also considered incompressible with a Grashof
number of 1000 and flow Reynolds numbers of 100 and 200. The important features of this
problem Mincluded the combined effects of both free and forced convection, a different
problem geometry (high aspect ratio), and inflow/outflow type velocity boundary conditions.
The study of this problem focused on the efficient calculation of high-order accurate
solutions. These solutions were obtained using the defect correction procedure, which used
the third order CUI convection scheme in the evaluation of the residuals and the first order
upwind scheme in the evaluation of the Jacobian. It was found that defect correction is a
useful technique for obtaining higher order accurate solutions, but the CPU expense can be
considerably higher that the cost for a lower order solution using a conventional Newton
iteration. Therefore, its benefit lies in improving the accuracy of a solution using a grid, on
which a low order discretization schéme could not achieve a comparable level of accuracy.
The impbrtance of obtaining a good initial guess, from which to start the defect comrection
procedure, was clearly demonstrated. Higher order solutions to this mixed convection model
problem were used to isolate the effects of buoyancy through comparisons with an analogous

solution that neglected buoyancy effects.

218

The third incompressible flow test problem was forced convection past a backward
facing step. The important different between this test problem and the first bécléward facing
step problem was the use of a much higher Reynolds number (800), the neglect of buoyancy
effects, and the use of specified heat flux type boundary conditions. The combined effects of
a high aspect ratio geometry and a large flow Reynolds number made numerical solutions to
this problem especially challenging. Several different numerical techniques were
investigated to improve the efficiency of the solution algorithm for this problem. It was
found that cell ordering can significantly affect the effectiveness of ILU type
preconditioning, and can be used to help avoid the necessity to adjust pivots during the
incomplete factorization process. It was found that reverse column ordering with ILU(1)
preconditioning was a good combination for solutions to this model problem. Also
considered was the effect of replacing the discrete continuity equation with a discrete
pressure equation. This formulation also avoided pivot adjustments during the ILU
factorization process and offered some CPU efficiency advantages, especially on finer
meshes. A good cell ordering/preconditioner combination for this formulation appeared to be
column ordering with ILU(1) preconditioning. The third technique used in the solution of
this model problem was a pseudo-transient Newton iteration. This option was less CPU
efficient than other techniques using mesh sequencing and adaptive damping, but it offered
the advantage of initializing the calculation on the desired grid and did not require damping
or mesh sequencing to enable convergence. Additionally, the potential advantages of using
the matrix-free implementation to enable efficient amortization of the Jacobian and
preconditioner evaluations over several iterations was demonstrated.

The final test problem included in this investigation was the low Mach number,
subsonic flow past a backward facing step. This problem was solved for various values of
the flow Mach and Reynolds numbers on several grids with different levels of refinement.
The low subsonic Mach numbers considered in this work ranged from 0.0025 to 0.25. The

219

flow Reﬁol& number was varied between 10 and 100. Observations in solving this problem
once again indicated that the Amoldi-based algorithm, GMRES(m), converges rapidly if the
required inner iterations are less than the specified dimension of—the Krylov subspace, m. If
frequent restarts were necessary, however, the convergence curve flattened considerably to
the point of stall. The CGS algorithm worked well in most cases for this problem, but still
exhibited erratic convergence behavior. The Bi-CGSTAB and TFQMR exhibited more

- smoothly converging solutions than CGS, but in certain instances exhibited either erratic or

stalled convergence behavior. It was demonstrated that the performance of the Krylov solve
can, in some instances, significantly affect the overall performance of the Newton-Krylov
algorithm. The ILU(k) preconditioners were generally found to be less reliable for lower
values of the flow Mach number, and exhibited strong sensitivity to cell ordering and grid
size. The domain based preconditioners generally outperformed the ILU(k) preconditioners
at the lower Mach numbers and were much less sensitive to the grid size. This observation
was true for most domain-decomposition selections, including several that were competitive
with the ILU preconditioners from a computer memory standpoint. Additionally, the
favorable parallel aspects of the domain based preconditioners were discussed.

In summary, various Newton-Krylov solution algorithms were used to solve a variety
of fluid flow and heat transfer problems. These algorithms coupled with various performance
enhancement techniques and preconditioning strategies were found to be effective and
efficient for solving problems of this type. The advantages of a fully coupled solution
algorithm were maintained without the excessive memory requirements that are typically
associated with algorithms of this type. The application and development of these fully
coupled solution techniques will likely continue to benefit the topics considered in this work

as well as other areas of computational fluid dynamics.

220

5.3. SUGGESTED TOPICS FOR FURTHER STUDY

The goal of this investigation was to investigate the different aspects of Newton-
Krylov solution techniques for problems arising in computational fluid dynamics. Many
features of these numerical techniques were studied on a variety of test problems in this
work. However, research should continue to study global convergence strategies, alternative
preconditioning techniques and iterative solvers, solution accuracy issues, and application to
other computational fluid dynamics problems.

Global convergence issues were briefly discussed in the introduction. This work
primarily used mesh sequencing, adaptive damping, and pseudo-transient relaxation to
improve the global convergence properties of Newton's method. Other techniques not
studied here that deserve attention include hybrid Picard-Newton type iteration schemes, and
other general line-search based global convergence algorithms [see 3, 65, 66, 67, 70].

Several of the more popular and recently developed Krylov algorithms were used in
this investigation. Note that these algorithms are amenable to other more general sparse
storage schemes, other than the nonzero diagonal storage scheme used in this work. These
more general schemes [140] should be considered in any future investigation because they
will enable use and investigation of other more general cell ordering strategies [151] and alsov
orderings produced by unstructured grids. Additionaily, because some of these Krylov
algorithms are so new, they still need further testing on a wider variety of applications and
situations. Itis also likely that new and possibly improved algorithms will be developed in
the future. Furthermore, the Krylov algorithms considered here were used within the context
of an inexact Newton iteration, but it is also possible to derive a nonlinear Krylov iteration

. using the matrix-free approximation discussed previously [see 170, 96, 171, 172]. The
feasibility and dependability of these techniques deserves further study.

221

The importance of preconditioning was clearly demonstrated in the results of the
previous chapter. Because preconditioning is so important, the search for better
preconditioners should continue. Examples of other preconditioners not considered in this
work include: block ILU type preconditioners [see 94] and polynomial type preconditioning
[145, 144, 146, and 147]. Furthermore, additional study of the Schwarz preconditioners is
need with respect to optimal blocking strategies (including amount of overlap), more efficient
subdomain solvers, two-level algorithms [155], and efficient parallel implementations.

Because solution accuracy is of importance in every numerical investigation, research
should continue in determining the most efficient techniques to obtain higher order accurate
solutions using a Newton-Krylov solution algorithm. This‘research may include using the
matrix-free implementation to capture the higher-order features in Jacobian-vector products,
while the preconditioner is evaluated using a lower order accurate discretization scheme.

Finally, the study and use of Newton-Krylov solution techniques should continue in
other areas of computational fluid dynamics. These areas should include (but are definitely
not limited to) the effects of turbulence, complex geometries (i.e., unstructured meshes),
large coupled equation sets such as those associated with multi-species reacting flows, and

three-dimensional problems.

222

APPENDIX

AN OVERVIEW OF KRYLOV SUBSPACE-BASED METHODS FOR SOLVING
SYSTEMS OF LINEAR EQUATIONS

223

Al. INTRODUCTION

Many numerical techniques for systems of partial differential equations require
solutions to large linear systems of the form, Ax = b, of dimension n, where A is referred to
as the system matrix, x is the unknown solution vector, and b is commonly referred to as the
right hand side vector. Direct solution techniques often becc;me impractical for large linear
systems because of high memory and CPU cost. The alternative in these situations are the
use of iterative techniques. Krylov subspace based methods are powerful iterative techniques

for solving these types of linear systems. These methods compute new approximations to the

solution, x,, from the affine (translated) subspace defined by
Xo +Kk(r0,A), (171)

where the Krylov subspace of dimension & is defined by
K, (rg,A) = span(ry,Arg, AZrgs...,A¥), (172)

and r,, is the initial residual determined from the initial solution guess, X,, i.e., r, =b—AX,.

There are some excellent references discussing Krylov subspace based methods.
Some of the more recent discussions are given in Referenc;es 71, 80, 119, 123, 124, 125, and
126. Some earlier, but still extremely valuable, review articles are found in References 127,
128, 129, 130, and 131. A very interesting annotated, historical bibliography of the
conjugate gradient and Lanczos methods is presented in Reference 132.

The classical conjugate gradient (CCG) method of Hestenes and Stiefel [133] is
probably the best known Krylov subspace based method. Interestingly enough, this
algorithm was originally derived as a direct method. Its full potential as an iterative

224

technique was not realized until its use by Reid in 1971 [134], and latter Concus in 1976
[135]. However, the idea of using the CCG algorithm as a direct method illustrates an
important property of many Krylov subspace based algorithms not shared by other iterative
techniques, namely a finite termination property. This property means that with exact
precision mathematics the CCG method is guaranteed to converge within 7 iterations, but
satisfactory convergence is likely for much less than n iterations. The CCG algorithm also
does not require iteration parameter estimation to improve performance, unlike some
Alternative Direction Implicit (ADI) schemes [173], Successive Over Relaxation (SOR), and
Chebychev iteration [see 63]. Also, the CCG algorithm typically converges more rapidly
than typical matrix-splitting iterative schemes such as Jacobi (J) and Gauss-Seidel (GS)
iteration. CCG is optimal in the sense that the residual norm is minimized on each iteration
and that new search directions are cc;mputed with economical vector recurrences so that work
and storage requirements per iteration are small. In fact, these latter two properties define a
"true” conjugate gradient method. However, the difficulty associated with the CCG
algorithm is that it is applicable only to symmetric, positive definite matrices. As a result,
considerable research has been devoted to generalizations of the conjugate gradient method
to non symmetric and non positive-definite systems. -

The two main options for generalization of the CCG ideas to nonsymmetric linear
systems are the following:

1) Application of the CCG algorithm to the normal equations.
2) Development of conjugate gradient-like algorithms.

The normal equations option can be applied in two different ways. First, is the
application of the CCG algorithm to the system, ATAx = ATb, which results in what is
referred to as the CGNR algorithm [133]. The capital 'N' in CGNR refers to the application
of the conjugate gradient algorithm to the normal equations, and the capital 'R’ indicates that

225

the residual norm is minimized over the Krylov subspace. Secondly, one can apply the CCG
algorithm to the system, AATy =b, where x = ATy. This latter choice is referred to as the
CGNE algorithm [136]. In this case the capital 'E' indicates that the norm of the error is
minimized over the Krylov subspace. The disadvantage of the normal equation approach is
that the condition number of the new system is squared, which can lead to very slow
convergence in some instances. Additionally, working with the matrix transpose is often
undesirable because it makes sparse storage and parallel/vector implementations more
difficult, and because it prohibits use of finite difference projection techniques to
approximate matrix-vector products within inexact Newton iterations [67]. These reasons
have recently made the use of conjugate gradient-like algorithms a more attractive option.

Conjugate gradient-like algorithms are derived by relaxing either or both of the
properties that define a "true" conjugate gradient method, namely optimality and economical
vector recurrences. Some of the more popular and more recent conjugate gradient-like
algorithms that will be discussed further in the subsequent sections include: the generalized
minimal residual algorithm (GMRES) [4], the conjugate gradient squared algorithm (CGS)
[5], the Bi—CGSTA]_B algorithm [6], and the transpose-free quasi-minimal residual algorithm
(TFQMR) [7].

The purpose of this appendix is to adequately describe and review Krylov subspace
based methods for solution of general linear systems. To this end, Section A2 will present a
general description of these methods, including the two distinct approaches commonly used
to develop the different Krylov algorithms. These are the minimal residual approach and the
orthogonal residual approach [119]. Once this framework has been established, the next
two sections will discuss two popular classes of Krylov subspace methods. The first class is
the Amoldi-Based [137] algorithms discussed in Section A3, and the second is the Lanczos-
based [138] algorithms discussed in Section A4. Finally, a brief summary of Krylov

subspace Based methods is given in Section AS.

226

A2. GENERAL DESCRIPTION OF KRYLOV METHODS

Krylov subspace based methods can be viewed as polynomial-based iterative schemes
for solving systems of the form Ax = b, of dimension n. The general form of a polynomial

iterative scheme is given by [141]

k=1
Xy =X+ _Zon,g-r i (173)
J=

where r; =b— Ax;. Subtracting Equation (173) from the equation, x=x, where x is the true

solution, yields an equation for the error, e, given as,

k=1
e =e,, + XM Ae;. (174)

j=0
It can be shown via an induction proof {141] that this is equivalet.lt to
e, =R,(A)e,; R, (0)=1, ' (175)
where Ry (A) is a polynomial of maximum degree, k, expressed as
R,(A) =1+ A+ A% +...+a, A% (176)

Multiplying both sides of Equation (175) by A allows one to derive the residual polynomial

expression as follows (i.e., Aey = A(X—Xx)=b—Ax; =r;),

r.=R,(A)r,; R,(0)=1. a7

227

It is instructive to use Equation (175) to express X, asa polynomial relation as follows,
X, =X—€, =X, + ¢, — R, (A)e, =X, +[I-R,(A)]e,, (178)
where the quantity in brackets can be defined as a new polynomial to give
x, =X, +P,(A)e,; P, (0)=0. (179)
Now a factor of A can be factored out of the polynomial P’ to give
X, =X, +Q, (A)Ae, =X, +Q,(A)ry; where Q,(0)= 1. | (180)
Equivalently, Equation (180) can be expressed as

X, =X, + Linear combination of {ro,Aro,Azro,...,A""ro}, (181)

where the vectors in brackets are referred to as Krylov vectors. As indicated in the
introduction, these vectors span a k-dimensional subspace of R" referred to as the kth Krylov

subspace defined as in Equation (172). New approximations to the solution are then

. computed from the affine (i.., translated by the vector x,) Krylov subspace as defined by

Equation (172). As a result, algorithms of this type are -typically referred to as Krylov
subspace based methods. More generally, Equation (181) can be expressed as

X, =X, +d,, (182)

228

where

d, e K,(r,,A) = span{r,,Ar,,...,A*'r, {. (183)
k kNt O 0

The manner in which the d, vector is computed defines a particular Krylov

algorithm. Generally, there are two, often competing, objectives when choosing how to

compute the d, vectors. One objective is error minimization, while another is economical -

iterations obtained via short vector recurrence relationships. Note that a ‘true’ or 'ideal'

conjugate gradient method satisfies both of these objectives. Methods for selecting the d,

vectors typically follow from taking either a minimal residual approach or an orthogonal

residual approach [119]. The former approach picks the d, vectors to minimize some norm

of the residual, i.e.,

Min A)||r,‘||= Min [r,—Ad,|. (184)

d, ek, (ro. d, ek, (rg,A)

Note that a unique iterate satisfying Equation (184) can always be found [119]. The latter

approach requires the di vectors to satisfy some sort of Petrov-Galerkin condition, i.e.,
r, 1L L, (185)

where L, is some other Krylov subspace that may be different from K}, and the symbol, L,
indicates orthogonality. In contrast to the minimal residual approach, there is no guarantee
that a unique iterate satisfying Equation (185) can be found [119]. The minimal residual
approach is discussed further in Section A2.1, while the orthogonal residual approach is
addressed in more detail in Section A2.2.

229

Note that for symmetric, positive definite matrices the two approaches are equivalent
with L, = K. Additionally, the iterates can be computed efficiently using short vector
recurrence relationships. This results in a "true’ or 'ideal’ conjugate gradient method that
exhibits both optimality (error reduction) and economical vector recurrences (constant work
and storage requirements per iteration). However, for nonsymmetric matrices one cannot in
general maintain optimality (with respect to a fixed norm) using short vector recurrences
[129]. Consequently, maintaining optimality typically causes the work and storage
requirements to increase with the iteration count. This often necessi§at35 the use of algorithm
restarts or truncation to keep iteration work and storage costs at a reasonable level. On the
other hand, short vector recurrences can often be maintained to keep iteration work and
storage costs low, but only at the expense of optimality. Both alternatives lead to what are
commonly referred to as conjugate gradient-like algorithms. Specifically, algorithms that are
derived by sacrificing optimality and/or economical vector recurrences. Derivation of several
conjugate gradient-like algorithms will be discussed in Sections A2.1 and A2.2. However,
discussion of conjugate gradient-like algorithms based upon the Amoldi process [137] and
the nonsymmetric Lanczos process [138] will be presented separately in Section A3 and

Section A4, respectively.

A2.1. Minimal Residual Approach

The goal in the minimal residual approach is to minimize some fixed norm of the
residual over the Krylov subspace, as indicated by Equation (184). For symmetric, positive
definite (SPD) matrices, minimizing Equation (186) below leads to the conjugate gradient
algorithm of Hestenes and Stiefel [119, 126, 133],

lieflys =b— Axf,s. (186)

230

Minimizing Equation (186) is equivalent to minimizing the functional given by

fx)=(b—-Ax)T A (b— Ax)=xTAx-2x"b+bTAb . (187)

Note that the negative gradient of this functional (defined with respect to x) is r=b—Ax, so
that minimization of Equation (187) is equivalent to solving the system, Ax =b (at least for
SPD matrices). Minimization problems of this type often assume the solution iterate can be

computed simply as

E
Xpn =X+ Zajpj =X, +op,, (188)
=0

where a; can be interpreted as a scale factor and p, as a search direction. Note that

Equation (188) is a simplified, economical vector recurrence relationship requiring
information only from the previous solution iterate and the current search direction.

Substituting Equation (188) into Equation (187) and minimizing with respect to ¢ (i.e.,

I (x,.,4)/d0t, = 0) gives

_Pi(b-Ax,) _ pir, _ (Pori)
P; AP, P:AD; (Pk,Apk)

(189)

k

Since A is assumed SPD (i.e., (p,,Ap,)>0), &, is well defined. This choice for the scale
factor and the assumed form of the solution update in Equation (188) minimizes [r,.,,| -

along the search direction, p,. The general form of the algorithm thus far can be expressed
as [126, 128]:

231

Algorithm for SPD Matrices

1) Choose x,
3) Set: p,=r,
For k=0,1,...,
(pksrk)
4) o, =——=
k (pk,Apk) (190)

5) Xy =X+ 4D,

6) r,,, =1, +,Ap,

7) If |re.i| < tolerance then quit
8) Compute p,,,

The final requirement for specifying a particular algorithm is the computation of p,,, in step

(8) of the algorithm expressed in Equation (190). Possible choices for computing these

- search directions include the following [see 126]:

1)

2)

3)

Method of steepest descent (also referred to as Richardson's Method). In this
case,

Pt =Tpn- (191)
Recall that the residual is associated with the gradient of the functional given in
Equation (187). This method is closely related to Jacobi iteration and as a
consequence can exhibit rather slow convergence.

Gauss-Seidel-type iteration. In this case,
Pi = €irs (192)

where e, is a vector whose only non zero value is a / in the (k+1) component.

Note that n-steps of the algorithm in Equation (190) would then be equivalent to
one Gauss-Seidel iteration.

Conjugate direction methods. These methods require that the search directions
be A-orthogonal, or conjugate with respect to A. This requirement can be
expressed as

pTAp; =(p..Ap;)=0, fori=j, (193)

The search directions then serve as an A-orthogonal basis for the Krylov
subspace. This feature enables conjugate direction methods to assume the finite
termination property that was mentioned in the introduction. Recall that this

232

property guarantees that the iteration will converge in no more that n-steps
[126]. One possible choice for the conjugate search directions is the
eigenvectors of A. Since A is assumed symmetric and nonsingular the

eigenvectors, s; (corresponding to the eigenvalues, 4;), satisfy,
sTAs; =s](A;;)=A;87s; =0, fori=j. (194)

Unfortunately, use of the eigenvectors as the conjugate search directions is not
practical because their computation is often very expensive. A more practical
choice is the use of the conjugate gradient method [133] where A-orthogonality
is maintained via,

(Pk-Ar k+l)
_Pellw) 195
(Pe.ADy) (193

Induction can be used to prove that Equation (195) satisfies the A-orthogonality
condition expressed by Equation (193) for all previous search directions. The
search directions based upon the conjugate gradient method can be viewed as

the projection of the negative gradient of the functional in Equation (187) (r,,)
onto the Krylov subspace, K,,,(ry,A).

Prs =Tpy + BiD;, where B.=

Note that the general form of the solution update is different from the simple form

assumed in Equation (188), and it is given by

k
Xpa =Xo + 2, OD;. (196)

j=0

However, in the case of the conjugate direction methods, the A-orthogonality of the search

directions allows the simpler form of Equation (188) to be used since substitution of

Equation (196) into Equation (187) yields,

k k . k
F)= 3 @y, (pTAD,) -2 &, (pir,) — 2xib + X;AX, +bTAb. (197)

j=01=0 j=0

233

Enforcing the A-orthogonality condition expressed in Equation (193) allows this expression
to be simplified to

f(xk+1)=2k',a,§-(p§Ap j)—ziaﬁ(pf.ro) 2xTb+ X7 AxX, +b"Ab. (198)

j=0 j=0

Now minimizing with respect to ¢,; yields,

Bf(xm)_zz[% (p7Ap;)~ (p7ro)]=0. (199)

oxy i

From whence a; is given by

r .
o, = (pjro) - (Pj,ro) _ (pjal',-) , @00

(r7Ap)) (p;-Ap;) (p;-Ap))

where the last relation is due once again to the A-orthogonality of the search directions.

Because 0y; does not depend on the k-subscript, this dependency can be removed to give

;= (f’p’;p)) (201)

This result shows that use of Equation (188) is equivalent to the use of Equation (196) as
long as the éearch directions are A-orthogonal. The consequence of this result is significant
because it demonstrates that Equation (186) is minimized over all previous search directions,
or equivalently over the entire affine Krylov subspace. This characteristic enables the

conjugate gradient method to exhibit the optimality property mentioned previously. The first

234

two options listed above do not share this property, and consequently perform only a local
minimization along the current search direction. This difference enables the conjugate
gradient algorithm to display superior performance compared to the other options.

The drawback associated with the conjugate gradient method is that for nonsymmetric
matrices, the norm defined by Equation (186) is not valid [119]. Consequently, the approach

outlined above can not be used. However, it is legitimate to use the Ly-norm, i.e., minimize

Ill‘llz =[b- Ax“z . (202)

Minimizing Equation (202) is equivalent to minimizing the functional given by

g(x)=(b— Ax)"(b— Ax) =x"ATAx - 2b"Ax +b’b . (203)

Following the same procedure described above, namely substituting Equation (188) into

Equation (203) and minimizing with respect to a, yields,

- (Apk’rk)

o= , (204
* (Apk ’ Apk))

which can be used to replace step 4 of the algorithm defined in Equation (190). Once again
there are several options for computing the search directions:
1) Minimal Residual Algorithm (MR) (analogous to steepest descent). In this

case, the search directions are computed from Equation (191) [128].

2) Conjugate Residual Aigorithm (CR) [128, 174].. In this case, the search
. directions are computed from,

(Ar E+10 Api)

- . 205
(Apz’APk) (205)

Pist =Tpy + By, where B, =

3)~

235

If the matrix is symmetric, then Equation (205) guarantees ATA -orthogonality
of the search directions, i.c.,

(Ap..Ap;)=0 for i=], (206)

and optimality is retained. However, for nonsymmetric systems Equation (205)
ensures only that the current search direction is ATA -orthogonal to the previous
search direction. Orthogonality of all previous search directions is not
guaranteed. Consequently, the conjugate residual algorithm loses its optimality
property for nonsymmetric linear systems. Even if the search directions are
ATA -orthogonal, another potential problem occurs if ¢, =0 before
convergence is reached. This condition is referred to as algorithm stall, because
according to step 5 of the algorithm in Equation (191) no further progress
towards the solution is possible. This condition arises when

(r,.Ap,) = (r,.Ar,)=0, . (207)

where the equality of the two expressions follows from the AT A -orthogonality
condition [see 128]. This condition is avoided if the matrix A is positive real so
that

(r,,Ar,)>0 . (208)

- for all real r,, or equivalently the symmetric part of A (=(A+AT)/2) mustbe

positive definite. Consequently, these difficulties often make application of the
conjugate residual algorithm to general nonsymmetric linear systems
ineffective.

Generalized Conjugate Residual Algorithm (GCR) [128, 175]. This algorithm
overcomes the orthogonality problems of the conjugate residual algorithm for
nonsymmetric linear systems by using all previous search directions to compute

the new search direction. ATA -orthogonality of all the previous search
directions is then enforced using the following expression,

k Ar,.,,Ap;
Prit = Ten +2ﬂjkpj’ where .Bjk = —‘(—'ﬁ‘_l')‘ (209)

j=0 (Apj’Apj) .

The problem with this approach is that the work and storage requirements
increase with the iteration count. This disadvantage arises because all previous
search directions must be stored in order to ensure that each new search

direction is AT A -orthogonal with all previous search directions using Equation
(209). This situation was alluded to in the previous section. One potential
remedy for this difficulty is to restart the algorithm after say m-iterations,
thereby fixing the maximum dimension of the Krylov subspace to be m. The

+ 236

restarted version of this algorithm is denoted GCR(m) [128]. Note that the GCR
algorithm, like the CR algorithm, is still susceptible to stall for indefinite A, and
so convergence is guaranteed only for positive real matrices.

4) Orthomin{m) [128, 176]. This algorithm is based upon GCR, but uses

‘ truncation instead of algorithm restarts to control the iteration work and storage
requirements. In the case of truncation, orthogonality is maintained only among
the previous m search directions,. This condition can be expressed by,

k
Pisi =Fen t+ Zﬁjkpj . (210)

j=k=-m+l

Once again, this algorithm can stall, and so convergence is guaranteed only for
positive real matrices.

5) Orthodir(m) [128, 177]. The full Orthodir algorithm (no truncation) is another

extension of CR whereby the ATA -orthogonal search directions are computed
from

(Azpk,Ap j)
(Ap;.Ap;)
This slight modification to Equation (209) enables Orthodir to converge for any

nonsingular A, thereby removing the restriction to positive real matrices. The
truncated version of Orthodir is implemented using

k
P = AP, +Zﬂjkpj’ where ﬁ,& == (211)
j=0.

k
P =Ap.+ 3 Bubp;. 12)

j=kem+l

The one drawback associated with the Orthodir(m) algorithm is that scaling is
sometimes necessary to ensure numerical stability [141].

In general, for nonsymmetric linear systems, one typically uses either GCR or
Orthomin if the matrix is positive real, while Orthodir should be used if this condition is not
satisfied [141]. However, since the development of GMRES and other more recent Krylov

algorithms, these algorithms have become less popular [141].

237

A2.2. Orthogonal Residual Approach

The orthogonal residual approach is based upon enforcing some sort of Petrov-

Galerkin condition. Typically, this condition takes the form

r, LI, 13)

where L indicates orthogonality, r, is the residual at iteration &, and L, is some Krylov

subspace of dimension & [178]. This approach is also frequently referred to as a projection
method [131, 178]; and since we are interested in Krylov subspaces, algorithms derived in
this manner can further be classified as Krylov projection methods.

In describing the orthogonal residual approach it is convenient to use matrix notation.
In this context, one can introduce two nxk matrices P, and W, , whose columns span K,
and L,, respectively [see 80, 131]:
P, =[p,.PsrsDr s Wi =[W,,9,,..,W,]. (214)

Using this notation the general solution update can be expressed as ~

k
X, =X, + Za,q.p i =X +P.Y,, (215)

j=1
where

Ys = (@ Ogrenes O) - (216)

238

Note that the lower limit for the subscript on p is now assumed to be one for convenience
instead of the previously used value of zero. Similarly, the residual at iteration k can be

written as
r,=b—-Ax, =r,—AP,y,. (217)

With these definitions, the orthogonality condition of Equation (213) can be equivalently
specified by

Wi(r,—AP,y,)=0. (218)
This equation can then be solved for y, to obtain
v, =[WIAP,] Wir,. (219)

Substitution of this result into Equation (215) then specifies X, in terms of P, and W,.
Equation (219) shows that the existence of a unique iterate is dependent upon the quantity
[WZAP,‘]-1 being nonsingular. This requirement explains why a unique iterate satisfying
Equation (213) cannot always be found when using the orthogonal residual approach. -
The final steps in deriving a Krylov projection method consist of identifying L, and
selecting a procedure for computing P, and W,. Saad [178] has concisely categorized

several popular choices for L,. Each choice gives rise to a class of Krylov projection

techniques. These choices and examples of different Krylov projection techniques resulting

from each choice are itemized below [see 178]:

239

1) L, =K(rg,A). This choice is equivalent to a Galerkin method [131]. Krylov
projection techniques resulting from this choice include the classical conjugate
gradient algorithm (CCG) [133], the generalized conjugate gradient algorithm
(GCG) [135, 179], Crihores [177], and the full and incomplete
orthogonalization methods [FOM, IOM] [130]. Recall from the previous
section that the conjugate gradient algorithm was derived for SPD matrices. For
this special case the minimal residual approach and this orthogonal residual
choice are equivalent, as can be verified from the results of the previous section
(via an induction proof). Consequently, the conjugate gradient algorithm can be
derived from both perspectives. For general nonsymmetric matrices, however,
the minimal residual approach and the orthogonal residual approach are not
equivalent. As a result, for nonsymmetric systems, algorithms within this class
do not exhibit a minimization property.

2) L,=AK,(r,,A). Saad [131] points out that this choice is similar to a least
squares method or a variational method. It follows then that Krylov projection
techniques derived from this orthogonalization choice, minimize the Lz-norm of
the residual over the affine Krylov subspace. Thus, for both symmetric and
nonsymmetric systems, this orthogonalization choice is equivalent to a minimal
residual approach. Algorithms that are members of this class include the
conjugate residual algorithm (CR) [174], the generalized conjugate residual
algorithm (GCR) [175], Orthomin [176], Orthodir [177], Axelsson's method
[180], and the generalized minimal residual algorithm (GMRES) [4].

3) L,=K,(r,,A”). Lanczos-based [138] Krylov projection techniques fall into
this class. Note that this choice is identical to the first for symmetric matrices.
Thus, one can also view the classical conjugate gradient algorithm as a Lanczos-
based method [133]. For nonsymmetric systems, though, several new Krylov
projection techniques arise. Members of this class include the bi-conjugate
gradient algorithm (BCG) [138, 139], the conjugate gradient squared algorithm
(CGS) [5], the quasi-minimal residual (QMR) family of algorithms [see 7, 181,
182, 183, and 184}, and Bi-CGSTAB and related algorithms [6, 185].

The last step in the derivation of a Krylov algorithm is selection of an appropriate
procedure for computing P, and W,. In the previous section, the vectors comprising the
columns of these matrices were generated by enforcing either A -orthogonality or ATA-
orthogonality of the search directions. The following sections consider two alternative
processes for computing these vectors, namely the Arnoldi process [137] and the

nonsymmetric Lanczos process [138].

A3. ARNOLDI-BASED KRYLOV ALGORITHMS

This section considers Krylov subspace methods based upon the Amoldi process
[130, 137]. This process uses the Gram-Schmidt orthogonalization procedure [186] to
generate an orthonormal basis for the Krylov subspace. This technique is in contrast to
previously discussed methods where the basis vectors were either A -orthogonal or ATA-
orthogonal. The Arnoldi process also reduces the system matrix to upper Hessenberg form,
which can be very useful for eigenvalue computations. The Arnoldi process is outlined
below [see 80, 126, 141]:

_ To_
VPR

For k=1,...,n
2) hu = (Apppk)k l= 1,...,](

3) Py =AP,— Zhupz (220)
' =1
4) by =ﬂﬁk+l"z
Peir
S) Pu=7"

As mentioned above, this process results in an orthonormal basis (orthogonal and of unit L;-
norm) for the Krylov subspace. This can be expressed mathematically by the following

relations:

Piu €K, (1o, A), (221)
(P1s1sW)=0 for all weK,(r,,A),and (222)
Ipenl, =1. (223)

241

Since the search directions are now I-orthogonal as indicated by Equation (222), and not A -
orthogonal or ATA -orthogonal, the general solution update form expressed in Equation (215)
[also Equation (196)] must be used rather than the simpler form given in Equation (188).
Step (k+1) of the Arnoldi process in Equation (220) can be written recursively as

k
B pPra = AP, — Zhlkpl . (224)

I=1
In matrix form, this recurrence relationship is given by

hk+l.kpk+le: =AP,-P.H,, "(225)

where e is the transpose of the unit vector with a one in the k*» component and zeroes
elsewhere. H, represents an upper Hessenberg matrix with elements, &, . Specifically, H,

is the a (kxk) matrix denoted by

hll hlZ hlS * . ¢ hlk
hy hy hy .
0 hy by
H=|. . . (226)
. Y
0 . . .0 Ry hy

Note that Equation (225) demonstrates the reduction to upper Hessenberg form that was
mentioned at the beginning of this discussion. Once again, this reduction is very useful not
only in deriving different Krylov algorithms, but also for apprdximating the eigenvalues of

the system matrix.

242

At this point in the discussion, either of the two different approaches described in
Section A2 can be applied; specifically, either the minimal residual approach or the
orthogonal residual approach. Section A3.1 below will describe the use of the orthogonal
residual approach in the development of the FOM and IOM(m) algorithms, while Section
A3.2 will discuss the use of the minimal residual approach in the development of the

GMRES algorithm.
A3.1. The FOM and IOM(m) Algorithms

The full orthogonalization (FOM) and incomplete orthogonalization [IOM(m)]
algorithms [130] are derived via the orthogonal residual approach. Recall from Section A2.2
that use of the orthogonal residual approach requires enforcing some sort of orthogonality
condition on the residual at each iteration. It was indicated in Sectio;l A2.2 that these

algorithms were members of the class of algorithms for which,
L, =K, (r,,A). (227)
Thus, with this choice, the orthogonality condition defined by Equation (218) becomes
Pi(r,—AP,y,)=0, (228)

since the Arnoldi vectors, which comprise the columns of P,, span both K and L,.

Equation (228) can be rearranged to give

PLAP,y, =Pir,. (229)

243

From the Amoldi algorithm in Equation (220) note that r, =|r,[,p,. Substitution then

yields,
PLAP,y, =[r[,Pip;, (230)
but since the Arnoldi vectors are orthonormal (prl = el) this can be further simplified to

PAP,y, =[r,[,e;. (231)

Equation (231) represents an (nxk) linear system that must be solved for the unknown vector
y,. Equation (225) can be used to reduce this (nxk) linear system to a smaller (kxk)linear

system that is much easier to solve. Solving Equation (225) for AP, and multiplying by PT

yields,

PIAP, = hk+1.k(P:pk+1)e: +PPH, =H,. . (232)

This result, which follows from the Arnoldi vectors being orthonormal, demonstrates the

iterative reduction of the (nxn) matrix A to a (kxk) upper Hessenberg matrix, H,.
Historically the advantage of this reduction was that on each iteration the eigenvalues of H,
approximate those of A, but are much easier to compute [80, 137]. The advantage in this
discussion, however, is the reduction of the (nxk) linear system in Equation (231) to the

(kxk) linear system given below,

H,y, =[r.],e- (233)

244

Equation (233) can now be efficiently solved for y,, which in turn defines the solution
update through Equation (215) [see 130]. The procedure outlined above yields the FOM of
Saad [130]. Note that the work and storage requirements of this algorithm increase with the
iteration count. This drawback often requires restarts or truncation for practical
implementations similar to the case of the GCR algorithm described in Section A2.1. In this
case, the use of truncation requires the following modification of step three of the Amoldi
algorithm [Equation (220)],

k .
Py =AD,— O huD; (234)

I=k-m+1

This modification is analogous to the one used by Orthomin(m) in Equation (210). Use of
Equation (234) results in the IOM(m) algorithm [130].

Recall from Section A2.2 that for general nonsymmetric matrices, both FOM and
IOM(m) do not posses any minimization property. Additionally, since these algorithms are
derived via the orthogonal residual approach there is no guarantee that a unique iterate can be
- found to satisfy the orthogonality condition. Consequently, these algorithms are susceptible
to breakdown. The GMRES algorithm described below, which is also based upon the
Arnoldi process, avoids these disadvantages. '

A3.2. The GMRES Algorithm
Section A2.2 indicated that the GMRES algorithm is a member of a cléss of
algorithms that can be viewed equivalently from either the minimal residual or the orthogonal

residual approach. In this section, the minimal residual approach is chosen in order to

highlight the minimization property possessed by GMRES. Analogous with the algorithms

245

in Section A2.1, the goal is to derive an algorithm that minimizes the L, —norm of the
residual [see 4, 80, 126, 141]. The difference in this case is that the search directions are
generated via the Arnoldi process. Consequently, the quantity to be minimized follows from

Equation (217), and is given by,

Hl' k “z = "r o~ APy, "z = "r (e (Pka + hk+l.kpk+le:)Y k “2’ (235)

using Equation (225). Minimization of Equation (235) is equivalent to an (nxk) least

squares problem. The goal is to reduce the order of this least squares problem to allow

efficient computation of y,. This is accomplished by noting that

(Pka + hk+1,kpk+le:) = Pk+lﬁk’ (236)

where H , is a (k +1)xk matrix identical to H, except for the (k+ 1)* row, in which H ; has

By as its only non zero entry, i.e.,

by Ry By . . .
by by g :
0 hBZ h‘33

”:‘
I

@37)
- . . . hk—l.k
0 . . .0 hyy h
0 0 . . . 0 Iy

Additionally, from the first step in the Arnoldi algorithm of Equation (220),

ry= "ro“sz = “ro“zpmel . (238)

246

Substitution of Equation (236) and Equation (238) into Equation (235) then yields,

“rk“z =!

P ("ro"z e,—H,y k)l (239

2.

However, since the columns of P, ., are orthonormal it has unit L;-norm and so it makes no
contribution to the L, — norm of the residual. Therefore, it can be subsequently dropped out

of Equation (239) to give,

(240)

||"zl|2 = “("rouzex -H,y k) :
This simplification to Equation (240) is very important since it reduces the original (nxk)
least squares problem to a much simpler (k +1)xk least squares problem. This reduction
results in considerably less work for k£ << n. This type of minimization problem can be
solved very efficiently using QR-factorization [see 126], especially since H, is an upper
Héssenberg matrix [4]. Another advantage of this formulation is that the L, — norm of the
residual can be computed as a byproduct of the QR-solution of the least squares problem [4,
126]. This enables one to avoid computing the solution using Equation (215) until the end of

the calculation.

The GMRES algorithm can be expressed in algorithmic form as follows [4]:

247

GMRES Algorithm
1) Choose x,
2) Compute r,=b— AXx,

3) Set p, =0~

ufo[]z
For k=1,...,n
Arnoldi Process

4) hy=(APB,) =1k
5) P =AP.— Zh&pl

I=1
6) hk+l.k = ﬂf’kﬂ "2

T Pea = Bea
hk+l.k
Mimimization Step
8) Update H, and its QR
faclt;{'ization for solving:
in =~
yk e Kk ("ro"zel _Hkyk)l
Convergence Check
9) If [ry|, <tolerance then
compute solution from
X, =X, +P,y, and quit,
otherwise continue.

2 (241)

Note that since GMRES is derived via a least squares type minimization, a unique iterate
satisfying the minimization of Equation (240) will always exist. Thus, GMRES will not
breakdown as can the FOM and IOM(m) algorithms of the previous section. Additionally,
GMRES should be expected to produce smaller residuals on each iteration than these other
Arnoldi-based algorithms. Also, in general, GMRES is also more efficient than other
minimization type algorithms such as GCR and Orthodir [80]. These features have made
GMRES a very popular algorithm. A significant drawback associated with GMRES, is that,
like FOM, the work and storage requirements increase with the iteration count. This often
requires use of the restarted version, GMRES(k), for practical implementations, where k is

the specified maximum dimension of the Krylov subspace [4].

248

A4. LANCZOS-BASED KRYLOV ALGORITHMS

This section considers Krylov subspace methods based upon building pairs of
biorthogonal bases using the nonsymmetric Lanczos biorthogonalization procedure [138].
This technique is in contrast to the technique of the previous section where an orthonormal
basis was generated for the Krylov subspace via the Arnoldi process. In this case, the vectors
within a given subspace are not orthogonal. Instead, they are generated by maintaining
orthogonality with the vectors in another different, but related, Krylov subspace. The
nonsymmetric Lanczos biorthogonalization procedure is a process for efficiently generating
these vectors using economical vector recurrence relationships. Another feature of this
procedure is the iterative reduction of the system matrix to tridiagonal form. Thus, on each
Lanczos iteration the eigenvalues of the system matrix can be approximated by computing
the eigenvalues of this tridiagonal matrix. However, the interest here is the use of the
Lanczos process as a foundation for the development of different Krylov algorithms for the
solution of general nonsymmetric linear systems.

Lanczos-based Krylov techniques are typically derived using the orthogonal residual
approach, and more specifically the third choice listed in Section A2.2. This orthogonality

condition can be expressed as
r, L K, (r,,A"). (242)

Following the notation in Section A2.2, a basis for K, (r,,A”) is given by the columns of
W, , and so Equation (242) is equivalently expressed by Equation (218). The next step is to
determine a procedure for computing the vectors that span K, (r,,A) and K, (ro,AT). These

vectors can be generated efficiently with three term recurrences using the nonsymmetric

249

Lanczos process. This process requires the vectors, p, that span K, (r,,A) and the vectors,

w, that span X, (ro,AT) be biorthogonal. This condition requires
wip, =(w,p)=1% 1=J (243)
iP; irP; 0, i#j[

In matrix form this condition is given by

- WP ; =diag(d;)=D,, 244)

where the quantities to the right of the equality signs denote a diagonal matrix whose
diagonal entry onrow i is equal to d. Given initial non zero starting vectors p, and w,, the
nonsymmetric Lanczos process generates two sequences of vectors using the following three

term recurrence relationships [71, 119, 138]:

Puur = AP, — &P, ~ Bebrs (245)
and
W, =ATw, —a,w, - B.w,_,, (246)
where
k—‘w @47)

- (WD) ’

t

250

g =2 (248)

and B,, py,and W, are set equal to zero. An important concern associated with the
nonsymmetric Lanczos process is that (w,,p,) may equal zero in Equation (247) before the
process is finished iterating. This is referred to as a "serious breakdown", while if this
quantity is only approximately zero it is called a "near breakdown." Algorithm restarts
and/or look-ahead strategies [see 187] can be used to mitigate this problem, but these
techniques are not included in this discussion.

Note that in matrix form the recurrence relationships given in Equation (245) and

Equation (246) can be written as [following References 80, 126]:
AP, =P,T, +p,.€l, (249)
and
AW, =W,T, +w, e, (250)

where T, is a kxk tridiagonal matrix defined by

o B, 0 . . O
1 e B .
=% - - S (251)

. . . B
0O . . 01 o]

251

Equation (249) and Equation (250) more clearly illustrate the reduction of A to a tridiagonal

form. The Lanczos process naturally terminates when either p,,, or w,,; equals zero, at

which point an invariant Krylov subspace is spanned by that set of vectors.
Ad.1. The Bi-Conjugate Gradient Algorithm (BCG)

The first Krylov subspace based algorithm derived using the nonsymmetric Lanczos
process was the bi-conjugate gradient algorithm (BCG) [138, 139]. This section discusses
the development of the BCG algorithm since it forms the foundation for many other Lanczos

based Krylov algorithms.
Substituting the value of AP, from Equation V(249) into the orthogonality condition of

Equation (218) gives,
Wir,— WiP,T.y, - Wip,.€;y, =0. (252)

Defining p, =W, =T, lllrollz and using the biorthogonality condition expressed by Equations

(243) and (244), the first term in Equation (252) can be written as

Wir, = Wi(leol,p.) =lIrol, (%1.p)e, =] die:- (253)

Additionally, the biorthogonality conditions expressed by Equation (243) and Equation (244)
can also be used to simplify the second term and eliminate the third term. The simplified
form of Equation (252) then becomes,

D,T.y, =[ro], 4> | (254)

252

but from Equation (244) this is equivalent to
Ty, = "ro"zex s (255)

which can be efficiently solved for y, because T, is tridiagonal. The new solution iterate

can then be computed from Equation (215). However, like GMRES, the residual can actually
be computed without computing the new solution iterate. This enables one to monitor
convergence and then compute the new solution via Equation (215) only after convergence is

reached. The residual equation is derived as follows:

r,=r,—AP,y, r
=r,—P.T.¥, —Pr.€:Y &
=rp— Pk"ro"zex P Y

=r—h l|"o||z - !1’_&4-19:)' k (256)
=rg =Ty = Pru€Ys
= =Prs1€ Y-
Thus, the L,-norm of the residual can be computed from
el = leryel - [pesall,- 257)

Following Golub [126], the BCG procedure can be summarized by the following algorithm:

253

BCG Algorithm (first form)
1) Choose x,
2) Compute r,=b—Ax,

3) Set: By =[rol,; Po=Wo=0; P1=W1=£‘Q'; dp =1
\ 0

B
For k=1,2,...
Nonsymmetric Lanczos Biorthogonalization Process

4) d, =w:7_pk
w,Ap
5) —_ k k
k ddg
6) B=—%
) ﬂf 4

Orthogonal Residual Approach
9 y.=BT.e (258)

10) ""k"z = Iefy kl' [Pt "z
11) If |r]l, < tolerance then compute
X, =X, +P.y,
otherwise continue to iterate.

Note that the main part of the BCG algorithm as presented in Equation (258) is
separated into two distinct steps, each of which is susceptible to breakdown. The Lanczos
process breaks down if d, =w;p, =0, and the orthogonal residual approach can fail if a
unique iterate satisfying the orthogonality condition expressed by Equation (218) does not
exist. In terms of the steps of the algorithm in Equation (258), this condition is equivalent to
the Lanczos matrix, T, being singular [119]. Other difficulties associated with the use of
BCG include: sometimes very erratic convergence behavior stemming from the lack of a
minimization property, and the necessity of working with the matrix transpose. The
advantages of BCG over Armoldi-based techniques are the short vector recurrence
relationships that require only small work and storage requirements on each iteration.
Consequently, algorithm restarts and truncation are not necessary. Thus, in the absence of

round-off error and assuming no breakdowns occur, the algorithm exhibits the finite

254

termination property mentioned in the introduction. The Amoldi-based algorithms exhibit
this property only if restarts and truncation are avoided, which means the work and storage
requirements are allowed to increase on each iteration.

Curfman [80] points out that the form of the BCG algorithm presented in Equation
(258) is the one first presented by Lanczos [138] and is also known as the Biorthogonal
Lanczos Method [80]. The form of BCG proposed later by Fletcher [139] given below in
Equation (259) is mathematically equivalent to the first form, but is more frequently cited as

the BCG algorithm in the literature [see 5, 6, 80, 119, and 120]:

BCG Algorithm (second form)

1) Choose x,,t, (T, #0)

2) Compute r,=b— Ax,

3) Set: vy=r,, V,=Fy v, =V =0, p, =1

For k=0,1,2,...
4) p.=T,1,
5) B =L

Pra

6) Vi =1, +ﬂk;v_k-l
7 V=F, +B,V,,
8) o,= V:Av f

_P: .
9 o= pn (259)

10) x,,+,=;(,‘+akv,‘

11) r,,, =r, + 0, Av,

12) F,, =F, + 4,AT¥,

13) If ||, < tolerance then quit

Within this second form, r, and ¥, are analogous to the vectors p, and w, in Equation (258)
(i.e., they are biorthogonal). Note that the search vectors in Equation (259) given by v, and

v, are bi-conjugate, meaning they satisfy

(Av,,v;)=0 for i=]j, 7 (260)

255

which explains why this algorithm was given the name it now assumes.
Ad4.2. The Conjugate Gradients Squared Algorithm (CGS)

One drawback associated with the use of the BCG algorithm is the required use of the
matrix transpose. This drawback has motivated the development of several transpose-free
Lanczos-based Krylov algorithms. The first such algorithm was the conjugate gradients
squared algorithm (CGS) of Sonneveld [5]. In order to better describe the CGS algorithm it
is helpful to look at the polynomial representation of the BCG algorithm. Recall from
Section A2 that all of the Krylov algorithms discussed here are members of 2 more general
class of polynomial based iterative techniques. With this in mind, the residuals and search

directions of the BCG algorithm expressed in Equation (259) can be represented by

r, =R, (A)r,
t.=R,(AV)F,
vV, = Sk (A)ro (261)

¥, =S, (AT)E,,

where R, and S, are polynomials of maximum degree, £. In the BCG algorithm, the matrix
transpose appears on step 12 in Equation (259) for the calculation of F,. This vector then
subsequently influences the update of i",; and calculation of p, and o, [119]. Sonneveld
observed that by using the polynomial representations in Equation (261), calculation of the
latter two quantities could be rewritten to eliminate the matrix transpose [S]. For example,

step 4 of Equation (259) can be written as [5],

p. =[R,ADE | [R, (A)rs] = FE[R, (A)] r, = FIr{™, 262)

256

where

ré® =[R,(A)]'r,. (263)
Similarly, o, on step 8 can be expressed as in 5] by,
0, =[S.(AT)F,] A[S,(A)r,] =F7A[S,(A)]'r, = FTAVE®, (264)

where

ve% =[S, (A)]'r,. (265)

Equation (262) and Equation (264) demonstrate that both p, and o, can be computed

without the matrix transpose [5, 119]. Sonneveld further noted from the form of these
equations, that generating the polynomials [R, (A)] and [S,(A)]" eliminates the need for

generating ¥, and ¥, altogether. Sonneveld accomplished this goal by squaring the
polynomial forms of the BCG update formulae. The corresponding matrix form of the
resulting CGS algorithm is listed in Equation (266) [5]. Note that like BCG, the CGS
algorithm is still based on short vector recurrence relationships. However, unlike BCG, the
matrix transpose does not appear within the CGS algorithm. The negative effect of the
squaring process, however, is a worsening of the erratic convergence behavior exhibited by
BCG. In many instances, this erratic convergence behavior does not affect the final
convergence of CGS, and in fact when CGS converges it converges roﬁghly twice as fast as
BCG. In other cases, though, van der Vorst has shown that the erratic convergence behavior
of CGS can result in a loss of orthogonality among the updated residuals [6, 80], which can

lead to inaccurate solutions.

257

CGS Algorithm

1) Choose x,, T, (Fy #0)
2) Compute r,=b—Ax,
3) Set: qo=p_, =0, p, =1
For k=0,1,2,...

4) p,=r,r;
5) B, =2
' P

8) v, =Ap,
9) o, =flv,
10) o, = 2=
c (266)

k
11) g, =0, — 0V,

12) 1y =1, — akA(uk + Qul)

13) X, =X, — (U, +q,,)

14) If |re.|, < tolerance then quit

A4.3. The Bi-CGSTAB Algorithm

The Bi-CGSTAB algorithm was developed in an effort to obtain more smoothly
convergent CGS-like solutions [6]. van der Vorst observed that the BCG polynomial
relations could be modified in ways other than squaring to yield a different transpose-free
algorithm. In contrast to the polynomial form of the CGS residual in Equation (263), the
polynomial form of the Bi-CGSTAB residual is givén by [6],

rZi-COSTAB = T (A)R, (A)F,, (267)

258

where T, (A) is a polynomial of maximum degree k that is updated on each iteration

according to,
T,(A)=(I- AT, (A)= (I- nA)I-nA)...(I-nA). (268)
The weighting parameter, 7,, at each step is chosen so as to minimize

[ez-com], = (1~ n AT, (AR, (A)rol,» (269)

which can be interpreted as a local steepest descent step [6]. The resulting matrix form of the

Bi-CGSTAB algorithm is listed below [6]:

Bi—CGSTAB Algorithm
1) Choose x,, F, (T, #0)
2) Compute r,=b— Ax,
3) Set: po=a=0,=1, vy=p,=0
For k=12,3,...
4) p, =Fir,

a
5) B =L %
* Pr-1 Dy

6) p,=r,,+5 (Pk-1 - mk—lvk-l)
7 v,=Ap, '
8) o =-Pr

) ~gvk
9) s=r,,—ov,
10) t=As ,

t7s . (270)

12) x, =x,, +op, +@,S
13) rk=S—mkt
14) If Jr.|, < tolerance then quit

Note that the steepest descent steps used by Bi-CGSTAB typically result in much smoother
convergence than that exhibited by CGS.

259

Ad.4. The Transpose-Free Quasi-Minimal Residual Algorithm (TFQMR)

The transpose-free quasi-minimal resiflual algorithm of Freund [7] is another
Lanczos-base Krylov algorithm that tries to control the erratic convergence behavior of the
CGS algorithm. Recall that one fundamental drawback of the Lanczos based methods is the
lack of a true minimization property. Optimality is thereby sacrificed to obtain short vector
recurrence relationships. In fact, the Faber-Manteuffel theorem [129] proves that this
sacﬁfice is necessary because one cannot in general satisfy an optimality condition
(minimization of the residual with respect to a fixed norm) for nonsymmetric systems using
short vector recurrence relationships. Previously, the Bi-CGSTAB algorithm applied local
steepest descent steps in order to control the erratic CGS convergence behavior.
Unfortunately, however, Bi-CGSTAB residual norms can still undergo considerable
oscillations. -This observation motivated Freund and Nachtigal to develop the quasi-minimal
residual algorithm (QMR) [181], which applies the quasi-minimization technique to the BCG
algorithm (as descﬁi)ed below). Since the development of QMR, the quasi-minimization
technique has been used to develop a whole family of QMR-like algorithms [see 7, 120, 182,
183, 187, and 188]. Among the algorithms of this family, the transpose-free quasi-minimal
residual algorithm (TFQMR) [7], which is generally less expensive per iteration than the
other transpose-free algorithms of this family [120], is specifically considered:

The basic idea of quasi-minimization is the same as the least squares minimization
technique used in deriving the GMRES algorithm in Section A3.2, with one very important
difference, as will be seen shortly. From Equation (256) the norm of the BCG residual can

be written as,

260

I, =[ro — APy, |,
= “("ro"zpmel =P, T3, —Prs€iY:)“ N (271)

Pn (||r0||2 € - T,y k)‘

2’
where
o, B, O 07
1 o B
T,=|. . . . 0} @72)

. . B

01 e
0 0 1

Notice the strong similarities between Equation (271) and Equation (239), which corresponds

the GMRES least squares problem. The obvious difference between these two equations is
the appearance of T, in Equation (271) instead of H,. The more important difference,

however, is that in the GMRES case P,,; has orthonormal columns and so [P, =1. This
condition is no longer true in Equation (271), because the columns of P,,, are generated via

the nonsymmetric Lanczos process and not thé Armnoldi process. Using the multiplicative

property of matrix norms [126], Equation (271) can be expressed by the following inequality,
Il < ||(||rollzex -y,)“2 [Pe.ll- 273)

The idea behind the quasi-minimization technique is to minimize the coefficient of [P,,,[, in
Equation (273) by solving a (k +1)xk least squares problém [181]. This least squares
problem is very similar to the one solved by GMRES with H, replaced by T,.

Consequently, since 'i‘,‘ is a simple tridiagonal matrix, this least squares problem can be

261

solved very efficiently by QR factorization techniques [126]. Thus, the QMR update is
obtained from Equation (215) after y, is determined from the above mentioned least squares

minimization problem [141, 181]. This determination of y, in effect replaces step 9 of the
BCG algorithm in Equation (258). Consequently, the QMR algorithm is not derived via the
orthogonal residual approach as were the previous Lanczoz-based algorithms. As a result,
the QMR algorithm is not susceptible to the breakdown discussed in Section A4.1 that occurs
when a unique iterate satisfying Equation (218) does not exist. However, QMR is still
susceptible to breakdown caused by the nonsymmetric Lanczos process itself. Additionally,
the QMR algorithm still requires wquing with the matrix transpose since only the
determination of y, is different from the original BCG algorithm.

The QMR least squares problem minimizes the coefficient of []P,‘+l "z in Equation
(273) but it does not strictly minimize the residual in the L, — norm or any other fixed norm.
As a result, QMR is not a minimal residual type algorithm according to the strict definition
presented in Section A2.1. However, Manteuffel shows that QMR actually minimizes the

residual in a norm that varies with the iteration number; i.e., QMR minimizes [see 119, 141],

4

[WIr,).. @14)

Recall from the discussion at the beginning of Section A4 that the columns of W, span
K, (r,,AT), and that D, is defined by Equation (244). At first glance, this may seem to
violate the Faber-Manteuffel theorem [129]. However, Manteuffel points out that this
theorem applies only to a fixed norm and not to one that varies with the iteration [141].
Consequently, Barth and Manteuffel classify QMR as a variable metric method [124].

‘ Freund combined the underlying ideas of CGS with the quasi-minimization technique
described above to develop a new transpose-free algorithm, namely the transpose-free quasi-

minimal residual algorithm (TFQMR). This algorithm is listed in Equation (275) [see 7,

262

189]. The TFQMR algorithm uses the same search directions generated by CGS, but then
applies the quasi-minimal residual technique to determine y,. As aresult, TFQMR is not
mathematically equivalent to the standard QMR algorithm described above [181]. Another
interesting feature of TFQMR is that it actually produces two solution updates on each
iteration. This feature arises because the squaring process used by CGS actually yields two
search directions, u, and g, ,,, on each CGS iteration. However, CGS computes only one
solution update given by step 13 of the CGS algorithm in Equation (266). TFQMR actually
makes use of both search directions to produce two solution iterates. This feature appears on
steps 13-20 of the TFQMR algorithm in Equation (275). Note that steps 4-12 of TFQMR are
very similar to steps 4-12 of the CGS algorithm given in Equation (266). Thus, TFQMR can
be viewed as an extension or modification of the CGS algorithm that yields more smoothly
convergent CGS-like solutions.

Note the conspicuous absence of an update expression for the residual associated with
the solution update in the TFQMR algorithm expressed in Equation (275). Unfortunately, the
residual is not readily available in the TFQMR algorithm. However, an estimate for the
upper bound of the residual is available as indicated in parenthesis on step 19. This upper
bound may be used to monitor convergence of the algorithm. If this upper bound is not used,
then the residual must be computed on each iteration, which is significantly more expensive.
In practice, a combination of both options may be necessary to monitor convergence of

TFQMR.

263

TFQMR Algorithm

1) Choose x,, T, (%, ¢0)

2) Compute rs® =b-Ax,

3) Set: g, =d,=p, =0, p,=1, v=1,=0, To=urg6s"2

For k=0,1,2,..
4) pk_rgrfcs
5) B =2

e

6) u,=r;> +Bq,

7) pk =u, +B.(q, + BiPs1)
Ap,‘

9 0',, =Flv,

10) a, = P
0'
11) q,, = akvk

12) iy = rf“ o, A, +q,,)
For m=2k+1,2k+2

13) v, { e[, Il / T, 3 M is odd

“"st“ / m-1 ; m is even
1

14) ¢, = \ll_ﬁ_

15) 7, = m_lv c,

16) 1, =c? ‘a,
u, UL d,, ; mis odd
17) d, = &
q; +f"£‘;l""id.,_1 ;. m is even (275)

k

18) x,, =x,, +1.d,
19) Compute |||, or approximate it from Iell, < (m+1)1,,l
20) If |, < tolerance then quit

AS. SUMMARY

The goals of this appendix were to first motivate the use of Krylov subspace based

methods for solving systems of linear equations, and then to adequately describe the various

264

Krylov subspace based methods available. The latter required a general description of
Krylov techniques, including a discussion of the two primary approaches taken in the
derivation of Krylov algorithms; namely, the minimal residual approach and the orthogonal
residual approach. Examples of both were included in order to demonstrate the required
processes. ‘

Transpose-free Krylov algorithms that are applicable to general nonsymmetric linear
systems were given particular attention in this work. Accordingly, true conjugate gradient
methods that exhibit both optimality and economical vector recurrences were discussed only
to provide a framework for discussing more generally applicable conjugate gradient-like
algorithms. Consequently, the discussion progressed to more recently developed Krylov
algorithms based upon both the Arnoldi process (i.e., GMRES) and the nonsymmetric
Lanczos process (i.e., CGS, Bi-CGSTAB, and TFQMR). The advantages and disadvantages
of these different algorithms were discussed.

Specifically, recall that the Amoldi-based GMRES algorithm {4] was derived so as to
maintain optimality, but at the expense of economical vector recurrences. Consequently, the
work and storage requirements of GMRES increase with the iteration count. Therefore,
practical implementations frequently require use of the restarted version, GMRES(m), where
m is the maximum dimension of the Krylov subspace. The restarted algorithm is then only
optimal within a cycle, and so frequent restarts can lead to slow convergence or even
algorithm stall.

In contrast, the Lanczos-based algorithms were derived so as to maintain economical
vector recurrences, but at the expense of optimality. Additionally, it was noted that the
nonsymmetric Lanczos process itself is susceptible to breakdowns, making algorithms
derived based upon this process also susceptible to breakdown. CGS was the first transpose-
free algorithm of this type developed [5]. It was derived by squaring the BCG [138, 139]
polynomial relations. CGS can exhibit very rapid convergence compared to BCG, but its

265

convergence is marred by sometimes very wiid oscillations, which under certain conditions
can lead fo inaccurate solutions [6]. This difficulty led to the development of both Bi-
CGSTAB [6], which uses local steepest descent steps, and TFQMR [7], which uses the quasi-
minimization idea, to obtain more smoothly convergent CGS-like solutions.

The four algorithms discussed above were given considerable attention because of
their recent popularity. This area of numerical linear algebra continues to be a very active
research topic. In fact, many recent studies, in addition to those already cited, have been
devoted to the improvement and mvesﬁgaﬁon of these different Krylov algorithms [i.e., see
190, 191, and 192]. Thus, one can anticipate future development of new algorithms as well

as the continued improvement of the algorithms described in this overview.

266

REFERENCES

10.

White, F.M., Viscous Fluid Flow, McGraw-Hill, Inc., New York (1974).
Burmeister, L.C., Convective Heat Transfer, John Wiley & Sons, New York (1983).

Ortega, J.M. and Rheinboldt, W.C., Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, Inc., San Diego, CA. , Computer Science and
Applied Mathematics Series (1970).

Saad, Y. and Schultz, M.H., "GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems," SIAM J Sci. Stat. Comput. 7, 856-869
(1986).

Sonneveld, P., "CGS, a Fast Lanczos-type Solver for Nonsymmetric Linear Systems,"
SIAM J. Sci. Stat. Comput. 10, 36-52 (1989).

van der Vorst, H.A., "Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-
CG for the Solution of Nonsymmetric Linear Systems," STAM J. Sci. Stat. Comput.
13, 631-644 (1992).

Freund, R.W., "A Transpose-Free Quasi-Minimal Residual Algorithm for non-
Hermitian Linear Systems," SIAM J. Sci. Comput. 14,470-482 (1993).

White, F.M., Fluid Mechanics, McGraw-Hill, Inc. , 2nd (1986).

McHugh, P.R. and Knoll, D.A., "Fully Implicit Solution of the Benchmark Backward
Facing Step Problem Using Finite Volume Differencing and Inexact Newton's
Method." In Benchmark Problems for Heat Transfer Codes, Blackwell, B. and
Pepper, D.W. (Eds.), 1992 ASME Winter Annual Meeting, Anaheim CA., ASME
HTD-Vol. 222, Nov. 8-13 1992, pp. 77-87.

McHugh, P.R. and Knoll, D.A., "Inexact Newton's Method Solutions to the
Incompressible Navier-Stokes and Energy Equations Using Standard and Matrix-Free
Implementations.”" In Proc. of 11th AIAA Computational Fluid Dynamics
Conference, Orlando, FL., AIAA-93-3332, July 6-9 1993, pp. 385-393.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

267

McHugh, P.R., Knoll, D.A., and Johnson, R.W., "Fully Implicit Solutions of the
Benchmark Problem Using Inexact Newton's Method." In Computational Aspects of
Heat Transfer Benchmark Problems, Blackwell, B.F. and Armaly, B.F. (Eds.), 1993
ASME Winter Annual Meeting, New Orleans, LA., HTD-Vol. 258, Nov. 28 - Dec. 3
1993, pp. 83-91.

McHugh, P.R. and Knoll, D.A., "Fully Coupled Finite Volume Solutions of the
Incompressible Navier Stokes and Energy Equations Using Inexact Newton's
Method," Int. J. Numer. Meth. Fluids 19, 439-455 (1994).

McHugh, P.R. and Knoll, D.A., "Comparison of Standard and Matrix-Free
Implementations of Several Newton-Krylov Solvers," AIAA J. 32,N12, 2394-2400

(Dec. 1994).

Johnson, R.W., McHugh, P.R., and Knoll, D.A., "Defect Correction with a Fully
Coupled Inexact Newton Method," Numer. Heat Transfer., Part B 26, 173-188
(1994).

Knoll, D.A., McHugh, P.R., and Mousseau, V.A., "Newton-Krylov-Schwarz Methods
Applied to the Tokamak Edge Plasma Fluid Equations." In Domain-Based
Parallelism and Problem Decomposition Methods in Computational Science and
Engineering (Minnesota Supercomputer Institute, April 25-26, 1994), Keyes, D.E.,
Y.S., and Truhlar, D.G. (Eds.), Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, (to appear in 1995, approx. 300 pages), 1995.

McHugh, P.R., Knoll, D.A., Mousseau, V.A., and Hansen, G.A. An Investigation of
Newton-Krylov Solution Techniques for Low Mach Number Compressible flow,
accepted for presentation at ASME FED Summer Meeting, Hilton Head Island, S.C.,
August 13-18 1995.

Dongarra, J.J., Bun;:h, J., Moler, C., and Stewart, G., LINPACK User's Guide, SIAM,
Philadelphia, PA., 1979.

Dongarra, J.J., Performance of Various Computers Using Standard Linear Equation
Software CS-89-85, Computer Science Department, University of Tennessee,
Knoxville, TN 37996-1301, February 1995.

Anderson, D.A., Tannehill, J.C., and Pletcher, R.H., Computational Fluid Mechanics
and Heat Transfer, Hemisphere Publishing Corp., New York (1984).

Roache, P.J., Computational Fluid Dynamics, Hermosa Publishers, Albuquerque,
N.M. (1982).

21.

22.

23.

25.

26.

27.

28.

29.

30.

3L

32.

268

Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere, New York
(1980).

Harlow, F.H. and Amsden, A.A., "A Numerical Fluid Dynamics Calculation Method
for All Flow Speeds," J. Comut. Phys. 8, 197-213 (1971).

Knoll, D.A. and McHugh, P.R., "A Fully Implicit Direct Newton Solver for the
Navier-Stokes Equations,” Int. J. Num. Meth. Fluids 17, 449-461 (1993).

MacArthur, J.W. and Patankar, S.V., "Robust Semidirect Finite Difference Methods
for Solving the Navier-Stokes and Energy Equations," Int. J. Num. Meth. Fluids 9,
325-340 (1989).

MacArthur, J.W. Development and Implementation of Robust Direct Finite-
Difference Methods for the Solution fo Strongly Coupled Elliptic Transport, Ph.D.
dissertation, University of Minnesota, 1986.

Schreiber, R. and Keller, H.B., "Driven Cavity Flows by Efficient Numerical
Techniques," J. of Comput. Phys. 49, 310-333 (1983).

Fornberg, B., "Steady Viscous Flow Past a Circular Cylinder up to Reynolds Number
600," J. Comp. Physics 61,297 (1985).

Jackson, C.P., "A Finite-Element Study of the Onset of Vortex Shedding in Flow Past
Variously Shaped Bodies," J. Fluid Mech. 182, 23-45 (1987).

Vanka, S.P. and Leaf, G.K., Fully-Coupled Solution of Pressure-Linked Fluid-Flow
Equations, Technical Report ANL-83-73, Argonne National Laboratory 1983.

Vanka, S.P., "Block-Implicit Calculation of Steady Turbulent Recirculating Flows,"
Int. J. Heat Mass Transfer 28, 2093-2103 (1985).

Landau, L.D. and Lifshitz, EM., Fluid Mechanics, Pergamon Press, Elmsford, N.Y. ,
Vol. 6, 2nd (1987).

Bailey, H.E. and Beam, R.M., "Newton's Method Applied to Finite-Difference
Approximations for the Steady-State Compressible Navier-Stokes Equations," J.
Comput. Phys. 93, 108-127 (1991).

33.

34.

35.

36.

37.

38.

39.

41.

42.

43.

269

Venkatakrishnan, V., "Newton Solution of Inviscid and Viscous Problems," AIAA J.
27, 885- 891 (1989). ,

Venkatakrishnan, V., "Viscous Computations Using a Direct Solver,” Computers &
Fluids 18, 191-204 (1990).

Gustafsson, B. and Wahlund, P., "Finite-Difference Methods for Computing the
Steady Flow about Blunt Bodies," J. Comp. Physics 36, 327 (1980).

Beam, R.M. and Warming, R.F., "An Implicit Factored Scheme for the Compressible
Navier-Stokes Equations,” AIAA J. 16, 393-401 (1978).

Zienkiewicz, O.C., The Finite Element Method, McGraw-Hill, Inc., London, 3rd ed.
(1977).

Habashi, W.G., Robichaud, M., Nguyen, V.N., Ghaly, W.S., Fortin, M., and Liu,
J.W.H., "Large-Scale Computational Fluid Dynamics by the Finite Element Method,"
Int. J. Numer. Meth. Fluids 18, 1083-1105 (1994).

Peeters, M.F., Habashi, W.G., Nguyen, B.Q., and Kotiuga, P.L., "Finite Element
Solutions of the Navier-Stokes Equations for Compressible Internal Flows," J.
Propulsion 8, N1, 192-198 (1990).

Smooke, M.D., "Solution of Burner-Stabilized Premixed Laminar Flames by
Boundary Value Methods," J. Comp. Phys. 48,72-105 (1982).

Smooke, M.D., "Error Estimate for the Modified Newton Method with Applications ‘
to the Solution of Nonlinear, Two-Point Boundary-Value Problems," Journal of
Optimization Theory and Applications 39, 489-511 (1983).

Smooke, M.D., Miller, J.A., and Kee, R.J., Solution of Premixed and Counterflow
Diffusion Flame Problems by Adaptive Boundary Value Methods, Birkhuser Boston
Inc., Vol. 5 (1985).

Puri, K.I., Seshadri, K., Smooke, M.D., and Keyes, D.E., "A Comparison Between
Numerical Calculations and Experimental Measurements of the Structure of a
8%118nterﬂow Methane-Air Diffusion Flame," Combust. Sci. and Tech. 56, 1-22

7).

45.

47.

48.

49.

50.

51

52.

53.

54.

270

Knoll, D.A., Prinja, A.K., and Campbell, R.B., "A Direct Newton Solver for the Two-
Dimensional Tokamak Edge Plasma Fluid Equations," J. Comput. Phys. 104, 418-
426 (1993).

Iliev, O.P., Makarov, M.M., and Vassilevski, P.S., "Performance of Certain Iterative
Methods in Solving Implicit Difference Schemes for 2-D Navier-Stokes Equations,”
Int. J. for Numerical Methods in Engineering 33, 1485-1479 (1992).

Langtangen, H.P., "Conjugate Gradient Methods and ILU Preconditioning of Non-
Symmetric Matrix Systems with Arbitrary Sparsity Patterns," Int. J. Numer. Meth.
Fluids 9,213-233 (1989).

Natarajan, R., "A Numerical Method for Incompressible Viscous Flow Simulation,"
J. Comput. Phys. 100, 384-395 (1992).

Noll, B. and Wittig, S., "Generalized Conjugate Gradient Method for the Efficient
Solution of Three-Dimensional Fluid Flow Problems,"” Numerical Heat Transfer, Part
B 20,207 - 221 (1991).

Reddy, M.P., Reddy, J.N., and Akay, H.U., "Penalty Finite Element Analysis of
Incompressible Flows Using Element by Element Solution Algorithms," Computer
Meth. Appl. Mech. and Eng. 100, 169-205 (1992).

Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, Inc., Ne
York (1993). .

Reddy, M.P., Reifschneider, L.G., Reddy, J.N., and Akay, H.U., "Accuracy and
Convergence of Element-By-Element Iterative Solvers For Incompressible Fluid
Flows Using Penalty Finite Element Model," Int. J. Numer. Meth. in Fluids 17, 1019-
1033 (1993).

Vincent, C. and Boyer, R., "A Preconditioned Conjugate Gradient Uzawa-Type
Method for the Solution of the Stokes Problem by Mixed Q1-PO Stabilized Finite
Elements," Int. J. Numerical Methods in Fluids 14,289 - 298 (1992).

Joly, P. and Eymard, R., "Preconditioned Biconjugate Gradient Methods for
Numerical Reservoir Simulation,” J. of Comput. Physics 91,298 - 309 (1990).

Jordan, S.A., "An Iterative Scheme for Numerical Solution of Steady Incompressible
Viscous Flows," Computers Fluids 21, 503-517 (1992).

55.

56.

57.

58.

59.

61.

62.

63.

65.

271

Sjogreen, B., "Iterative Methods for Stationary Solutions to the Steady-State
Compressible Navier-Stokes Equations,” Computers F Tuids 21, 627-645 (1992).

Em, A. and Smooke, M.D., "Vorticity-Velocity Formulation for Three-Dimensional
Steady Compressible Flows," J. Comput. Phys. 105, 58-71 (1993).

Smooke, M.D. and Giovangigli, V., "Numerical Modeling of Axisymmetric Laminar
Diffusion Flames by a Parallel Boundary Value Method," Int. J. Supercomputer Appl.
5,72-105 (1982).

Xu, Y. and Smooke, M.D., "Application of a Primitive Variable Newton's Method for
the Calculation of an Axisymmetric Laminar Diffusion Flame," J. Comput. Phys.
104, 99-109 (1993).

Chorin, A.J., "A Numerical Method for Solving Incompressible Viscous Flow
Problems," J. Comput. Phys. 2, 12-26 (1967).

Peyret, R., "Unsteady Evolution of a Horizontal Jet in a Stratified Fluid," J. Fluid
Mech. 78, 49-63 (1976).

Briley, W.R. and McDonald, H., "On the Structure and Use of Linearized Block
Implicit Schemes," J. Comput. Phys. 34,54-73 (1980).

Stone, H.L., "Tterative Solution of Implicit Approximations of Multidimensional
Partial Differential Equations," SIAM J. Numer. Anal. 5, 530 (1968).

Hageman, L.A. and Young, D.M., Applied Iterative Methods, Academic Press, San
Diego, CA. , Computer Science and Applied Mathematics Series (1981).

Howard, D., Connolley, W.M., and Rollett, J.S., "Unsymmetric Conjugate Gradient
Methods and Sparse Direct Methods in Finite Element Flow Simulation," Int. J.
Numer. Meth. Fluids 10, 925-945 (1990).

Clift, S.S. and Forsyth, P.A., "Linear and Non-Linear Iterative Methods for the
}nggﬁl)pressible Navier-Stokes Equations,” Int. J. Numer. Meth. Fluids 16,229-256
1994).

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

272

J.E. Dennis, J. and Schnabel, R.R., Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall Inc., Englewood Cliffs, N.J.
(1983).

Brown, P.N. and Saad, Y., "Hybrid Krylov Methods for Nonlinear Systems of
Equations," SIAM J. Sci. Stat. Comput. 11,450-481 (1990).

Carey, G.F., Wang, K.C., and Joubert, W.D., "Performance of Iterative Methods for
Newtonian and Generalized Newtonian Flows," Int. J. Numer. Meth. Fluids 9, 127-
150 (1989).

Eisenstat, S.C. and Walker, H.F. Globally Convergent Inexact Newton Methods. to
appear in SIAM J. Optimization.

Walker, H.F., "A GMRES-Backtracking Newton Iterative Method." In Proc. of the
Copper Mountain Conference on Iterative Methods, April 1992.

Zhou, L. Krylov Subspace Methods for Linear and Nonlinear Systems, Ph.D.
dissertation, Utah State University, 1993.

Blue, J., "Robust Methods for Solving Systems of Nonlinear Equations," SIAM J. Sci.
Stat. Comput. 1, 22-33 (1980).

Papadrakakis, M. and Pantazopoulos, G., "A Survey of Quasi-Newton Methods with
Reduced Storage," Int. J. Numer. Meth. Engineering 36, 1573-1596 (1993).

Broyden, C.G., "A Class of Methods for Solving Nonlinear Simultaneous Equations,"
Math. Comp. 19, 577-593 (1965). '

Edwards, J.R. and McRae, D.S., "Nonlinear Relaxation/Quasi-Newton Algorithm for
the Compressible Navier-Stokes Equations,"” AJAA J. 31, 57 - 60 (1993).

Chin, P., D'Azevedo, EF., Forsyth, P.A,, and Tang, W.-P., "Preconditioned
Conjugate Gradient Methods for the Incompressible Navier-Stokes Equations,"” Int. J.
Num. Meth. Fluids 15,273-295 (1992).

Chin, P. and Forsyth, P.A., "A Comparison of GMRES and CGSTAB Accelerations
for Incompressible Navier-Stokes Problems," J. of Computational and Applied
Mathematics 46, 415-426 (1993).

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

273

Gropp, W.D. and Keyes, D.E., "Domain Decomposition Methods in Computational
Fluid Dynamics," Int. J. Numer. Meth. Fluids 14, 147-165 (1992).

Dahl, O. and Wille, S.9., "An ILU Precondioner with Coupled Node Fill-In for
Tterative Solution of the Mixed Finite Element Formulation of the 2D and 3D Navier-
Stokes Equations," Int. J. Numer. Meth. Fluids 15, 525-544 (1992).

Curfman, L.V. Solution of Convective-Diffusive Flow Problems with Newton-Like
Methods, Ph.D. dissertation, University of Virginia, 1993.

Einset, E.O. and Jensen, K.F., "A Finite Element Solution of Three-Dimensional
Mixed Convection Gas Flows in Horizontal Channels Using Preconditioned Iterative
Matrix Methods," Int. J. Numer. Meth. in Fluids 14, 817-841 (1992).

Hood, P., "Frontal Solution Program for Unsymmetric Matrices," Int. J. Num. Meth
Eng. 10,379-399 (1976).

Edwards, W.S., Tuckerman, L.S., Friesner, R.A., and Sorensen, D.C., "Krylov
Methods for the Incompressible Navier-Stokes Equations," J. Comput. Phys. 110, 82-
102 (1994).

Venkatakrishnan, V., "Preconditioned Conjugate Gradient Methods for the
Compressible Navier-Stokes Equations," AIAA J. 29, 1092-1 100 (1991).

Venkatakrishnan, V. and Mavriplis, D.J., "Implicit Solvers for Unstructured Meshes,"
J. Comput. Phys. 105, 83-91 (1993).

Ajmani, K. and Liou, M.S., "Generalized Conjugate-Gradient Methods for the
Navier-Stokes Equations." In Proc. of 10th AIAA Computational Fluid Dynamics
Conference, Honolulu, Hawaii, AIAA Paper 93-881, June 24-26 1991.

Ajmani, K., Ng, WF,, and Liou, M.S., Preconditioned Conjugate-Gradient Methods
for Low-Speed Flow Calculations, NASA Tech. Memorandum 105929, ICOMP-92-
22, Institute for Computational Mechanics in Propulsion ICOMP), NASA Lewis
Research Center, Cleveland, OH., (AIAA-93-0881) 1993.

Ajmani, K., Liou, M.S., and Dyson, R.W., Preconditioned Implicit Solvers for the

Navier-Stokes Equations on Distributed-Memory Machines, NASA Tech.

Memorandum 106449, ICOMP-93-49, Institute for Computational Mechanics in

{’.z%%ulsg)grl4 (ICOMP), NASA Lewis Research Center, Cleveland, OH., (ATIAA-94-
) 1994,

89.

91.

92.

93.

94.

9s.

96.

97.

98.

274

Orkwis, P. and George, J.H., "A Comparison of CGS Preconditioning Methods for
Newton's Method Solvers." In Proc. 11th AIAA CFD Conference, Orlando, FL..,
AIAA paper 93-3327, July 6-9 1993.

Orkwis, P., "Comparison of Newton's and Quasi-Newton's Method Solvers for
Navier-Stokes Equations," AIAA J. 31, 832-836 (1993).

Cai, X.C., Gropp, W.D., Keyes, D.E., and Tidriri, M.D., "Parallel Implicit Methods
for Aerodynamics." In Proc. of the 7th Int. Conf. on Domain Decomposition Methods
in Scientific and Engineering Computing, The Pennsylvania State University, Oct. 27-
30 1993.

Cai, X.C., Gropp, W.D., Keyes, D.E., and Tidriri, M.D., "Newton-Krylov-Schwarz
Methods in CED." In Proc. of the Int. Workshop on Num. Meth. for the Navier-Stokes
Equations, Hebeker, E. and Rannacher, R. (Eds.), Vieweg Verlag, Brainishwig, Notes
on Numerical Fluid Mechanics, 1994, pp. 17-30.

Nielsen, E.J. Application of Newton-Krylov Methodology to a Three-Dimensional
Unstructured Euler Code. paper in preparation.

Erm, A., Giovangigli, V., Keyes, D.E., and Smooke, M.D., "Towards Polyalgorithmic
Linear System Solvers for Nonlinear Elliptic Problems,"” SIAM J. Sci. Comput. 15,
681-703 (1994).

Keyes, D.E., "Domain Decomposition Methods for the Parallel Computation of
Reacting Flows," Computer Physics Communications 53, 181-200 (1989).

Dutto, L.C., "The Effect of Ordering on Preconditioned GMRES Algorithm for
Solving the Compressible Navier-Stokes Equations,” Int. J. Numer. Meth. in Eng. 36,
457-497 (1993).

Dutto, L.C., Habashi, W.G., Robichaud, M., and Fortin, M., "A Parallel Strategy for
the Solution of the Fully-Coupled Compressible Navier-Stokes Equations.” In
Advances in Finite Element Analysis in Fluid Dynamics, Dhaubhadel, M.N.,
Engelman, M.S., and Habashi, W.G. (Eds.), 1993 ASME Winter Annual Meeting,
New Orleans, LA., FED-Vol. 171, Nov. 28 - Dec. 3 1993.

Dutto, L.C., Habashi, W.G., and Fortin, M., "Parallelizable Block Diagonal
Preconditioners for 3D Viscous Compressible Flow Calculations." In Proc. of 11th
AIAA Computational Fluid Dynamics Conference, Orlando, FL., ATAA-93-3309-CP,
July 6-9 1993.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

275

Dutto, L.C., Habashi, W.G., and Fortin, M., "Parallelizable Block Diagonal
Preconditioners for the Compressible Navier-Stokes Equations," Comput. Methods
Appl. Mech. and Engrg. 117, 15-47 (1994).

Dutto, L.C., Habashi, W.G., Robichaud, M., and Fortin, M., "A Method for Finite
Element Parallel Viscous Compressible Flow Calculations,” Int. J. Numer. Meth.
Fluids 19, 275-294 (1994).

Ramshaw, J.D. and Dukowicz, J.K., APACHE: A Generalized-Mesh Eulerian
Computer Code for Multicomponent Chemically Reactive F luid Flow, Technical
Report LA-7427, Los Alamos Scientific Laboratory 1979.

McHugh, P.R. and Ramshaw, J.D., A Computational Modéel for Viscous Fluid Flow,
Heat Transfer, and Melting in In Situ Vitrification Melt Pools, Technical Report
EGG-WTD-9845, Idaho National Engineering Laboratory, Idaho Falls, ID. 1991.

Kreyszig, E., Advanced Engineering Mathematics, John Wiley & Sons, New York,
5th ed. (1983).

Gresho, P.M., "Some Current CED Issues Relevant to the Incompressible Navier-
Stokes Equations,” Computer Meth. in Appl. Mech. and Eng. 87, 201-252 (1991).

Gaskell, P.H. and Lau, A.K.C., "Curvature-Compensated Convective Transport:
SMART, A New Boundedness-Preserving Transport Algorithm," Int. J. Num. Meth.
Fluids 8,617-641 (1988).

Johnson, R.W. and MacKinnon, R.J., "Equivalent Versions of the Quick Scheme for
Finite-Difference and Finite-Volume Numerical Methods," Comm. Appl. Numer.

- Merth. 8, 841-847 (1992).

Hayase, J.A., Humphrey, J.A.C., and Greif, R., "A Consistently Formulated QUICK
Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation
Procedures," J. Comput. Phys. 98, 108-118 (1992). '

Leonard, B.P., "A Stable and Accurate Convective Modelling Procedure Based on
Quadratic Upstream Interpolation," Computer Methods in Applied Mechanics and
Engineering 19, 59-58 (1979).

de Vahl Davis, G., "Natural Convection of Air in a Square Cavity: A Benchmark
Numerical Solution," Int. J. Num. Meth. Fluids 3,249-264 (1983).

110.

111.

112,

113.

114.

115.

116.

117.

118.

119.

120.

121.

276

Blackwell, B.F. and Armaly, B.F. (Eds). Computational Aspects of Heat Transfer
Benchmark Problems. 1993 ASME Winter Annual Meeting, New Orleans, Louisiana,
November 28-December 3 1993.

Incropera, F.P. and DeWitt, D.P., Introduction to Heat Transfer, John Wiley & Sons,
New York (1990).

Blackwell, B.F. and Pepper, D.W. (Eds). Benchmark Problems for Heat Transfer
Codes. 1992 ASME Winter Annual Meeting, Anaheim, CA., November 8-13 1992.

Gartling, D.K., "A Test Problem for Outflow Boundary Conditions—Flow Over a
Backward Facing Step," Int. J. Num. Meth. Fluids 11, 953-967 (1990).

Curtis, A.R., Powell, M.J.D., and Reid, J.K., "On the Estimation of Sparse Jacobian
Matrices," J. Inst. Maths. Applics. 13, 117-119 (1974).)

Gerald, C.F. and Wheatley, P.O., Applied Numerical Analysis, Addison-Wesley
Publishing Company, Reading, Massachusetts , 3rd ed. (1984).

Mulder, W.A. and Leer, B.V., Implicit Upwind Methods for the Euler Equations,
AJAA Paper 83-1930 1983.

Darwish, M.S., "A New High-Resolution Scheme Based on the Normalized Variable
Formulation," Numer. Heat Transfer, Part B 24, 353-371 (1993).

Rubin, S.G..and Khosla, P.K., "Polynomial Interpolation Method for Viscous Flow
Calculations,” J. Comput. Phys. 27,153-168 (1982).

Freund, R.W., Golub, G.H., and Nachtigal, N., "Iterative Solution of Linear Systems,"
Acta Numerica , 57-100 (1991).

Tong, C.H., A Comparative Study of Preconditioned Lanczos Methods for
Nonsymmetric Linear Systems, Technical Report SAND91-8240, UC-404, Sandia
National Laboratories Report, January 1992.

Averick, B.M. and Ortega, J.M., "Solutions of nonlinear Poisson-type equations,”
Applied Numerical Mathematics 8, 443-455 (1991).

122.
123.
124.

125.

126.
127.

128.

129.
130.

131.

132.

133.

277

Dembo, R.S., Eisenstat, S.C., and Steihaug, T., "Inexact Newton methods," SIAM J.
Numer. Anal. 19, 400-408 (1982).

Ashby, S.F., Manteuffel, T., and Saylor, P., "A Taxonomy for Conjugate Gradient
Methods," SIAM J. Numer. Anal. 27, 1542-1568 (1990).

Barth, T. and Manteuffel, T., Variable Metric Conjugate Gradient Methods, Center
for Nonlinear Studies Newsletter LALP-94-003, Los Alamos National Lab. 1994.

Bramble, I.H., Leyk, Z., and Pasciak, J.E., "Iterative Schemes for Nonsymmetric and
Indefinite Elliptic Boundary Value Problems," Mathematics of Computation 60, 1-22
(1993).

Golub, G. and Ortega, J.M., Scientific Computing, An Introduction with Parallel
Computing, Academic Press, Inc., New York (1993).

Axelsson, O., "A Survey of Preconditioned Iterative Methods for Linear Systems of
Algebraic Equations,” BIT 25, 166-187 (1985).

Eisenstat, S.C., Elman, H.C., and Schultz, M.H., "Variational Iterative Methods for
Nonsymmetric Systems of Linear Equations,” SIAM J. Numer. Anal. 20, 345-361
(1983).

Faber, V. and Manteuffel, T., "Necessary and Sufficient Conditions for the Existence
of a Conjugate Gradient Method," SIAM J. Numer. Anal. 21, 352-362 (1984).

Saad, Y., "Krylov Subspace Methods for Solving Large Unsymmetric Linear
Systems,” Mathematics of Computation 37, N155, 105-126 (1981).

Saad, Y. and Schultz, M.H., "Conjugate Gradient-Like Algorithms for Solving
No%symmetric Linear Systems," Mathematics of Computation 44,N170, 417-424
(1985).

" Golub, G.H. and O'Leary, D.P., "Some History of the Conjugate Gradient and

Lanczos Algorithms: 1948-1976," SIAM Review 31, 50-102 (1989).

Hestenes, M.R. and Stiefel, E., "Methods of Conjugate Gradients for Solving Linear
Systems," J. Res. Natl. Bur. Stand. 49, 409-436 (1952).

134.

135.

136.

137.

138.

139.

140.

141.

142,

143.

144.

145.

278

Reid, J.K., On the Method of Conjugate Gradients for the Solution of Large Sparse
Systems of Linear Equations, Reid, J.K. (Ed.), Academic Press: New York (1971), pp.
231-253.

Concus, P. and Golub, G., A Generalized Conjugate Gradient Method for
Nonsymmetric Systems of Linear Equations, Glowinski, R. and Lions, J.L. (Eds.),
Springer-Verlag: Berlin, Vol. 134 (1976), pp. 56-65.

Craig, E.J., "The N-Step Iteration Procedures," J. Math. Phys. 34, 64-73 (1955).

Arnoldi, W.E., "The Principal of Minimized Iterations in the Solution of Matrix
Eigenvalue Problems," Quart. Appl. Math. 9, 17-29 (1951).

Lanczos, C., "Solution of Systems of Linear Equations by Minimized Iterations," J.
Res. Natl. Natl. Bur. Stand. 49, 33-53 (1952).

Fletcher, R., Conjugate Gradient Methods for Indefinite Systems, Watson, G.A. (Ed.),
Springer-Verlag: Berlin, Vol. 506 (1976), pp. 73-89.

Saad, Y., SPARSKIT, A Basic Tool Kit for Sparse Matrix Computations, RIACS
Technical Report 90.20, Research Institute for Advanced Computer Science
(RIACS), NASA Ames Research Center, Moffet Field, CA. 1990.

Ashby, S., Manteuffel, T., and Saylor, P., Preconditioned Polynomial Iterative
Methods, A Tutorial, Universityof Colorado, Denver, CO., April 7-8, 1992.

Concus, P., Golub, G.H., and Meurant, G., "Block Preconditioning for the Conjugate
Gradient Method," SIAM J. Sci. Stat. Comput. 6, 220-252 (1985).

Meijerink, J.A. and van der Vorst, H.A., "An Iterative Solution Method for Linear
Systems of Which the Coefficient Matrix is a Symmetric M-Matrix," Mathematics of
Computation 31,N137, 148-162 (1977).

Ashby, S., Manteuffel, T., and Otto, J., "A Com'aérison of Adaptive Chebyshev and
Least Squares Polynomial Preconditioning for Hermitian Positive Definite Linear
Systems," SIAM J. Sci. Stat. Comput. 13, 1-29 (1992).

Johnson, O.G., Micchelli, C.A., and Paul, G., "Polynomial Preconditioners for
Conjugate Gradient Calculations,” SIAM J. Numer. Anal. 20, 362-376 (1983).

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

279

Joubert, W., "A Robust GMRES-Based Adaptive Polynomial Preconditioning
Algorithm for Nonsymmetric Linear Systems," SIAM J. Sci Comput. 15, 427-439
(1994).

Manteuffel, T. and Otto, J., "Optimal Equivalent Preconditioners," STAM J. Numer.
Anal. 30,790-812 (1993).

Watts, J.W., "A Conjugate Gradient-Truncated Direct Method for the Iterative
Soluﬁox;; of the Reservoir Simulation Pressure Equation," Soc. Pet. Eng. J. 21, 345-
353 (1981).

Sangback, M. and Chronopoulos, A.T., "Implementation of Iterative Methods for
Large Sparse Nonsymmetric Linear Systems on A Parallel Vector Machine," Int. J.
Supercomputer Applications 4, 9-24 (1990). '

Kershaw, D.S., "On the Problem of Unstable Pivots in the Incomplete LU-Conjugate
Gradient Method," J. Comp. Phys. 38, 114-123 (1980).

Duff, 1.S. and Meurant, G.A., "The Effect of Ordering on Preconditioned Conjugate
Gradients,” BIT 29, 635-657 (1989).

Cai, X.C. and Widlund, O.B., "Multiplicative Schwarz Algorithms for Some
Nonsymmetric and Indefinite Problems," SIAM J. Numer. Anal. 30, 936-952 (1993).

Cai, X.C. and Saad, Y., Overlapping Domain Decompositon Algorithms for General
Sparse Matrices, Preprint 93-27, Army High Performance Computing Research
Center, University of Minnesota 1993.

. Cai, X.C., Gropp, W.D., and Keyes, D.E. A Comparison of Some Domain

Decomposition and ILU Preconditioned Iterative Methods For Nonsymmetric Elliptic
Problems. to appear in J. Numer. Lin. Alg. Applic.

Dryja, M. and Widlund, O.B., "Domain Decomposition Algorithms with Small
Overlap," SIAM J. Sci. Comput. 15, 604-620 (1994).

Keyes, D.E., "Domain Decomposition: A Bridge Between Nature and Parallel
Computers." In Proc. of the Symposium on Adaptive, Multilevel and Hierarchial
fggnéputation Strategies, ASME Winter Annual Meeting, Anaheim, CA., Nov. 8-13

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

280

Brown, P.N. and Hindmarsh, A.C., "Matrix-Free Methods for Stiff Systems of
ODE's," SIAM J. Numer. Anal. 23, 610-638 (1986).

Brown, P.N., "A Local Convergence Theory for Combined Inexact-Newton/Finite
Difference Projection Methods," SIAM J. Numer. Anal. 24, 407-435 (1987).

Brown, P.N. and Hindmarsh, A.C., "Reduced Storage Matrix Methods in Stiff ODE
Systems," Applied Mathematics and Computation 31, 40-91 (1989). .

Gear, C.W. and Saad, Y., "Iterative Solution of Linear Equations in ODE Codes,"
SIAM J. Sci. Stat. Comp. 4,583-601 (1983).

Eisenstat, S.C., Gursky, M.C., Schultz, M.H., and Sherman, A.H., The Yale Sparse
Matrix Package, II. Nonsymmetric Codes, Technical Report 114, Department of
Computer Science, Yale University 1978.

Lin, J.T., Ammaly, B.F., and Chen, T.S., "Mixed Convection in Buoyancy-Assisting,
Vertical Backward-Facing Step Flows," Int. J. Heat Mass Transfer 33, N10, 2121-
2132 (1990).

Pletcher, R.H. and Chen, K.H., "On Solving the Compressible Navier-Stokes
Equations for Unsteady Flows at Very Low Mach Numbers." In Proc. 11th AIAA
CFD Conference, Orlando, FL, ATIAA-93-3368-CP, July 6-9 1993.

Ramshaw, J.D. and Mousseau, V.A., "Damped Artificial Compressibility Method for
Steady-State Low-Speed Flow Calculations,” Computers Fluids 20, N2, 177-186
(1991). '

Briley, W.R., McDonald, H., and Shamroth, S.J., "A Low Mach Number Euler
Formulation and Application to Time-Iterative LBI Schemes," AIAA Journal 21,
N10, 1467-1469 (1983).

Choi, D. and Merkle, C.L., "Application of Time-Iterative Schemes to Incompressible
Flow," AIAA J. 23,N10, 1518 (October 1985).

Merkle, C.L. and Choi, Y.H., "Computation of Low-Speed Flow with Heat Addition,"
AIAA J. 25,N6, 831 (June 1987). A

Shuen, J.S., Chen, K.H., and Choi, Y., "A Coupled Implicit Method for Chemical
Non-Equilibrium Flows at all Speeds," J. Comput. Phys. 106, 306-318 (1993).

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

281

Turkel, E., "Preconditioned Methods for Solving the Incompressible and Low Speed
Compressible Equations," J. Comput. Phys. 72,277 (1987).

Daniel, J.W., "The Conjugate Gradient Method for Linear and Nonlinear Operator
Equations,” Numer. Math. 10, 10-26 (1967).

Chronopoulos, A.T., "Nonlinear CG-Like Iterative Methods," J. Comput. and Appl.
Math. 40, 73-89 (1992).

Chronopoulos, A.T., "Iterative Methods for Nonlinear Operator Equations,” Appl.
Math. and Comput. 51, 167-180 (1992).

Peaceman, D.W. and Rachford, H.H., "The Numerical Solution of Parabolic and
Elliptic Differential Equations,” J. Soc. Ind. Appl. Math. 3,28 (1955).

Chandra, R. Conjugate Gradient Methods for Partial Differential Equations, Ph.D.
dissertation, Computer Science Dept., Yale University, New Haven, CT., 1978.

Elman, H.C. Iterative Methods for Large Sparse Nonsymmetric Systems of Linear
Equations, Ph.D. dissertation, Computer Science Department, Yale University, New
Haven, CT., 1982.]

Vinsome, P.K.W., "ORTHOMIN, An Iterative Method for Solving Sparse Sets of
Simultaneous Linear Equations." In Proc. Fourth Symposium on Reservoir
Simulation, Soc.of Petroleum Engineering of AIME, 1976, pp. 149-159.

Young, D.M. and Jea, K.C., "Generalized Conjugate Gradient Acceleration of
Nonsymmetrizable Iterative Methods," Linear Alg. Appl. 34, 159-194 (1980).

Saad, Y., "Krylov Subspace Methods on Supercomputers,” SIAM J Sci. Stat. Comput.
10, 1200-1232 (1989).

Widlund, d., "A Lanczos Method for a Class of Nonsymmetric Systems of Linear
Equations," SIAM J. Numer. Anal. 15, 801-812 (1978).

Axelsson, O., "Conjugate Gradient-Type Methods for Unsymmetric and Inconsistent
Systems of Linear Equations,” Linear Alg. Appl. 29, 1-16 (1980).

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

282

Freund, RW and Nachtigal, N.M., "QMR: a Quasi-Minimal Residual Method for
Non-Hermitian Linear Systems," Numer. Math. 60, 315-339 (1991).

Freund, R.W. and Szeto, T., A Quasi-minimal Residual Squared Algorithm for non-
Hermitian Linear Systems, RIACS Technical Report 91.26, Research Institute for
Advanced Computer Science (RIACS), NASA Ames Research Center, Moffett Field,
CA., December 1991.

Freund, R.W. and Nachtigal, N.M., "An Implementation of the QMR Method Based
on Coupled Two-Term Recurrences," SIAM J. Sci. Comput. 15, 313-337 (1994).

Tong, C.H., "A Family of Quasi-Minimal Residual Methods for Nonsymmetric
Linear Systems," SIAM J. Sci. Compus. 15, 89-105 (1994).

Gutknecht, M.H., "Variants of BICGSTAB for Matrices With Complex Spectrum,"
SIAM J. Sci. Comput. 14, 1020-1033 (1993).

Hoffman, K. and Kunze, R., Linear Algebra, Prentice-Hall Inc., Englewood Cliffs,
New Jersey , 2nd (1971).

Freund, R.W., Gutknecht, M.H., and Nachtigal, N.M., "An Implementation of the
Look-ahead Lanczos Algorithm for Non-Hermitian Matrices,"” SIAM J. Sci. Compu.
14, 137-158 (1993).

Chan, T.F., Gallopoulos, E., Simoncini, V., Szeto, T., and Tong, C.H., "A Quasi-
Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric
Systems," SIAM J. Sci. Comput. 15, 338-347 (1994).

Freund, R.W., Transpose-Free Quasi-Minimal Residual Methods for Non-Hermitian
Linear Systems, Numerical Analysis Manuscript 92-7, AT&T Bell Laboratories,
Murray Hill, NJ., July 1992.

Shadid, J.N. and Tuminaro, R.S., "A Comparison of Preconditioned Nonsymmetric
i(srgl(ovg Ig\iethods on a Large-Scale MIMD Machine," SIAM J. Sci. Comput. 15, 440-
1994).

Brezinski, C. and Sadok, H., "Lanczos-Type Algorithms for Solving Systems of
Linear Equations," Applied Numer. Math. 11,443-473 (1993).

192. Pommerell, C. and Fichtner, W., "Memory Aspects and Performance of Iterative
Solvers," SIAM J. Sci. Comput. 15, 460-473 (1994).

283

