

FINAL TECHNICAL REPORT
CULINARY AND PRESSURE IRRIGATION WATER SYSTEM HYDROELECTRIC
GENERATION

DOE AWARD #
DE-EE0003270

Prepared By:

Cory Christiansen, PE
(801) 770-1429
coryc@wwengineers.com

WATER WORKS ENGINEERS
672 W 220 S
Pleasant Grove Utah 84062

For:

PLEASANT GROVE CITY
50 South 100 East
Pleasant Grove, UT 84062

January 29, 2016

This report is based upon work supported by the U. S. Department of Energy
under Award No. **DE-EE0003270**

Any findings, opinions, and conclusions or recommendations expressed in this report are those of the author(s) and
do not necessarily reflect the views of the Department of Energy.

Table of Contents

List of Tables	ii
List of Appendices	ii
Executive Summary (1-2 pages).....	1
1 Introduction	2
2 Background	2
2.1 Approach.....	3
2.2 Estimated Power Generation.....	3
3 Results and Discussion	5
3.1 System Design.....	5
3.2 Turbine Selection	5
3.2.1 Design Criteria.....	6
3.2.2 Control Narrative	6
4 Accomplishments.....	6
5 Conclusions	6
6 Recommendations	7
References	7

List of Tables

TABLE 1 ESTIMATED POWER GENERATION FROM EACH SITE.....	4
TABLE 2 TURBINE SYSTEM CONTROLS.....	6

List of Appendices

APPENDIX 1	Project Blue Energy Statement of Project Objectives
APPENDIX 2	Canyon Hydro Battle Creek Hydroelectric Project Technical Proposal
APPENDIX 3	Canyon Hydro Turbine Generator Drawing
APPENDIX 4	Battle Creek Microhydro Power Generation Bid Drawings
APPENDIX 5	Battle Creek Power Generation Estimate Worksheet

City of Pleasant Grove
Battle Creek Microhydro Power Generation Project
Technical Report

Executive Summary

Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system.

The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reduce pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community.

A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in \$40,000 of annual revenue.

**City of Pleasant Grove
Battle Creek Microhydro Power Generation Project
Technical Report**

1 Introduction

Pleasant Grove City desired to investigate the feasibility of developing micro hydro-electric power stations at various locations within its existing culinary water and pressurized irrigation systems. This project fell under the scope of Project Blue Energy, which was created by Pleasant Grove to create renewable energy from existing community water sources as reflected by the goals of the U.S. Department of Energy's Wind and Hydropower Technologies Program Office.

Development of hydroelectric power within the existing system is an attractive prospect for several reasons, including:

- Provide beneficial use of available energy currently being wasted.
- Renewable energy is environmentally desirable.
- Most of the supporting infrastructure is already in place.

However, choosing the correct type of turbine for the system is an important decision as the flow rate and pressure differential in the pipeline can dictate what types of turbine to consider. Hydroelectric turbines exist as two major categories: impulse and reaction turbines. Reaction turbines create power from a combination effect of water flow and pressure - the water encounters blades in the turbine at a low pressure, high volume flow and generates power before the water returns to the pipeline with minimal pressure loss (as compared to impulse turbines). Impulse turbines dispel water pressure by directing a high pressure stream of water into the turbine blades or buckets.

Upon comparison, impulse turbines will prove the most suitable for use in replacing the pressure reducing valve (PRV) located at the Battle Creek Site in Pleasant Grove, Utah. Two types of impulse turbines were considered, Pelton and cross-flow impulse turbines. Pelton wheel turbines include a wheel with buckets around the outside diameter which are rotated by water discharged by jets to turn the turbine and produce electricity. Cross-flow impulse turbines are drum shaped, with horizontal blades that are activated by water flowing orthogonal to the drum (cross-flow). Again, the type of impulse turbines required for an application are a function of the flow rate of the water with cross-flow turbines being built to accommodate higher water flow rates.¹

2 Background

Water Works Engineers visited Pleasant Grove during the fall of 2009 to meet with staff from Pleasant Grove's water engineers, public works and management. Potential development sites were visited and discussed. Technology from Power Innovations, Inc. was investigated. Two (2) culinary water supply sites and four (2) PRV station sites were evaluated as part of this investigation. The potential development sites were summarized as follows:

1. Battle Creek Canyon
2. Wade Springs
3. Pressurized irrigation PRV on 850 East
4. Culinary PRV on 500 North
5. Additional Pressurized Irrigation PRV's
6. Additional Culinary PRV's

City of Pleasant Grove
Battle Creek Microhydro Power Generation Project
Technical Report

2.1 Approach

The approach that was taken by Water Works Engineers to evaluate the sites for suitability for potential micro-turbine installations is summarized as follows:

- Flow and head conditions for each site were averaged using available data for the culinary and irrigation stations as recorded by the city's contract water engineering firm, Horrocks Engineers.
- Power generation potential was determined using available monthly average historical flow records for the years of 2005 thru 2008, typical generator efficiencies for micro-turbine equipment appropriate for each site, and expected efficiencies from technology developed by Power Innovations Inc.
- Field visits were made to four (4) of the six (6) sites to inspect accessibility, topographic and geologic suitability for equipment placement.

2.2 Estimated Power Generation

Historical data for each month during 2005 thru 2008 was used to estimate flow, head, and power generation in KW and kWh for four (4) of the six (6) potential sites. These figures and calculations were discussed with engineers from Water Works Engineers and Power Innovations, Inc. and then presented to engineers from Logan, Park City and Salt Lake City for critique. A summary of these calculations are presented in Table 1.

The recommendations of Water Works Engineers to the city of Pleasant Grove through the initial feasibility study were as follows:

1. The Battle Creek site should be explored for potential location of a micro hydro-electric generator.
2. Cost estimates should be developed for the Battle Creek site to include engineering, construction, equipment, installation and ongoing operations of a micro hydro-electric facility. The cost estimates should include standard as well as specialized equipment that maximizes the potential power generation.
3. A financial analysis should be conducted to determine how much of this project can be built at an approximate US\$1M budget.
4. Investigation into the best use of power generated from this site should be determined. This may include selling the power to Rocky Mountain Power. Consuming the power to offset the city's electrical bill. Or any other benefit the city may derive.
5. An evaluation should be made to determine at what point in time the project recoups the cost of its investment. This should consider the highest and best value of the power generated.
6. If after completion of the above items, development of micro hydro-electric remains attractive, the city should proceed to construction of this facility and further investigate implementation of other facilities at the other five (5) sites.

City of Pleasant Grove

Battle Creek Microhydro Power Generation Project

Technical Report

TABLE 1 ESTIMATED POWER GENERATION FROM POTENTIAL SITE

BATTLE CREEK		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Ave Flow	gpm	198.2	109.8	73.5	82.9	595.7	1,097.4	1,429.9	1,408.0	1,208.0	835.7	622.5	401.1
Power Prod	kW	12	6	4	5	35	64	83	82	70	49	36	23
	kWh	8,587	4,297	3,184	3,476	25,816	46,022	61,965	59,046	50,659	36,215	26,107	17,384
										Average Power Production (kW)		39	
										Estimated Annual Power Production (kWh)		342,758	
WADE SPRINGS		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Av Flow	gpm	299.2	280.9	272.5	266.5	311.6	357.7	431.5	431.8	419.0	384.5	349.0	320.9
Power Prod	kW	11.6	10.9	10.6	10.3	12.1	13.9	16.8	16.8	16.3	14.9	13.6	12.5
	kWh	8,643.6	7,331.1	7,873.6	7,451.	9,001.1	9,999.9	12,466.9	12,073.3	11,713.3	11,107.	9,758.7	9,272.1
										Average Power Production (kW)		13	
										Estimated Annual Power Production (kWh)		116,693	
PI PRV 850E		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Ave Flow	gpm	0.0	0.0	0.0	1,000.	2,000.0	2,000.0	2,000.0	2,000.0	1,000.0	0.0	0.0	0.0
Power Prod	kW	0.0	0.0	0.0	19.4	38.8	38.8	38.8	38.8	19.4	0.0	0.0	0.0
	kWh	0.0	0.0	0.0	13,979	28,890.	27,958.2	28,890.2	27,958.2	13,979.1	0.0	0.0	0.0
										Average Power Production (kW)		16	
										Estimated Annual Power Production (kWh)		141,655	
CULINARY PRV 500E		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Ave Flow	gpm	200.0	200.0	200.0	200.0	250.0	300.0	300.0	250.0	200.0	200.0	200.0	200.0
Power Prod	kW	7.0	7.0	7.0	7.0	8.7	10.5	10.5	8.7	7.0	7.0	7.0	7.0
	kWh	5,200.2	4,697.0	5,200.2	5,032.	6,500.3	7,548.7	7,800.3	6,290.6	5,032.5	5,200.2	5,032.5	5,200.2
										Average Power Production (kW)		8	
										Estimated Annual Power Production (kWh)		68,735	
TOTAL		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Power Prod	kW	30.1	24.3	21.9	41.6	94.4	127.1	149.4	146.3	113.0	70.6	56.8	42.8
	kWh	22,430.9	16,325.3	16,258.	29,938	70,207.	91,529.2	111,122.	105,368.	81,383.5	52,522.	40,898.4	31,856.2
										Average Power Production (kW)		77	
										Estimated Annual Power Production (kWh)		669,841	
												402,960	

		KW	kWh
Cul PRV	4	16	140,160
PI PRV	5	30	262,800
	Total	402,960	

Total Potential Annual Power Generation All Sources (KWh)

1,072,801

City of Pleasant Grove
Battle Creek Microhydro Power Generation Project
Technical Report

3 Results and Discussion

Upon review of the feasibility study produced by Water Works Engineers, the City of Pleasant Grove chose to construct one hydroelectric micro-turbine at the Battle Creek site. Water Works Engineers collaborated with Canyon Hydro to design the appropriate turbine for this site and incorporated the resulting proposal (Appendix 2) into the system design.

3.1 System Design

The Battle Creek water system includes a pipeline that originates at a spring located several miles within Battle Creek Canyon. The pipeline carries spring water to the Battle Creek Tanks for storage before introducing the water into Pleasant Grove's drinking water system. The system included a pressure reducing valve located near the tanks that was used to break the water pressure in the pipeline before the water enters the tanks.

The turbine system is designed to take the place of the pressure reducing valve and use the pressure generated in the pipeline to generate power. The turbine is located so that its discharge is several feet above the high water level in the tank to maintain a discharge to atmosphere and allow the use of an impulse turbine. The system is designed to back up water in the existing pipeline to generate the pressure necessary to drive the turbine. Due to site constraints and the location of the pipeline within Forest Service property, a tank could not be constructed on the system to provide a stable head condition on the turbine inlet. Stable inlet pressure is essential to the proper operation of the turbine, so a pressure sustaining system was designed. This system allows flow to bypass the turbine to relieve pressure and provide a stable system pressure at the turbine inlet. The bypass is equipped with a diaphragm style pressure sustaining valve. The valve utilizes a mechanical system to maintain a constant upstream pressure. When pressure rises, that valve allows more flow to bypass to reduce the pressure. When pressure drops, the valve holds back more water to increase the upstream pressure. The bypass is equipped with flow meter to allow the system to monitor the bypass flow. It is preferred to minimize the flow through the bypass to maximize the flow through the turbine and the associated power generation. The control system will monitor the flow through the bypass to maintain the flow within the desired range. As flow in the bypass approaches the high setpoint, the turbine flow control valves will open to allow more flow through the turbine. As flow approaches the low setpoint, the turbine flow control valves will close to allow less water through the turbine.

The turbine system is also equipped with a system bypass line and motor actuated valve that will allow the entire flow to bypass the turbine system when the turbine is shut-down for maintenance or in the event of a turbine failure. This bypass will allow the water to be directed to the storage tanks to maintain uninterrupted drinking water service.

3.2 Turbine Selection

The turbine selection for the Battle Creek site was completed based on the flow and pressure listed in the design criteria. The evaluation included various impulse turbine designs. It was concluded that a Pelton turbine was the most appropriate option due to the relatively low flow conditions that the system will experience. The Pelton turbine will allow the most efficient, continuous operation through a wide range of flow conditions, and can be designed and constructed at reasonable cost.

City of Pleasant Grove
Battle Creek Microhydro Power Generation Project
Technical Report

Appendix 2 includes specifications for the turbine as designed by Canyon Hydro. A description of the Pelton impulse turbine can be found in Appendix 3.

3.2.1 Design Criteria

The turbine system Design criteria are as follows: Drawings for the design are included in Appendix 4.

Net Head (at design flow).....460 feet
Design Flow1500 gpm
Turbine TypeCustom-designed 1200 rpm double-nozzle
Pelton
Configuration.....Independent bearing, direct-coupled turbine
& generator
Generator Output at Design Flow100 kW
Mode of OperationGrid connected

3.2.2 Control Narrative

The power generation control panel will operate based on signals from the facility PLC. This PLC will operate to maintain the head on the turbine inlet at 400 to 500 ft using a redundant system of pressure sustaining valves. Flowing water through this bypass will maintain stable pressure on the turbine inlet – when Battle Creek flow rate decreases, the bypass flow rate decreases as to increase the turbine inlet pressure. When too much flow occurs at the inlet, more water is sent through the bypass. The control setpoints to maintain the desired head pressure can be found in Table 2.

TABLE 2 TURBINE SYSTEM CONTROL SETPOINTS

Parameter	Units	Normal Value/Range
Minimum Bypass Flow	gpm	10 + (0.25% of Total Facility Flow)
Maximum Bypass Flow	Gpm	Minimum Bypass Flow + (1.5% of Total Facility Flow)
Desired Head at Turbine Inlet	ft	400 - 500

4 Accomplishments

After construction, the hydroelectric micro-turbine at the Battle Creek site is expected to produce an average power production of 50 kW, with an estimated annual power production of 436,000 kW-hr (Appendix 5). Based on an estimated power cost from 2008 of \$0.0880 per kW-hr, this amount of power production will create an annual revenue of \$38,000 to the city of Pleasant Grove. This amount of revenue will be generated without any downstream modifications to the Battle Creek water system.

5 Conclusions

Hydroelectric micro-turbines can be useful tools for creating energy from a system's pre-existing water infrastructure when suitable locations can be found for power generation that provide high enough flow and pressure to make power generation cost effective. The analysis of sites at Pleasant Grove resulted in the selection of one site suitable for power production. Other sites in the distribution system may be suitable for use with a reaction turbine, but the estimated return is not large enough to make the associated costs for site development feasible. The development of a power generation system at the

City of Pleasant Grove
Battle Creek Microhydro Power Generation Project
Technical Report

Battle Creek site has been completed and the system is currently being commissioned. It is anticipated that the system will run continuously throughout the year and generate approximately 440,000 kW-hr per year that was wasted with the previous system.

6 Recommendations

Water Works Engineers has provided a hydroelectric micro-turbine design solution for the Battle Creek site. Although other sites with power generation potential were identified, these sites are not expected to generate enough power to make their development cost effective. If power costs rise significantly in the future, these sites should be reevaluated to determine if they are suitable for development.

References

¹ <http://energy.gov/eere/water/types-hydropower-turbines>

**City of Pleasant Grove
Battle Creek Microhydro Power Generation Project
Technical Report**

APPENDIX A Project Blue Energy Statement of Project Objectives

STATEMENT OF PROJECT OBJECTIVES

Pleasant Grove City, Utah --- Project Blue Energy

A. PROJECT OBJECTIVES

The goal of Project Blue Energy is to create responsible, renewable energy from existing community water sources. The project objectives are to demonstrate the value of harnessing clean and renewable energy sources, storing and deploying the electricity in an innovative community model.

The expected outcomes are:

- 1) **Technical Innovation:** Incorporate innovative technologies in a demonstration project that could include turbine, generator, storage, distribution, etc, to demonstrate community based clean power with the aim to develop a specification or technical model that can be replicable;
- 2) **Replicable Models:** Develop financial and policy models, which may be replicated and adapted by other communities looking to implement micro hydro systems. Adopt innovative design and technological templates/models that can be incorporated into various conditions in existing community water system.
- 3) **Outreach:** Develop web-based and on-site educational materials and resources directed at community outreach.

B. PROJECT SCOPE

Consistent with the goals of the U.S. Department of Energy's Wind and Hydropower Technologies Program Office, the project will demonstrate how communities can utilize renewable energy resources to provide environmentally responsible and cost-effective incremental power, while incorporating outreach and educational programs. The project will be located at the mouth of Battle Creek Canyon where the city's culinary water supply is stored and distributed. The project will design, test, install, document, and develop a micro hydro-electric generator system. The project will be a proof of concept that the deployed innovative technology will generate electricity and can be installed in locations where pressure reducing valves are traditionally used within the community water systems.

The project aims to:

- 1) Generate electricity more efficiently than traditional micro hydro-electric systems by generating electricity throughout a broad range of water flow and pressure conditions;

- 2) Function as a pressure reducing valve by regulating the water pressure differential at varying flows; and
- 3) Provide technical, financial and policy templates for other communities to replicate;

C. TASKS TO BE PERFORMED

PHASE 1 – DESIGN AND BID

Task 1.0: Design

1.1 Conceptual Design: Complete calculations, equipment research and create conceptual level drawings for a system that is capable of generating power using existing infrastructure and allows for the study and evaluation of the effectiveness, efficiency and operability of the system in both pressure regulation and power generation.

- 1.1.1 Equipment Procurement: Prepare equipment procurement documents, evaluate proposals from equipment suppliers, and select power generation equipment that will be included in the project.
- 1.1.2 Environmental Permitting: Identify and apply for required environmental permitting.

1.2 Preliminary Design: Create preliminary level site, structural, mechanical, electrical, and instrumentation drawings showing the integration of the selected equipment into the design of the facility, and the integration of the new facility into the existing water storage and distribution system.

1.3 Final Design: Complete final design drawings and specifications for all engineering disciplines for use as contract documents in obtaining bids from contractors for the construction of the power generation facility and the installation of the power generation equipment.

Task 2.0: Bidding

- 2.1 Final Bid Documents: Finalize contract language and documents for release to contractors for bidding.
- 2.2 Bid Opening and Review: Collect bids for public opening. Review the apparent low bid for completeness and adherence to all contract requirements.
- 2.3 Contract Finalization: Finalize contract with general contractor for the construction of the facility and installation of the power generation equipment.

PHASE 2 - CONSTRUCTION

Task 3.0: Sitework

- 3.1 Site Preparation/Excavation: Complete rough grading of site and excavation required for the construction of the new building.

- 3.2 Yard Piping: Install yard piping necessary of integration of new facility into the existing water storage and distribution system.
- 3.3 Final Grading and Paving: Complete grading of site following construction of new building and installation of yard piping to provide a finished site with proper drainage and access.

Task 4.0: Structural

- 4.1 Rough Structural: Complete placement and installation of concrete, masonry, structural steel, doors, windows, and decking for new building. Complete construction of any required retaining walls or support structures.
- 4.2 Building Finish: Complete building roofing, sealing, architectural trim, and appurtenances to complete building construction.

Task 5.0: Mechanical

- 5.1 Piping and Valves: Install piping valves and equipment interior to the power generation building including all necessary equipment pads, supports, protective coatings, process instrumentation and appurtenances.
- 5.2 Turbine Installation: Install and connect turbine equipment within the power generation system.
- 5.3 HVAC Installation: Complete installation of air handling, heating, and ventilation equipment.

Task 6.0: Electrical and Instrumentation

- 6.1 Conduit and Wire Installation: Install conduit and wire for power supply and controls for all equipment and process instruments.
- 6.2 Switchgear Installation: Install all necessary power control switchgear within the electrical room of the power generation building.
- 6.3 PLC Programming and Installation: Complete programming of PLC according to process design and control strategies developed in the project design phase. Install PLC within the electrical room of the power generation building.
- 6.4 Wire Termination and Testing: Complete connection of wire to all equipment, instruments, switchgear, motor control center, PLC, and appurtenances. Test power and function of all power supply equipment, verify proper rotation of powered equipment where appropriate, verify function of all safety equipment, and certify proper installation and function. Test instruments and PLC to verify proper communication and function of process control equipment, debug PLC programming, and certify proper installation and function.

Task 7.0: Facility Commissioning

- 7.1 Electrical Testing and Start-up: Complete full functional testing of power supply and control systems. Verify that system functions as required by design documents, equipment protection systems are functioning and that all powered equipment functions properly. Certify that the entire electrical power system is installed properly and is ready for operation.
- 7.2 I&C Testing and Start-up: Complete full functional test of process control and instrumentation system. Verify that all equipment functions as designed within the system. Verify setpoints and equipment limits are effective and appropriate. Test and debug PLC programming for the control and data collection of entire system. Certify that the entire process control and data acquisition system is installed properly and is ready for operation.
- 7.3 Turbine Testing and Start-up: Inspect and certify the proper installation of the power generation turbines. Test and verify operation is within parameters established by the equipment supplier, and meets the requirements of the design documents. Verify all equipment protection and safety equipment are properly installed and operational. Certify that the power generation equipment is installed properly and ready for operation.

PHASE 3 – EVALUATION AND TESTING

Task 8.0: Evaluation

- 8.1 Process and Control Evaluation: Perform inspection, testing, data collection and evaluation of process control equipment. Modify and optimize process controls to create a system that functions smoothly and meets the objectives of the process design. System will be evaluated specifically to determine its effectiveness in utilizing variable flows to efficiently generate power, its applicability to function as a pressure reducing device within a water distributions system, and to evaluate the system's ease of operation and maintenance requirements.
- 8.2 Turbine Evaluation: Inspection, testing, data collection and evaluation will be conducted to determine the installed turbines' ability to meet the objectives of the system design. Specifically turbines will be evaluated to determine their power generation efficiency throughout the expected flow range, suitability for use to break pressure within a water distribution system, ease of operation and maintenance requirements, and integration within the power generation system.
- 8.3 Generator and Electrical Evaluation: Perform inspection, testing, data collection and evaluation of power generation and system power equipment to determine the equipment's ability to meet the objectives established in the system design. System will be evaluated to determine its ability to provide clean power efficiently and reliably. Equipment operation and maintenance requirements will be documented and evaluated.

PHASE 4 – REPORTING AND TEMPLATE DEVELOPMENT

Task 9.0: Template Development

- 9.1 Financial Template: A standardized financing template will be developed to assist in future implementation to assist in future implementation inside and outside the city.
- 9.2 Permitting and Regulatory Template: A standardized template for permitting and regulatory policy will be developed to assist in future implementation inside and outside the city.
- 9.3 Technology Template: A standardized template of technologies and their application will be developed for use in future power generation projects inside and outside of the city.

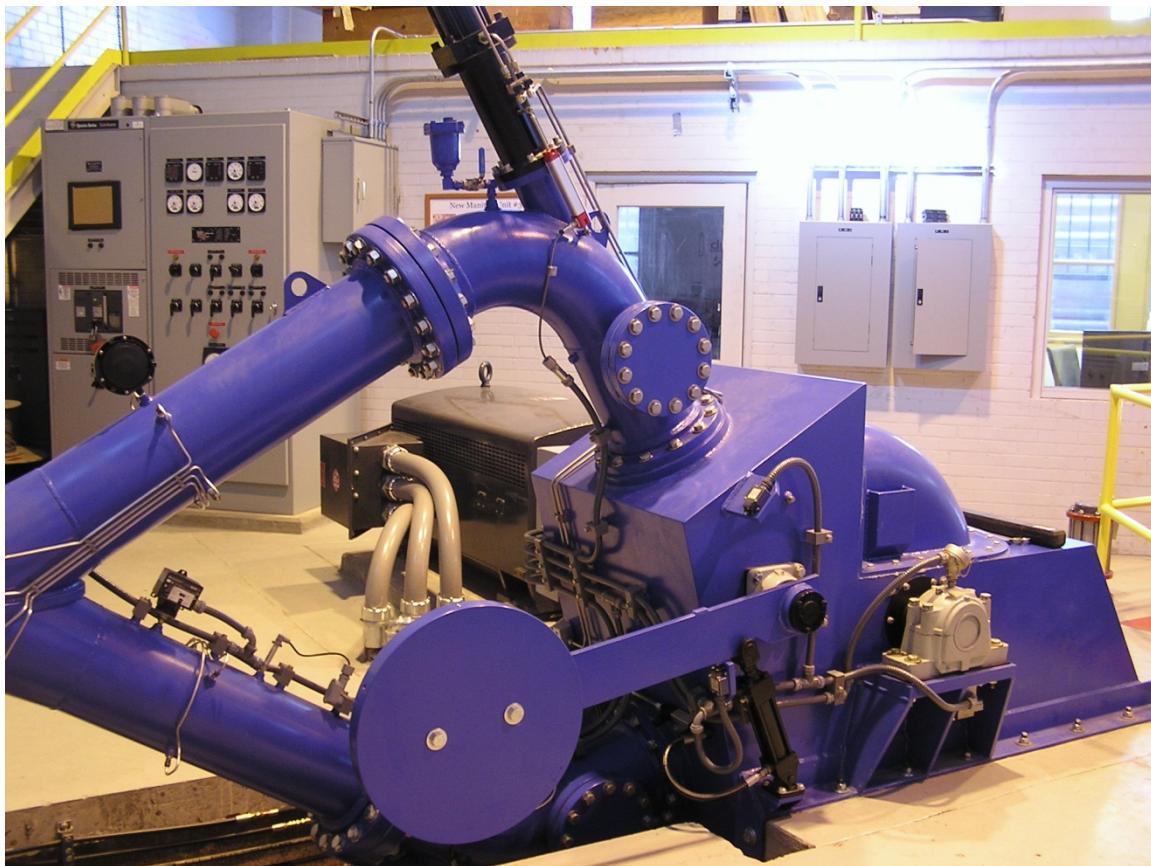
10

Task 10.0: Reporting

- 10.1 Federal Funding Reports: Reports and other deliverables will be provided in accordance with the Federal Assistance Reporting Checklist following the instructions included therein.
- 10.2 Final Technical Report: A final report will be developed documenting the evaluation and optimization of the power generation system..

City of Pleasant Grove
Battle Creek Microhydro Power Generation Project
Technical Report

**APPENDIX B Canyon Hydro Battle Creek Hydroelectric
Project Technical Proposal**


June 5, 2014

Technical Proposal

Battle Creek Hydroelectric Project

Prepared for:

**Pleasant Grove City
C/O Water Works Engineers, LLC.
233 South Pleasant Grove Blvd.
Ste 103
Pleasant Grove, UT 84062
(801) 785-4105**

500kW Canyon Hydro Pelton Turbine, Colorado Springs Utilities

Canyon Hydro Contact:
Brett Bauer, Vice President
(360) 592-5552
brett.bauer@canyonhydro.com

PROPOSAL FORM

ARTICLE 1 – PROPOSAL RECIPIENT

1.01 Project Identification: Pleasant Grove City
Battle Creek Microhydro Power Generation Project

1.02 This Proposal is submitted to: Pleasant Grove City, Utah
(C/O: Water Works Engineers)
233 South Pleasant Grove Blvd
Suite 103
Pleasant Grove, Utah 84062

1.03 This PROPOSAL is Submitted By:

Canyon Industries, Inc.

(SUPPLIER)

5500 Blue Heron Lane, Deming, WA 98244

(SUPPLIER ADDRESS)

1.04 The undersigned Proposer agrees, if this Proposal is accepted, to enter into an Agreement with Owner in the form included in the Procurement Documents to perform and furnish all Goods and Services as specified or indicated in the Procurement Documents for the prices and within the times indicated in this Proposal and in accordance with the other terms and conditions of the Procurement Documents, including all applicable taxes, fees, shipping, and delivery costs.

ARTICLE 2 – PROPOSER’S ACKNOWLEDGEMENTS

2.01 Proposer accepts all of the terms and conditions of the Instructions to Proposers, including without limitation those dealing with the disposition of Proposal Security. This Proposal will remain subject to acceptance for 60 days after the Proposal opening, or for such longer period of time that Proposer may agree to in writing upon request of Owner.

00410-1

ARTICLE 3 – PROPOSER’S REPRESENTATIONS

3.01 In submitting this Proposal, Proposer represents that:

A. Proposer has examined and carefully studied the Procurement Documents, other related data identified in the Procurement Documents, and the following Addenda, receipt of which is hereby acknowledged:

Addendum No.

Addendum Date

B. Proposer is familiar with and is satisfied as to all Laws and Regulations that may affect cost, progress, and performance and furnishing of the goods and services.

C. Based on the information and observations referred to above, Proposer does not consider that further examinations, investigations, explorations, tests, studies, or data are necessary for the determination of this Proposal for performance of the Work at the price(s) bid and within the times required, and in accordance with the other terms and conditions of the Procurement Documents.

D. Proposer is aware of the general nature of work to be performed by Owner and others at the Site that relates to the Work as indicated in the Procurement Documents.

E. Proposer has given Engineer written notice of all conflicts, errors, ambiguities, or discrepancies that Proposer has discovered in the Procurement Documents, and the written resolution thereof by Engineer is acceptable to Proposer.

1. The Procurement Documents are generally sufficient to indicate and convey understanding of all terms and conditions for the performance of the Work for which this Proposal is submitted.

ARTICLE 4 – PROPOSER’S CERTIFICATION

4.01 Proposer certifies that:

A. This Proposal is genuine and not made in the interest of or on behalf of any undisclosed individual or entity and is not submitted in conformity with any collusive agreement or rules of any group, association, organization, or corporation;

B. Proposer has not directly or indirectly induced or solicited any other Proposer to submit a false or sham proposal;

C. Proposer has not solicited or induced any individual or entity to refrain from proposing; and

00410-2

D. Proposer has not engaged in corrupt, fraudulent, collusive, or coercive practices in competing for the Contract. For the purposes of this Paragraph:

1. “corrupt practice” means the offering, giving, receiving, or soliciting of any thing of value likely to influence the action of a public official in the proposal process;
2. “fraudulent practice” means an intentional misrepresentation of facts made (a) to influence the proposal process to the detriment of Owner, (b) to establish proposal prices at artificial non-competitive levels, or (c) to deprive Owner of the benefits of free and open competition;
3. “collusive practice” means a scheme or arrangement between two or more Proposer, with or without the knowledge of Owner, a purpose of which is to establish proposal prices at artificial, non-competitive levels; and
4. “coercive practice” means harming or threatening to harm, directly or indirectly, persons or their property to influence their participation in the proposal process or affect the execution of the Contract.

ARTICLE 5 – BASIS OF PROPOSAL

5.01 Proposer will supply the Goods and Services in accordance with the Contract Documents for the Lump Sum Price of:

\$ 186,405.00

One hundred, eighty-six thousand, four hundred and five dollars and no cents

(Words)

ARTICLE 6 – GUARANTEED POWER OUTPUT

6.01 Proposer guarantees that the turbine and generator system will produce the following power generation output at the listed operating conditions:

Flow (gpm)	Head at Turbine Inlet (ft)	Guaranteed Power Output * (kW)
1,500	460	98
900	460	56
300	460	18**

* Expected values are 1% higher than guaranteed

** Outputs below 25% rated are estimated since generator data is not available

00410-3

ARTICLE 7 – TIME OF COMPLETION

7.01 Proposer agrees that the Goods and Services will be provided within the times after Notice to Proceed as defined in the General Conditions within the number of calendar days following receipt of Notice to Proceed indicated in the Agreement.

A. Delivery of Submittal Package (Design Drawings, Manufacturers Data, etc.): 30 days

B. Delivery of Preliminary Operation and Maintenance Manuals: 45 days

C. Delivery of Equipment to the Site: 160 days

D. Delivery of Final Operation and Maintenance Manuals: 160 days

7.02 Proposer further agrees that performance of manufacturer's field services (including installation check, startup assistance, and certification of acceptable installation and operation) to final completion will be coordinated with the Contractor to the satisfaction of the Engineer.

7.03 Proposer accepts the provisions of the Agreement as to liquidated damages.

ARTICLE 8 – PROPOSAL SUBMITTAL

7.01 This Proposal is submitted by:

Company Name (typed or printed): Canyon Industries, Inc.

By:

(Individual's signature)

Title: Vice President

Proposer's Business Address 5500 Blue Heron Lane
Deming, WA 98244

Phone No. 360-592-5552 Fax No. 360-592-2235

E-mail brett.bauer@canyonhydro.com

SUBMITTED on June 5, 2014.

++ END OF DOCUMENT ++

00410-4

Comments and Exceptions

Pleasant Grove Hydroelectric Project

Section 00520 Article 6.02A. Canyon Hydro call exception to the requested payment terms and offers the following as an alternative.

<u>Goods and Services Provided</u>	<u>Payment</u>	<u>(Cumulative %)</u>
Receipt of Signed Agreement and Authorization to Proceed with Design		10
Submittal Package Approval		35
Notification equipment is ready to ship		90
Receipt and acceptance of all equipment in acceptable condition including Operations and Maintenance Manuals, Completion of Start-up, Field Testing, Installation Check Training, etc., and Final Acceptance by OWNER		100

Section 00700 Article 4. Canyon Hydro offers our proposal based on the attached insurance levels that we currently maintain.

Section 00700 Article 5.10. Canyon Hydro offers our proposal based on our standard warranty included with our proposal.

Section 00700 Article 11. The project schedule will be affected if contractual payments are delayed.

Section 01610 Article 1.12. Canyon will make field service technicians or engineers available on an as needed basis for supervision of installation following our included Field Service Rates. We have not included these costs in our base price. Canyon would be pleased to offer a separate bid for the mechanical installation of the equipment, if you are interested.

Section 01750. Canyon will make field service technicians or engineers available on an as needed basis for testing, training and startup following our included Field Service Rates. We have not included these costs in our base price.

Section 15645 Part 2.2 D, Canyon proposed a runner machined from CF8M to A743 rather than the CA6NM requested. If CA6NM is technically required, please allow for an adder of \$4,000.00.

Section 15645 Part 2.2 E. It is not clear to us what the discharge chamber is. Our intent is for the turbine housing to set over the concrete tailrace well.

Section 15645 Part 2.3 Canyon offers a NIDEC generator according to the attached generator submittals.

Section 15645 Part 3.4 Canyon will make field service technicians or engineers available on an as needed basis startup and initial operation services following our included Field Service Rates. We have not included these costs in our base price.

CERTIFICATE OF LIABILITY INSURANCE

OP ID: MH

DATE (MM/DD/YYYY)

11/16/12

THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERs NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF INSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER, AND THE CERTIFICATE HOLDER.

IMPORTANT: If the certificate holder is an ADDITIONAL INSURED, the policy(ies) must be endorsed. If SUBROGATION IS WAIVED, subject to the terms and conditions of the policy, certain policies may require an endorsement. A statement on this certificate does not confer rights to the certificate holder in lieu of such endorsement(s).

PRODUCER Inland Insurance Inc. 9016 E Indiana Ave., Suite A Spokane Valley, WA 99212 John L Green	Phone: 509-456-2648	CONTACT NAME:
	Fax: 509-456-3432	PHONE (A/C, No. Ext):
	E-MAIL ADDRESS:	
	PRODUCER CUSTOMER ID #:	CANYO-2
	INSURER(S) AFFORDING COVERAGE	
INSURED Canyon Industries, Inc. dba Canyon Hydro PO Box 36 Deming, WA 98244	INSURER A : Depositors Insurance Company	
	INSURER B : Chartis Specialty Insurance Co	
	INSURER C :	
	INSURER D :	
	INSURER E :	
	INSURER F :	
	NAIC #	
	42587	

COVERAGES		CERTIFICATE NUMBER:		REVISION NUMBER:		
THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NAMED ABOVE FOR THE POLICY PERIOD INDICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS CERTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO ALL THE TERMS, EXCLUSIONS AND CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAIMS.						
INSR LTR	TYPE OF INSURANCE	ADDL SUBR INSR WVD	POLICY NUMBER	POLICY EFF (MM/DD/YYYY)	POLICY EXP (MM/DD/YYYY)	LIMITS
B	GENERAL LIABILITY		EG 13579318	11/23/12	11/23/13	EACH OCCURRENCE \$ 1,000,000
	<input checked="" type="checkbox"/> COMMERCIAL GENERAL LIABILITY					DAMAGE TO RENTED PREMISES (Ea occurrence) \$ 300,000
	<input type="checkbox"/> CLAIMS-MADE <input checked="" type="checkbox"/> OCCUR					MED EXP (Any one person) \$ 25,000
	<input checked="" type="checkbox"/> Incl Pollution					PERSONAL & ADV INJURY \$ 1,000,000
GEN'L AGGREGATE LIMIT APPLIES PER:						
POLICY <input checked="" type="checkbox"/> PRO- JECT <input type="checkbox"/> LOC						
A	AUTOMOBILE LIABILITY		ACP7524779901	11/23/12	11/23/13	COMBINED SINGLE LIMIT (Ea accident) \$ 1,000,000
	<input checked="" type="checkbox"/> ANY AUTO					BODILY INJURY (Per person) \$
	ALL OWNED AUTOS					BODILY INJURY (Per accident) \$
	SCHEDULED AUTOS					PROPERTY DAMAGE (Per accident) \$
	HIRED AUTOS					\$
	NON-OWNED AUTOS					\$
B	UMBRELLA LIAB <input checked="" type="checkbox"/> OCCUR		EGU 13579377	11/23/12	11/23/13	EACH OCCURRENCE \$ 4,000,000
	<input checked="" type="checkbox"/> EXCESS LIAB <input type="checkbox"/> CLAIMS-MADE					AGGREGATE \$ 4,000,000
	DEDUCTIBLE					\$
	RETENTION \$					\$
	WORKERS COMPENSATION AND EMPLOYERS' LIABILITY					WC STATUTORY LIMITS OTH- Y/N N/A
ANY PROPRIETOR/PARTNER/EXECUTIVE OFFICER/MEMBER EXCLUDED? (Mandatory in NH) If yes, describe under DESCRIPTION OF OPERATIONS below	E.L. EACH ACCIDENT \$ 1,000,000					
	E.L. DISEASE - EA EMPLOYEE \$ 1,000,000					
	E.L. DISEASE - POLICY LIMIT \$ 1,000,000					
DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (Attach ACORD 101, Additional Remarks Schedule, if more space is required)						

CERTIFICATE HOLDER		CANCELLATION	
To Whom it May Concern		TOWHOM	
		SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS.	
		AUTHORIZED REPRESENTATIVE	

© 1988-2009 ACORD CORPORATION. All rights reserved.

Technical Proposal

Battle Creek Hydroelectric Project

Table of Contents

Section 1: Business Information

Canyon Company Profile

Resumes

Reference Listing

General Provisions for Field Service

Standard Warranty

Section 2: Technical Information

Preliminary Design Specifications

Generator Description

Switchgear/Control Description

Turbine Elevation Proposal Drawing

Equipment Plan Proposal Drawing

Section 1: Business Information

Battle Creek Hydroelectric Project

Project Summary

Net Head (at design flow).....	460 feet
Design Flow	1500 gpm
Turbine Type	Custom-designed 1200 rpm double-nozzle Pelton
Configuration.....	Independent bearing, direct-coupled turbine & generator
Generator Output at Design Flow	100 kW
Mode of Operation	Grid connected

Section Contents

Canyon Company Profile

Resumes

Reference Listing

General Provisions for Field Service

Standard Warranty

Company Profile

Canyon Industries, Inc. has been involved in the manufacture of hydroelectric systems since 1976. The company was incorporated under the laws of the State of Washington in 1982. All manufacturing facilities and offices are located in the United States, near Deming, Washington.

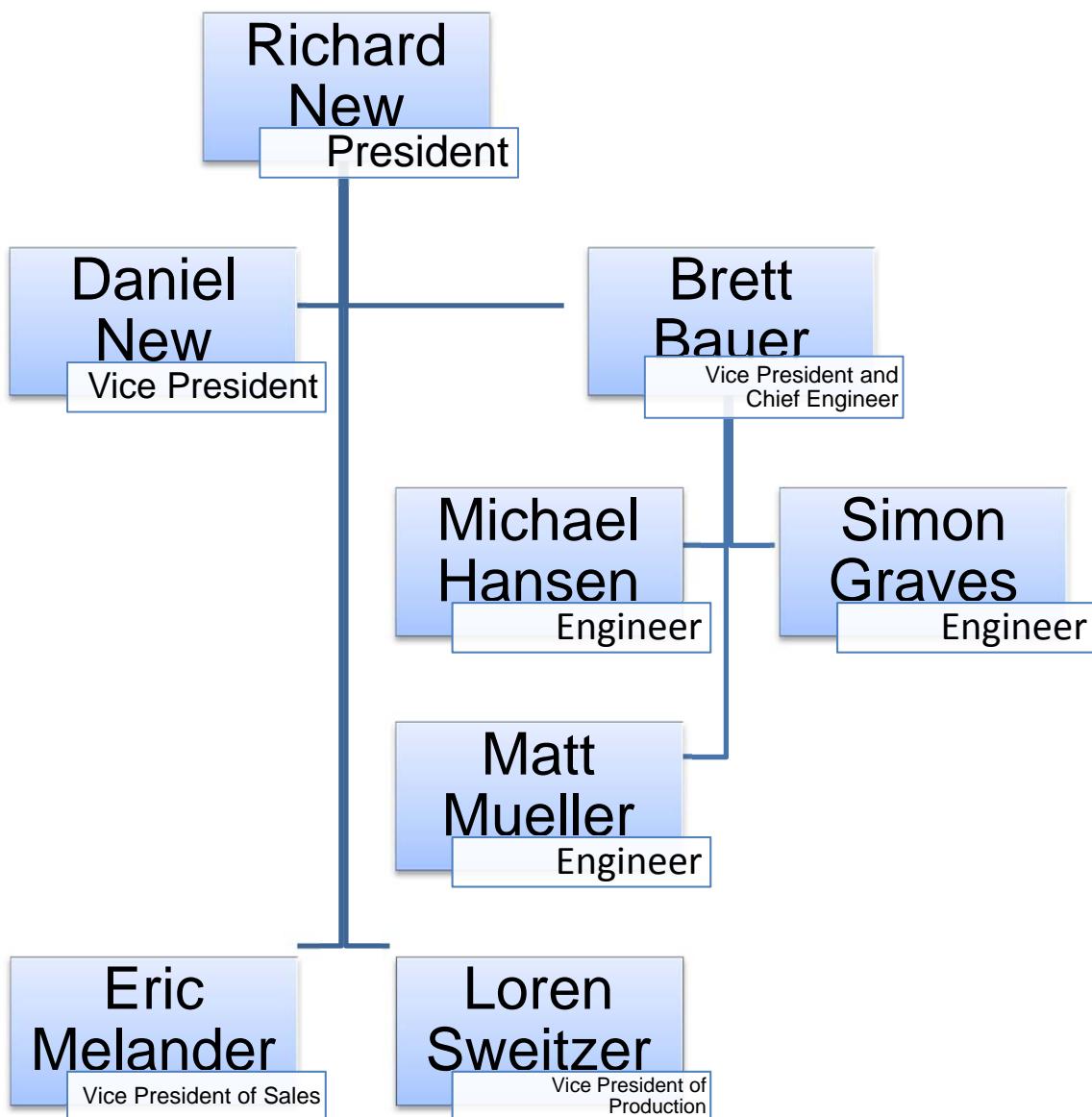
The company currently employs approximately 50 full time employees and has two manufacturing centers: a 24,000 square foot fabrication facility in Deming, Washington, and a 15,000 square foot CNC Machining Center near Sumas, Washington. Canyon has extensive machining and fabrication capabilities, and handles all aspects of turbine construction except foundry castings. Castings are managed in three independent foundries, all of which have been trained by Canyon personnel to handle the unique casting requirements of hydraulic turbines.

Pelton and Francis turbines, as well as Kaplan and Crossflow turbines, are designed and manufactured under the trade name "Canyon Hydro." Turbines are offered as independent units or as part of complete hydroelectric systems. Canyon Hydro turbines are designed for either "stand alone" operation, providing power to remote communities, or as "grid interface" systems, connecting directly to the local or national grid. Canyon customers include utility companies, private power developers, communities, and individual landowners.

Canyon Industries is a family-owned, profit sharing business with low employee turnover. The company emphasizes environmental responsibility through recycling programs and selective purchasing, and maintains its own onsite hydroelectric system delivering 30 kW of renewable energy.

Richard A. New, President and co-owner, joined Canyon in 1978 and oversees all manufacturing and field service operations. Richard has extensive background in hydraulics and metallurgy, and has onsite experience with a wide array of hydroelectric projects.

Daniel A. New, Vice President, founded Canyon Industries in 1976. Dan participates in turbine design, production procedures, sales, as well as company management and planning.


Brett W. Bauer, M.E., Vice President and Chief Engineer, joined the company in 1995. Brett works closely with Canyon customers and oversees all specification development, system design, and project management.

Eric Melander, Vice President of Sales, joined the company in 2005. Eric has a deep knowledge of turbine design and works closely with customers through all stages of the production process to ensure the proper system is chosen and built to the customer's specifications.

Canyon Industries' annual gross sales have averaged \$10 - \$12 million for the past few years. The company is current on all suppliers' accounts and has no other debt. All production and support equipment is owned without attachment by the company. Corporate occupied land and buildings are presently leased. Canyon Industries Inc. has no claims or lawsuits pending.

Canyon Industries, Inc.

Management Organization

RICHARD A. NEW

Richard New is President and co-owner of Canyon Industries, Inc., and has been employed with the company since it was founded in 1976. Richard New oversees manufacturing and field services. He is actively involved with site assessment, as well as turbine installation and startup.

Mr. New possesses a thorough understanding of hydroelectric turbine systems: their design, manufacture, and maintenance. He is also an expert in the field of modern fabrication techniques, including the casting and forging of special-purpose alloys, CNC machining, and component heat treating.

Richard is a champion of the hydropower industry. He sponsored and directed the development of a website called whyhydropower.com, aimed at educating and shaping the opinions of the general public and government officials. He has also taught college courses in basic and advanced hydraulics.

Mr. New has domestic and international experience in site assessment, installation and refurbishment of hydropower systems. Projects include:

- Hystad, Canada
- Cascade-CSU, Colorado
- Falls Creek, Alaska
- Cajon de Pena, Mexico
- Southern Nevada Water Authority, Nevada
- Upper Swift Creek, Wyoming
- District of Lake Country, Canada
- Tyson, Canada
- GE, Big Creek #3, California
- City of Santa Fe, New Mexico
- Swalley Water District, Oregon
- Combie North-Nevada Irrigation District, California
- DeWitt Pipeline, Utah

DANIEL A. NEW

Daniel A. New is the Vice President of Canyon Industries, Inc. and has participated in hydroelectric projects for more than 35 years. Mr. New oversees all business and production operations. His background and education are in mechanical and hydraulic engineering.

Canyon Industries, incorporated by Mr. New in 1976, is dedicated to the manufacture and service of high quality turbines and hydroelectric systems. The company supplies turbines, components, water-to-wire packages and field machining services to customers worldwide. Mr. New has been the driving factor in the growth of Canyon Industries, as well as its reputation for exceptionally high quality products and customer support.

Mr. New places heavy emphasis on hydropower education for professionals and the general public. He has presented hydroelectric classes in North and Central America, with emphasis on "hands on" participation. Instruction covers site analysis, equipment selection, design basics, and efficient operation of hydroelectric systems.

Mr. New has been personally involved in the specification, production and installation of well over 100 hydroelectric projects, among them:

- Mauka Hydro, Hawaii
- Middle Fork Irrigation, Oregon
- Nooksack Falls Hydro, Washington
- Cwmorthin, Wales
- La International, Ecuador
- Bahio Solano, Colombia
- Deseret GT, Utah
- City of Cove, Oregon
- Mt. Pleasant, Utah
- La Esperanza, Honduras

BRETT W. BAUER

Brett Bauer is Vice-President and Head of Engineering at Canyon Industries, Inc. He oversees the specification and design for all hydropower systems supplied by Canyon Industries, and actively manages projects as they move through production. He has been employed by Canyon Industries for more than fifteen years.

Mr. Bauer was trained as Mechanical Engineer and received a BSME from the University of Washington. He has been personally involved with the design of more than 50 hydro projects including new installations, turbine refurbishment, nozzle repair, and replacement runners. He is trained in Computer Aided Design, Computational Fluid Dynamics, Finite Element Analysis, and Project Management.

Mr. Bauer has domestic and international experience in the design, installation and supervision of turbines projects, among them:

- LaGrande Dam, Washington
- South Sutton/Marion Creek, Canada
- Malibu, Canada
- La Esperanza, Honduras
- Glen Lyon, Scotland
- Southern Nevada Water Authority, Nevada
- Upper Swift Creek, Wyoming
- Tyson, Canada
- Middle Creek-Dasque Cluster, Canada

ERIC C. MELANDER

Eric Melander is Vice-President of Sales at Canyon Industries, Inc. He has a widespread knowledge of turbine design and works closely with customers through all stages of the production process to ensure the proper system is chosen and built to the customer's specifications.

Mr. Melander earned his BA at Western Washington University and joined Canyon in 2005. He has sold and provided project management for more than 60 projects to date. He is trained in Pelton and Crossflow turbine design, comprehends pump turbine applications and works closely with top engineering firms.

Mr. Melander has domestic and international experience in the design and supervision of turbines projects, including:

- Los Corrales, Chile
- Hamakua Springs, Hawaii
- Struy Hydro Scheme, Scotland
- Southern California Edison – South Lake Tunnel, California
- City of Whitefish, Montana
- El Montazo, Dominican Republic
- City of Frostburg, Maryland

MICHAEL R. HANSEN

Michael Hansen is a Design, Manufacturing, and Quality Control Engineer at Canyon Industries, Inc. Formed in 1976, Canyon Industries is a manufacturer of Pelton turbines and small hydroelectric systems with a recent opening of a CNC division with involvement in the aerospace industry.

Mr. Hansen was trained as Manufacturing Engineer and received a BS from Western Washington University. Mr. Hansen has been employed by Canyon Industries for five and a half years as a design and project engineer and currently has branched out as the quality control engineer and programmer in the CNC division.

Michael Hansen has design experience on over 30 hydro projects including new turbine designs, turbine refurbishment, nozzle rebuilds, and replacement Pelton runners. He also has experience in Quality Control on 10 new construction turbine projects and 3 aerospace projects. He is trained in Computer Aided Design, Finite Element Analysis, Solid Modeling, CNC Programming, and Quality Control.

Mr. Hansen has domestic and international experience in the design of turbines. Projects include:

- Tolt Dam, Washington
- Mumba Hydro, Africa
- Afton Culinary, Wyoming
- Cajon de Pena, Mexico
- Inverinian, Scotland
- Williams Fork Dam, Colorado
- Upper & Lower Swift Creek, Wyoming
- Ushmil Hydro, India
- Tyson Creek, Canada
- Rush Creek, California
- Olivenhain MWD, California

SIMON J. GRAVES

Simon Graves has been playing the role of hydropower design engineer at Canyon Industries since 2011. His main focus at Canyon is the design of custom Pelton turbines and water-to-wire systems. This includes system and subsystem design, component design, 3D modeling and analysis (including finite element analysis and computational fluid dynamics), drafting, testing, documentation, coordinating with manufacturing, and customer support.

Simon also conducts performance analysis and predictions for existing and potential projects. He enjoys using spreadsheet-based number-crunching to help customers determine system design parameters that will obtain the highest return on their investment in hydropower.

In 1999 Simon earned a B.S. in mechanical engineering at the University of California, San Diego. Before bringing his expertise to Canyon, he designed automated fare collection systems (ticket vending machines and entry gates) for mass transit, and rooftop PV modules for commercial-scale solar energy installations.

He has orchestrated the design of turbines worldwide, including:

- Pencaligue, Honduras
- Middle Creek, British Columbia, Canada
- Haa-ak-Suuk, Vancouver Island, Canada
- Fish Lake, Yukon, Canada
- Monar, Scotland, UK
- Olson Trust, Hawaii, USA
- Cadair, Scotland, UK
- Whitefish, Montana, USA
- Strata Florida, Wales, UK

MATT R. MUELLER

Matt Mueller is a Design, Project and Metrology engineer at Canyon Industries, Inc. Formed in 1976, Canyon Industries is a manufacturer of Pelton, Francis and Kaplan turbines ranging in size from 10kW to 20MW. With the recent opening of a CNC machining center in Sumas, WA, Canyon Industries is expanding its capabilities in Hydro as well as the Marine and Aerospace industries

Mr. Mueller has been trained as an Aerospace Engineer and has received a BS from the University of Minnesota, Twin Cities. Matt has been with Canyon Industries for one year working as a design and project engineer with prior experience in composites process engineering and research and development within the aerospace industry. Currently Matt also works as a metrology engineer and employs the latest laser metrology technology for inspection and electronic re-construction of aging hydro-turbine components and systems.

Matt has a growing resume of Hydro projects including design of new pump turbine systems, Pelton runner rebuilds, turbine sub-component system design and construction as well Francis runner design and optimization. Mr. Mueller also has experience with onsite inspection and data acquisition for reverse engineering operations. He is trained in multiple Computer Aided Design software packages as well as laser metrology data acquisition and re-engineering software.

Mr. Mueller has been personally involved in the specification, and design of multiple projects including:

- Black Creek, Washington
- Middle Creek, British Columbia
- Rancho California Water District, California
- Edwards Air Force Base, California
- Pelican, Alaska
- Malibu, British Columbia, Canada
- Glen Affric, Scotland
- Daltote, Scotland
- Deer Creek, Utah
- Navajo Dam, New Mexico

CANYON INDUSTRIES, INC.
PAST PERFORMANCE FACTORS
(Partial Listing)

<u>Project Name</u>	<u>Description of Work</u>	<u>KW</u>	<u>Award Date</u>	<u>Customer Name/Address</u>	<u># JETS</u>	<u>HEAD</u>	<u>FLOW</u>
Malibu Club Camp Job 033054	Custom Pelton turbine/generator with flywheel, hydraulic power supply, inlet piping & valve	580	2003	Young Life, Harold Richert 271 Gower Point Rd, Box 1503 Gibson, BC, Canada B0N 1V0 604-886-7300	1	316M	227 l/s
South Sutton Creek Job 033064	Custom double nozzle Pelton turbine/generator with hydraulic power supply	5400	2003	Executive Power Corp. Mr. Sam Jackson 777 Douglas Street Victoria, BC, Canada V0R 2P0 250-709-1736 samjackson@yahoo.com	2	329M	2.0 m ³ /s
Marion Creek Job 033065	Custom double nozzle Pelton turbine/generator with hydraulic power supply	4500	2003	Executive Power Corp. Mr. Sam Jackson 777 Douglas Street Victoria, BC, Canada V0R 2P0 250-709-1736 samjackson@yahoo.com	2	467.2M	1.17 m ³ /s
GlenLyon Job 043012	Custom double nozzle Pelton turbine with hydraulic power supply	942	2004	I. Wootherston Kilmartin Property Group 11 Glenfinlas Street Edinburgh, Scotland EH3 6AQ abs@fsbdial.co.uk	2	312M	0.35 cms
La Esperanza II Job 043064	Twin Custom Pelton turbine/generator/governor	2 x 6,150	2004	Consorcio de Inversiones S.A. Ron Turner Apartado Postal #53 Villa Las Olominas #22, Aldea Santa Anita La Esperanza, Intibucá Honduras, CA 504-783-1452 trnald@cs.com	2	370 M	2.0 m ³ /s
Hauer Creek Job 053095	Custom Pelton turbine/generator with hydraulic power unit Bat Electric switchgear	3100	2005	Norm Lorenz Lorenz Holdings General Delivery Dunster, BC, Canada V0J 1J0 250-968-4419 norm@valemont.com	2	1287 FT	32 cfs
Falls Creek Job 073028	Custom double nozzle Pelton, TIV, HPU, Generator and governor	936	2007	Gustavus Electric Company PO Box 102 Gustavus, AK 99826 Richard Levitt 907-697-2299	2	554 FT	23 cfs
Coronado Job 073086	(2) Custom single nozzle Pelton turbines, HPU	2 x 3050	2007	Energisa, SA, Hector Borjas Apdo Postal 20524, Casa #3911, Bloque F Colonia Los Girasoles Tegucigalpa, Honduras 504-221-5088 energhib@hondutel.hn	1	510 M	1.4 m ³ /s

CANYON INDUSTRIES, INC.
PAST PERFORMANCE FACTORS
(Partial Listing)

<u>Project Name</u>	<u>Description of Work</u>	<u>KW</u>	<u>Award Date</u>	<u>Customer Name/Address</u>	# <u>JETS</u>	<u>HEAD</u>	<u>FLOW</u>
Tyson Creek Job 073106	Custom double nozzle Pelton, TIV, Generator, HPU	9300	2007	Tyson Creek Hydro Corp. Peter Schober Box 1611 Gibsons, BC, Canada V0N 1V0 604-886-9062 pschober@dccnet.com	2	812 M	1.36 cms
Eldorado Job 083015	Custom double nozzle Pelton Generator, TIV, HPU	1140	2008	District of Lake Country Jack Allingham 10150 Bottom Wood Lake Road Lake Country, BC, Canada V4V 2M1 250-766-5650 jallingham@lakecountry.bc.ca	2	186 M	0.7cms
Castle Creek Job 083018	Custom vertical 5 jet Pelton Generator, TIV, HPU, Controls	1210	2008	City of Aspen, Colorado Rob Covington 130 South Galena Street Aspen, CO 81611-1902 970-920-5212 robert.covington@ci.aspen.co.us	5	325 FT	52 cfs
Innerhadden Job 083031	Custom double nozzle Pelton turbine, HPU	1435	2008	Richard Barclay Kinlock Rannoch by Pitlochry Perthshire, Scotland, U.K. PH16 5QD 44-870-160-1559 richard@rannochsmokery.co.uk	2	289 M	0.57cms
Keltneyburn Job 093006	(2) Custom Peltons, HPU	2 x 1000	2009	Jimmy Stewart Keltney House, Keltneyburn Aberfeldy, Perthshire Scotland, UK PH15 2LF sandie@wordwright.info	2	231 M	1.0 cms
Los Corrales I Job 093020	Custom Pelton, 2NN, Generator Controls, HPU	878	2009	Alejandro Ponce El trovador 4285 piso 11 Las Condes Santiago de Chile 56-2-429-7900 alejandro.ponce.p@gmail.com	2	258.9 M	400 l/s
Canoe Creek Job 093024	Custom double nozzle Pelton TIV, HPU, Generator	5500	2009	Canoe Creek Hydro Company Ltd Iain Cuthbert Unit B - 6451 Portsmouth Road Nanaimo, BC Canada V9V 1A3 250-390-2627 icuthbert@shaw.ca	2	465 M	1.45 m ³ /s
Innerwick Job 093048	Custom double nozzle Pelton HPU	995	2009	Lairig a Mhuic LLP c/o Managed Estates W.N.B. Bateman Meggernie Estate 1 Springkerse Road Stirling, Scotland, UK FK7 7SN 1786-462519 me@managed-estates.co.uk	2	183 M	0.626 cms

CANYON INDUSTRIES, INC.
PAST PERFORMANCE FACTORS
(Partial Listing)

<u>Project Name</u>	<u>Description of Work</u>	<u>KW</u>	<u>Award Date</u>	<u>Customer Name/Address</u>	# <u>JETS</u>	<u>HEAD</u>	<u>FLOW</u>
Castles Estate Job 103007	Custom double nozzle Pelton HPU	1014	2010	David Reese c/o Managed Estates 1 Springkerse Road Stirling, Scotland, UK FK7 7SN 1786-462519	2	165 M	0.73 cms
Roromore Job 103030	Custom double nozzle Pelton HPU	995	2010	Edwin Thompson Company Elizabeth Cruickshank 76 Overhaugh Street Galsahiel, UK TD1 1DP 1896-751330 E.Cruickshank@edwin-thompson.co.uk	2	195 M	0.59 cms
GE - Big Creek #3 Job 103056	Machine Francis Runner Onsite Reassemble Turbine	50 MW	2010	Michael Mann General Electric 47369 Lower Redinger Road Auberry, CA 93602 801-796-8770 michael.mann@ge.com	N/A		
City of Boulder Job 103116	Custom double nozzle Pelton HPU, NN, Generator Spare Runner	6000	2010	City of Boulder, Colorado Joe Taddeucci Dept. of Public Works/Utilities Division PO Box 791 1739 Broadway, 2nd Floor Boulder, CO 80306 (303) 441-3266 taddeuccij@bouldercolorado.gov	2	1820.5 FT	37.7 cfs
ATCO - Fishlake Job 113019	Custom double nozzle Pelton HPU, Generator	975	2011	The Yukon Electric Company Limited Chris Cullingham Whitehorse Service Center 205 Tungsten Road Whitehorse, YT Y1A 3T4, Canada chris.cullingham@atco.com	1	412.09 FT	25.07 cfs
Los Corrales II Job 113028	Custom double nozzle Pelton HPU, Generator, Switch Gear	1035	2011	Alejandro Ponce El trovador 4285 piso 11 Las Condes Santiago de Chile 56-2-429-7900 alejandro.ponce.p@gmail.com	2	1167.96 FT	14.124 cfs
Olivenhain Job 113036	Dual Unit Francis Turbines HPU, Generator	2 x 350	2011	George Briest Olivenhain Municipal Water District David C. McCollum Water Treatment Plant 1966 Olivenhain Road Encinitas, CA 92024 760-753-6466 gbriest@olivenhain.com	N/A	180 FT	26.3 cfs

CANYON INDUSTRIES, INC.
PAST PERFORMANCE FACTORS
(Partial Listing)

<u>Project Name</u>	<u>Description of Work</u>	<u>KW</u>	<u>Award Date</u>	<u>Customer Name/Address</u>	# <u>JETS</u>	<u>HEAD</u>	<u>FLOW</u>
Middle Creek Job 113063	Custom five nozzle Pelton HPU, Generator, Cooling Water System	8200	2011	Don Hague Veresen Inc. 669 Howe Street, Suite 650 Vancouver, BC Canada V6C 0B4 604-637-6393 dhaque@vereseninc.com	5	331.5 M	2.9 cms
Deer Creek Job 133009	Replacement Francis Runners	2 x 5400	2013	Jeff Budge Provo River Water Users Association 285 West 1100 North Pleasant Grove, UT 94062 801-796-8770 jdb@prwua.com	N/A	525 FT	135 cfs

General Provisions for Field Service

Field Service Rates

Technician \$1,400 per day

Overtime/weekends \$200 per hour

Engineer or Executive \$2,000 per day

Overtime/weekends \$285 per hour

Transportation

Personal or Corporate automobile mileage charged at \$0.51/mile.

Air, rail, rental car, etc. will be charged at cost plus 15% processing charge.

Lodging & Meals

Charged at cost plus 15% processing charge.

Travel

Travel time will be billed at the straight time hourly rate Mondays through Fridays and at the weekend rate for Saturdays, Sundays, and Holidays.

General Provisions

Standby Time

Any waiting time when the Representative is available to work, up to a maximum of eight (8) hours on any one working day, shall be regarded as time actually worked, even though the services are not actually utilized. The rate may not be prorated for partial days.

Delays

Canyon Industries, Inc. shall not be liable for delay in performance when such delay is occasioned by causes beyond its reasonable control, including but not limited to acts of God, acts of the customer, material shortages, transportation difficulties, flood, strikes, epidemics, war (declared or undeclared), riot, etc.

Emergency Work

The minimum time off for a representative during any 24 hour period must be eight (8) consecutive hours.

Terms of Payment

A deposit equal to 50% of anticipated charges due upon request for a field representative. Payment for services and material will be due upon presentation of invoices.

Rates subject to change without notice.

Standard Warranty

Canyon Industries, Inc. (Seller) warrants that as to fabrication and assemblies all material and equipment purchased by it and incorporated in or becoming a part of the work shall be new, unless otherwise directed in writing by the Buyer. Seller warrants that all material and equipment manufactured by it shall be free from injurious defect, latent or otherwise, and shall conform to the specifications provided. If within 18 months after shipment of any such material or equipment, or within one year after such material or equipment is placed in use or operation, whichever first occurs, Buyer (or Buyer's successor in interest) shall discover a defect or defects therein other than those resulting from either ordinary wear and tear, defects resulting from improper use thereof, and additions or alterations made by persons other than Seller, and shall notify Seller thereof, in writing, within such period, Seller will repair or replace such defective material or equipment or the defective portion or part thereof free of charge to Buyer (or Buyer's successor in interest) FOB Seller's plant, except for costs of removal and installation.

Seller does not warrant or guarantee materials or equipment which it does not design, but will use its best efforts to obtain for Buyer such guarantees as requested by Buyer. Unless otherwise advised, in writing by Buyer, Seller shall incorporate in every purchase order to suppliers of material and equipment for Buyer, its customary warranty and guarantee requirements.

Except as above specified, Seller will not be liable upon any guarantees or warranties, expressed or implied, statutory or by operation of law or otherwise, in any manner or form whatsoever, including but not limited to warranties of merchantability and/or fitness for purpose.

Except as above specified, Seller will not be liable for any costs, expenses or damages whatsoever, including but not limited to loss of interest, earnings, profits or other special indirect or consequential damages.

Section 2: Technical Information

Battle Creek Hydroelectric Project

Project Summary

Net Head (at design flow).....	460 feet
Design Flow	1500 gpm
Turbine Type	Custom-designed 1200 rpm double-nozzle Pelton
Configuration.....	Independent bearing, direct-coupled turbine & generator
Generator Output at Design Flow	100 kW
Mode of Operation	Grid connected

Section Contents

Preliminary Design Specifications

Generator Description

Switchgear/Control Description

Turbine Elevation Proposal Drawing

Equipment Plan Proposal Drawing

Preliminary Design Specifications

BATTLE CREEK HYDROELECTRIC PROJECT UTAH

Specifications

1.0 Impulse Turbine Runner

- 1.1. Material
Stainless steel alloy CF8M, high abrasion resistance, high tensile strength.
- 1.2. Construction
Buckets, disc, and hub integrally cast. Machined or ground to template.
- 1.3. Finish
All surfaces hand-polished to optimize hydraulic and aerodynamic efficiency.
- 1.4. Balance
Runner statically balanced while on runner shaft, then dynamically balanced to speed exceeding runaway speeds according to ISO 1940 G. 6.3.
- 1.5. Shaft Coupling
Flender (Siemens) elastomeric shaft coupling, or equivalent

2.0 Nozzle Assembly

- 2.1. Number and Type
Two (2) infinitely variable flow needle type nozzles, custom-designed for project head and flow.
- 2.2. Materials
Nozzle assembly body of fabricated ASTM A106 steel. Nozzle needle and beak of 300 series stainless steel. Highly polished.
- 2.3. Actuator
Nozzle assembly provided with hydraulic nozzle actuator, including visual nozzle position indicator and 4-20mA position transducer.

3.0 Jet Deflectors

- 3.1. Construction
Constructed of high strength carbon steel, stainless steel shaft, mounted on sealed ball bearings.
- 3.2. Actuator
Failsafe jet deflector lifted by hydraulic actuator, held open by solenoid valve, closed in 1-2 seconds by weighted jet deflector control arm. Includes 4-20mA position transducer.

4.0 Turbine Housing

- 4.1. Design
Turbine housing designed for maximum efficient escape of water and minimum aerodynamic drag.
- 4.2. Materials
Housing weld-fabricated of ASTM A36 plate steel, gusseted and reinforced. Frame constructed of welded structural steel for maximum rigidity and strength.
- 4.3. Bearings
Pillow block mounted double row spherical roller bearings, grease or oil lubricated. Designed for minimum B10 life of 100,000 hours. Fitted with PT100 RTD's and vibration transducers (one per bearing).
- 4.4. Coating System
Outside and inside, and turbine piping, sandblasted to near white surface. Inside and outside coating Ameron Amerlock 2 epoxy, color medium blue.
- 4.5. Turbine embedded mounting frame is included.

5.0 Generator

- 5.1. Manufacturer NIDEC (USEM), or equivalent
- 5.2. Specifications: Induction 100 kW, 1200 rpm, double bearing with shaft extension suitable for flexible coupling (provided by Canyon). Rated for 180% no-load overspeed for 5 minutes. Generator mounting frame is included. See attached description.

6.0 Control and Switchgear Package

- 6.1 Manufacturer Bat Electric, Redding, CA
- 6.2 Complete control and switchgear package per attached description.

7.0 Operation and Maintenance

- 7.1. Complete Operator instructions and maintenance manuals will be provided for turbine, generator, and related components.
- 7.2. At additional cost, a Canyon Hydro factory representative can be made available at turbine site for system installation, testing, adjustment, and to instruct local personnel in operation and maintenance. Current rates are described in the attached "General Provisions for Field Service".

8.0 Technical Attachments

- Generator Description
- Control and Switchgear Description
- Turbine Elevation Proposal Drawing
- Equipment Plan Proposal Drawing

NIDEC MOTOR CORPORATION

8050 WEST FLORISSANT AVE.
ST. LOUIS, MO 63136

DATE: 4/29/2014

P.O. NO.: 150HP - RFQ
Order/Line NO.: 1004240 IN 100

TO: Canyon Ind Inc *
5500 Blue Heron Lane
Deming, WA, 98244
ATTN: BRETT BAUER

Model Number: NA
Catalog Number: D150P3Z-P
Horiz. ODP Pre. Eff. Config.
CONF,MOTOR,HORIZ ODP PRE EFF

REVISIONS:

**ALL DOCUMENTS HEREIN ARE CONSIDERED TYPICAL BY NIDEC MOTOR CORPORATION.
THANK YOU FOR YOUR INQUIRY AND THE OPPORTUNITY TO SERVE YOU.**

Features:

Temporary - DO NOT COPY
Horsepower 00150.00 ~ KW: 111.9
Enclosure ODP
Poles 06 ~ RPM: 1200
Frame Size 445~T
Phase/Frequency/Voltage.. 3~060~480 ~ Random Wound
Service Factor 1.15
Insulation Class Class "F" ~ Insulife 1000
Altitude In Feet (Max) .. 5500 Ft.
Ambient In Degree C (Max) +40 C
Assembly Position "F-1" Assembly Position
Efficiency Class Premium Efficiency
Application Induction Generator
Customer Part Number
"AK" Dimension (Inches).. NA
Temperature Rise (Sine Wave): "B" Rise @ 1.0 SF (Resist)
Starting Method Direct-On-Line Start
Duty Cycle Continuous Duty
Load Inertia (lb-ft²): NEMA ~ NEMA Inertia: 1718.00 ~ 1.00
Number Of Starts Per Hour: NEMA
Motor Type Code RE
Rotor Inertia (LB-FT²) 53.7 LB-FT²
Qty. of Bearings PE (Shaft) 1
Qty. of Bearings SE (OPP) 1
Bearing Number PE (Shaft) 6220-J
Bearing Number SE (OPP) 6313-J

Nidec trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office.

NIDEC MOTOR CORPORATION

8050 WEST FLORISSANT AVE.
ST. LOUIS, MO 63136

DATE: 4/29/2014

P.O. NO.: 150HP - RFQ
Order/Line NO.: 1004240 IN 100

TO: Canyon Ind Inc *
5500 Blue Heron Lane
Deming, WA, 98244
ATTN: BRETT BAUER

Model Number: NA
Catalog Number: D150P3Z-P
Horiz. ODP Pre. Eff. Config.
CONF,MOTOR,HORIZ ODP PRE EFF

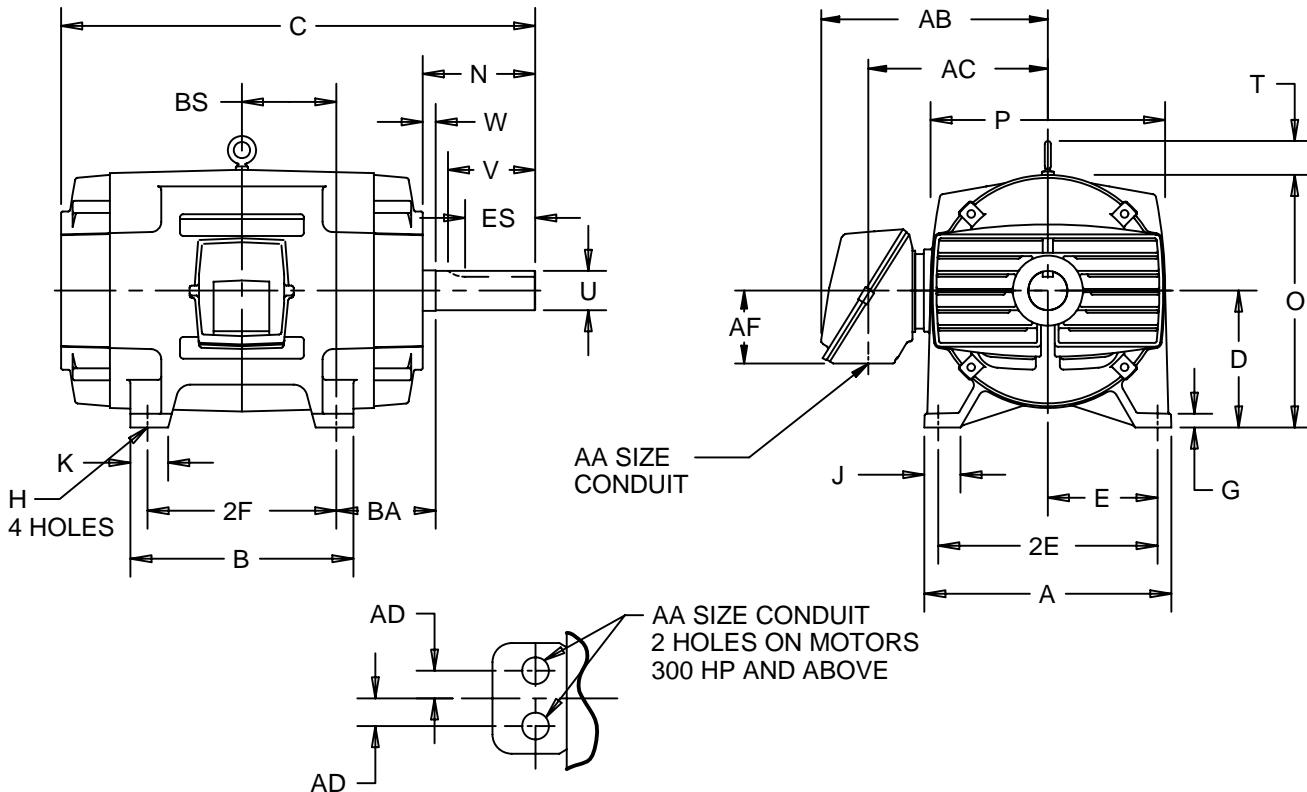
REVISIONS:

**ALL DOCUMENTS HEREIN ARE CONSIDERED TYPICAL BY NIDEC MOTOR CORPORATION.
THANK YOU FOR YOUR INQUIRY AND THE OPPORTUNITY TO SERVE YOU.**

Accessories:

Direct Connected To Load

USE THE DATA PROVIDED BELOW TO SELECT THE APPROPRIATE DIMENSION PRINT


Horsepower	150
Pole(s)	06
Voltage(s)	480
Frame Size	445T
Shaft U Diameter	3.375
Outlet Box AF	4.72
Outlet Box AA	3.00

Nidec trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office.

EFFECTIVE:
05-MAR-12
SUPERSEDES:
05-AUG-11

HORIZONTAL MOTORS
OPEN DRIP PROOF
FRAME: 444T THRU 447TS
BASIC TYPE: R

PRINT:
07-1988
SHEET:
1 OF 1

ALL DIMENSIONS ARE IN INCHES AND MILLIMETERS

UNITS	A	D .06	E	2E ±.03	G	H +.05	J	O	P ²	T	W	BA
IN	22.00	11.00	9.00	18.00	1.38	.81	4.00	22.06	22.94	3.25	.25	7.50
MM	559	279	229	457	35	21	102	560	583	83	6	191

FRAME	UNITS	B	C	K	N	2F ±.03	U -.001	V MIN	BS	ES MIN	SQ KEY
444T	IN	17.75	37.75	3.25	8.75	14.50	3.375	8.25	7.25	6.91	.875
	MM	451	959	83	222	368	85.73	210	184	176	22.23
444TS	IN	17.75	34.00	3.25	4.97	14.50	2.375	4.50	7.25	3.03	.625
	MM	451	864	83	126	368	60.33	114	184	77	15.88
445T	IN	19.75	39.75	3.25	8.75	16.50	3.375	8.25	8.25	6.91	.875
	MM	502	1010	83	222	419	85.73	210	210	176	22.23
445TS	IN	19.75	36.00	3.25	5.00	16.50	2.375	4.50	8.25	3.03	.625
	MM	502	914	83	127	419	60.33	114	210	77	15.88
447T	IN	23.25	43.25	3.25	8.75	20.00	3.375	8.25	10.00	6.91	.875
	MM	591	1099	83	222	508	85.73	210	254	176	22.23
447TS	IN	23.25	39.50	3.25	5.00	20.00	2.375	4.50	10.00	3.03	.625
	MM	591	1003	83	127	508	60.33	114	254	77	15.88

FULL LOAD AMPS	HP	UNITS	AA	AB	AC	AD	AF
UP TO 250	---	IN	3.00	19.81	15.31	---	4.72
		MM		503	389		120
251 AND UP	≤ 250	IN	22.44	16.81	---	8.06	
		MM	570	427		205	
	≥ 300	IN	22.44	16.81	2.75	8.06	
		MM	570	427	70	205	

1: ALL ROUGH CASTING DIMENSIONS MAY VARY BY .25"
DUE TO CASTING AND/OR FABRICATION VARIATIONS.
2: LARGEST MOTOR WIDTH.

3: CONDUIT BOX MAY BE LOCATED ON EITHER SIDE
OF MOTOR. CONDUIT OPENINGS MAY BE LOCATED
IN STEPS OF 90 DEGREES REGARDLESS OF LOCATION.
STANDARD AS SHOWN WITH CONDUIT OPENING DOWN.

07-1988/E

Nidec Motor Corporation
St. Louis, Missouri

INFORMATION DISCLOSED ON THIS DOCUMENT
IS CONSIDERED PROPRIETARY AND SHALL NOT BE
REPRODUCED OR DISCLOSED WITHOUT WRITTEN
CONSENT OF NIDEC MOTOR CORPORATION

ISSUED BY
R. KING
APPROVED BY
J. HAGENE

NAMEPLATE DATA

CATALOG NUMBER:	D150P3Z-P			NAMEPLATE PART #:	370780-004		
MODEL	FR	445T		TYPE	RE	ENCL	ODP
SHAFT END BRG	6220-J - QTY 1			OPP END BRG	6313-J - QTY 1		
PH	3	MAX AMB	40 C	ID#	(ref: Order#: 1004240, Type: IN, Line#: 100)		
INSUL CLASS	F	Asm. Pos.	F1	DUTY	CONT		
HP	150	RPM	1210	HP		RPM	
VOLTS	480			VOLTS			
FL AMPS	175.7			FL AMPS			
SF AMPS	209.0			SF AMPS			
SF	1.15	DESIGN	B	CODE	G		
NEMA NOM EFFICIENCY	95.4	NOM PF	76.6	KiloWatt	111.900		
GUARANTEED EFFICIENCY	94.5	MAX KVAR	58.4	Hz	60		

HAZARDOUS LOCATION DATA (IF APPLICABLE):

DIVISION		CLASS I		GROUP I	
TEMP CODE		CLASS II		GROUP II	

VFD DATA (IF APPLICABLE):

VOLTS		TORQUE 1		TORQUE 2	
AMPS		VFD LOAD TYPE 1		VFD LOAD TYPE 2	
		VFD HERTZ RANGE 1		VFD HERTZ RANGE 2	
		VFD SPEED RANGE 1		VFD SPEED RANGE 2	
SERVICE FACTOR				FL SLIP	
NO. POLES	6			MAGNETIZING AMPS	
VECTOR MAX RPM				Encoder PPR	
Radians / Seconds	1			Encoder Volts	

TEAO DATA (IF APPLICABLE):

HP (AIR OVER)		HP (AIR OVER M/S)		RPM (AIR OVER)		RPM (AIR OVER M/S)	
FPM AIR VELOCITY		FPM AIR VELOCITY M/S		FPM AIR VELOCITY SEC			

ADDITIONAL NAMEPLATE DATA:

Decal / Plate	WD=499495	Customer PN	
Notes		Non Rev Ratchet	
Max Temp Rise	80C RISE/RES@1.00SF	OPP/Upper Oil Cap	GREASE
Thermal (WDG)		SHAFT/Lower Oil Cap	GREASE
Altitude	05500		
Regulatory Notes		Regulatory Compliance	CC 030A
COS		Marine Duty	
Balance		Arctic Duty	
3/4 Load Eff.	95.9	Inrush Limit	
Motor Weight (LBS)	1200	Direction of Rotation	
Sound Level		Special Note 1	
Vertical Thrust (LBS)		Special Note 2	
Thrust Percentage		Special Note 3	
Bearing Life		Special Note 4	
Starting Method		Special Note 5	
Number of Starts		Special Note 6	
200/208V 60Hz Max Amps		SH Max. Temp.	
190V 50 hz Max Amps		SH Voltage	
380V 50 Hz Max Amps		SH Watts	
NEMA Inertia		Load Inertia	
Sumpheater Voltage		Sumpheater Wattage	
Special Accessory Note 1		Special Accessory Note 16	
Special Accessory Note 2		Special Accessory Note 17	
Special Accessory Note 3		Special Accessory Note 18	
Special Accessory Note 4		Special Accessory Note 19	
Special Accessory Note 5		Special Accessory Note 20	
Special Accessory Note 6		Special Accessory Note 21	
Special Accessory Note 7		Special Accessory Note 22	
Special Accessory Note 8		Special Accessory Note 23	
Special Accessory Note 9		Special Accessory Note 24	
Special Accessory Note 10		Special Accessory Note 25	
Special Accessory Note 11		Special Accessory Note 26	
Special Accessory Note 12		Special Accessory Note 27	
Special Accessory Note 13		Special Accessory Note 28	
Special Accessory Note 14		Special Accessory Note 29	
Special Accessory Note 15		Special Accessory Note 30	

NIDEC MOTOR CORPORATION
ST. LOUIS, MO

TYPICAL NAMEPLATE DATA
ACTUAL MOTOR NAMEPLATE LAYOUT MAY VARY
SOME FIELDS MAY BE OMITTED

Nidec trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office.

MOTOR PERFORMANCE

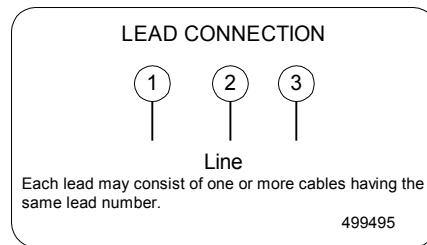
MODEL NO.	CATALOG NO.	PHASE	TYPE	FRAME
NA	D150P3Z-P	3	RE	445T
ORDER NO.	1004240		LINE NO.	100
MPI:			183146	
HP:			150	
POLES:			6	
VOLTS:			480	
HZ:			60	
SERVICE FACTOR:			1.15	
EFFICIENCY (%):				
	S.F.		95	
	FULL		95.4	
	3/4		95.9	
	1/2		95.7	
	1/4		93.5	
POWER FACTOR (%):				
	S.F.		77.9	
	FULL		76.6	
	3/4		71.9	
	1/2		61.3	
	1/4		39.4	
	NO LOAD		2.3	
	LOCKED ROTOR		27.6	
AMPS:				
	S.F.		209	
	FULL		184	
	3/4		146	
	1/2		115	
	1/4		91	
	NO LOAD		82.6	
	LOCKED ROTOR		1039.5	
NEMA CODE LETTER			G	
NEMA DESIGN LETTER			B	
FULL LOAD RPM			1190	
NEMA NOMINAL EFFICIENCY (%)			95.4	
GUARANTEED EFFICIENCY (%)			94.5	
MAX KVAR			58.4	
AMBIENT (°C)			40	
ALTITUDE (FASL)			6000	
SAFE STALL TIME-HOT (SEC)			30	
SOUND PRESSURE (DBA@1M)			69	
TORQUES:				
	BREAKDOWN{ % F.L.}		120	
	LOCKED ROTOR{ % F.L.}		200	
	FULL LOAD{LB-FT}		663.4	

NEMA Nominal and Guaranteed Efficiencies are up to 3,300 feet above sea level and 25 ° C ambient

The Above Data Is Typical. Sinewave Power Unless Noted Otherwise

NIDEC MOTOR CORPORATION

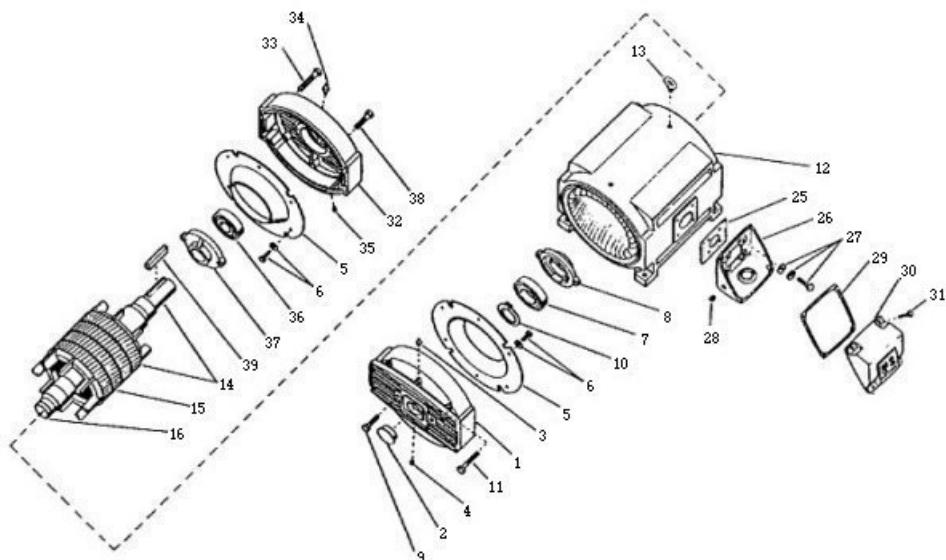
ST. LOUIS, MO



Nidec trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office.

499495

Motor Wiring Diagram



To reverse direction of rotation interchange connections L1 and L2.

Each lead may be comprised of one or more cables.
Each cable will be marked with the appropriate lead number.

RENEWAL PARTS

FRAMES 444 THRU 449 - OPEN DRIPPROOF
TYPES: FR, R, RE, RI

ITEM NO.	QTY	NAME OF PART
1	1	Bracket (Short End)
2	1	Bracket Plug
3	1	Grease Fitting
4	1	Countersunk Hex Pipe Plug
5	2	Air Deflector Assembly
6	12	Hex Head Cap Screw & Lockwasher
7	1	Ball Bearing (Short End) (Refer to section 775)
8	1	Bearing Cap
9	2	Hex Head Cap Screw
10	1	Retaining Snap Ring
11	4	Hex Head Cap Screw (Bracket to Stator)
12	1	Wound Stator Assembly
13	2	Eyebolt
14	1	Rotor Assembly (Includes Items 15 & 16)
15	1	Rotor Core
16	1	Rotor Shaft

WARNING:

Any disassembly or repair work on explosionproof motors will void the Underwriters Laboratories, Inc. label unless done by the manufacturer, or a facility approved by the Underwriters Laboratories, Inc. Refer to your nearest sales office for assistance.

BEARINGS:

Refer to motor nameplate for the bearing numbers.

PRICES:

Parts stocking distributors: refer to renewal parts numerical index. All Others: refer to your nearest parts distributor.

reference: Renewal Parts Section 700, Page 5

Suitability of Integral Horsepower (IHP)* Motors on Variable Frequency Drives

Variable Frequency Drives (VFD)

All Nidec Motor Corporation inverter duty motors have 40°C ambient, 1.0 SF on Inverter Power, 3300 ft. max altitude, 460 voltage or less line power, up to 10:1 speed range on Variable Torque and Class F Insulation.

Nidec Motor Corporation's INVERTER GRADE® insulated motors exceeded NEMA® MG-1 Part 30 & 31 before the standards were established.

We are a leader in the development of electric motors to withstand pulse width modulated (PWM) drives evolution from power transistors to higher switching frequency insulated gate bipolar transistors (IGBTs).

Today, as the need for medium duty motor inverter applications grows, Nidec Motor Corporation provides products to meet these demands.

Through continued research and development, Nidec Motor Corporation has included the insulation wire from its INVERTER GRADE® motors in all Premium Efficient motors, enhancing their potential inverter compatibility.

Inverter compatibility with motors is complex. As a result, many variables must be considered when determining the suitability of certain types of motors. These variables include:

- Torque requirements (Constant or Variable)
- Speed Range
- Line/System Voltage
- Cable Length between VFD & Motor
- Drive Switching (Carrier) Frequency Motor Construction
- VFD dv/dt
- High Temperatures High Humidity

Wider speed ranges, higher voltages, higher switching frequencies and increased cable lengths all add to the severity of the application and therefore the potential for premature motor failure. Nidec Motor Corporation has differentiated its products into families for your ease of selection for various inverter applications.

Warranty Guidelines

The information within this section refers to the motor and drive application guidelines and limitations for warranty.

Hazardous Location Motors

Use of a variable frequency drive with the motors in this catalog, intended for use in hazardous locations, is only approved for Division 1, Class I, Group D hazardous location motors with a T2B temperature code, with a limitation of 2:1 constant torque or 10:1 variable torque output. No other stock hazardous location motors are inherently suitable for operation with a variable frequency drive. If other requirements are needed, including non-listed Division 2, please contact your Nidec Motor Corporation territory manager to conduct an engineering inquiry.

575 Volt Motors

575 volt motors can be applied on inverters when output filters are used.

Applying INVERTER GRADE® Insulated Motors on Variable Frequency Drives (2, 4, 6 pole)

The products within this catalog labeled "Inverter Duty" or "Vector Duty" are considered INVERTER GRADE® insulated motors. INVERTER GRADE® motors exceed the NEMA® MG-1 Part 31 standard.

Nidec Motor Corporation provides a three-year limited warranty on all NEMA® frame INVERTER GRADE® insulated motors and allows long cable runs between the motor and the VFD (limited to 400 feet typical without output filters). Cable distance can be further limited by hot and humid environments and VFD manufacturers cable limits. These motors may be appropriate for certain severe inverter application or when the factors relating to the end use application are undefined (such as spares).

Nidec Motor Corporation's U.S. Motors® brand is available in the following INVERTER GRADE® insulated motors:

- Inverter Duty NEMA® frame motors good for 10:1 Variable Torque & 5:1 Constant Torque, including Vertical Type RUSI
- Inverter Duty motors rated for 10:1 Constant Torque
- ACCU-Torq® and Vector Duty Motors with full torque to 0 Speed
- 841 Plus® NEMA® Frame Motors

Applying motors that do not have INVERTER GRADE® insulation on Variable Frequency Drives (2, 4, 6 pole)

Meet NEMA® MG-1, Section IV, Part 31.4.4.2. They can be used with adjustable frequency drives under the following parameters: On NEMA® frame motors, 10:1 speed rating on variable torque loads & 4:1 speed range on constant torque loads. On TITAN® frame motors, 10:1 speed rating on variable torque loads. On TITAN® frame motors, inquiry required for suitability on constant torque loads. Cable distances are for reference only and can be further limited by hot and humid environments. Refer to specific VFD manufacturers cable limits.

Cable Distances			
Maximum Cable Distance VFD to Motor			
Switching Frequency	460 Volt	230 Volt	380 Volt
3 KHz	127 ft	400 ft	218 ft
6 KHz	90 ft	307 ft	154 ft
9 KHz	73 ft	251 ft	126 ft
12 KHz	64 ft	217 ft	109 ft
15 KHz	57 ft	194 ft	98 ft
20 KHz	49 ft	168 ft	85 ft

Applying Standard & Energy Efficient Motors on Variable Frequency Drives is not recommended. VFD related failures on standard and energy efficient motors 444 frame and above will not be covered under warranty.

*This information applies only to Integral Horsepower (IHP) motors as defined on the Agency Approval page, under UL® & CSA® listings where indicated.

† All marks shown within this document are properties of their respective owners.

Motor / Inverter Compatibility

Thermal Overloads and Single Phase Motors

Motors with thermal overloads installed may not operate properly on a VFD. The current carrying thermal overload is designed for sine wave power. Operation on a VFD may cause nuisance tripping or potentially not protect the motor as would be expected on line power. Thermo-stats or thermistors installed in the motor and connected properly to the VFD may provide suitable thermal overload protection when operating on a VFD. (Consult Codes)

Single phase motors and other fractional horsepower ratings are not designed to be operated on a VFD. Within Nidec Motor Corporation standard products, all motors NEMA[®] 48 frame (5.5" diameter) and smaller are not suitable for VFD applications. Three phase 56 and 143/145 frame applications should be noted on the catalog price page; or if in doubt ask an Nidec Motor Corporation technical representative for recommendations on compatibility with a VFD.

Slow Speed Motors

Motors with a base design of slower than six poles require special consideration regarding VFD sizing and minimizing harmonic distortion created at the motor terminals due to cable installation characteristics. Additional external PWM waveform filters and shielded motor cables designed for PWM power may be required to provide acceptable motor life. Harmonic distortion on the output waveform should be kept to a minimum level (less than 10%).

690V Applications

Motors that will be applied to 690VAC PWM VFDs require the use of an external filter to limit peak voltage spikes and the use of an INVERTER GRADE[®] motor. Where available, an alternative to using an output filter is to upgrade to a 2300V insulation system.

Low Voltage TITAN[®] Motors

When using 449 frame and larger motors on PWM type VFDs consider the use of an external filter and shielded motor cables designed for PWM power to minimize harmonic distortion and peak voltages at the motor terminals. Harmonic distortion on the output waveform should be kept to a minimum level (less than 10%).

Bearing Currents related to PWM waveform

Due to the uniqueness of this condition occurring in the field, protection of the motor bearings from shaft currents caused by common mode voltages is not a standard feature on sine wave or Inverter Duty motor products, unless explicitly noted. Some installations may be prone to a voltage discharge condition through the motor bearings called fluting.

Fluting damage is related to characteristics of the PWM waveform, VFD programming and characteristics and installation.

Bearing fluting as a result of VFD waveform characteristics may be prevented by the installation of a shaft grounding device such as a brush or ring and/or correction of the installation characteristics causing the shaft voltage condition. Insulated bearing(s) may be required. VFD filters may be needed if bearing fluting is to be avoided.

Multiple Motors on a Single VFD

Special considerations are required when multiple motors are powered from a single VFD unit. Most VFD manufacturers can provide guidelines for proper motor thermal considerations and starting/stopping of motors. Cable runs from the VFD and each motor can create conditions that will cause extra stress on the motor winding. Filters may be required at the motor to provide maximum motor life.

Grounding and Cable Installation Guidelines

Proper output winding and grounding practices can be instrumental in minimizing motor related failures caused by PWM waveform characteristics and installation factors. VFD manufacturers typically provide detailed guidelines on the proper grounding of the motor to the VFD and output cable routing. Cabling manufacturers provide recommended cable types for PWM installations and critical information concerning output wiring impedance and capacitance to ground.

Vertical Motors on VFDs

Vertical motors operated on VFD power present unique conditions that may require consideration by the user or installation engineer:

- Non-reversing-ratchet operation can interfere at low speeds (up to 300 RPM) causing locked rotor and drive tripping.
- Unexpected / unacceptable system vibration and or noise levels caused by the torque pulsation characteristics of the PWM waveform, a system critical frequency falling inside the variable speed range of the process or the added harmonic content of the PWM waveform exciting a system component
- Application related problems related to the controlled acceleration/ deceleration and torque of the motor on VFD power and the building of system pressure/ load.
- The impact the reduction of pump speed has on the down thrust reflected to the pump motor and any minimum thrust requirements of the motor bearings
- Water hammer during shutdown damaging the non-reversing ratchet

Humidity and Non-operational Conditions

The possible build-up of condensation inside the motor due to storage in an uncontrolled environment or non-operational periods in an installation, can lead to an increased rate of premature winding or bearing failures when combined with the stresses associated with PWM waveform characteristics. Moisture and condensation in and on the motor winding over time can provide tracking paths to ground, lower the Megohm resistance of the motor winding to ground, and lower the Corona Inception Voltage level of the winding.

Proper storage and maintenance guidelines are important to minimize the potential of premature failures. Space heaters or trickle voltage heating methods are the preferred methods for drying out a winding that has low megaohm readings. Damage caused by these factors are not covered by the limited warranty provided unless appropriate heating methods are properly utilized during non-operational periods and prior to motor start-up.

NEMA[®] Application Guide for AC Adjustable Speed Drive Systems: <http://www.nema.org/stds/acadjustable.cfm#download>

^{*}This information applies only to Integral Horsepower (IHP) motors as defined on the Agency Approval page, under UL[®] & CSA[®] listings where indicated.

[†]All marks shown within this document are properties of their respective owners.

Control/Switchgear Description

We are pleased to offer the following quotation for the proposed 100kW Pleasant Grove Hydro Project's electrical controls and switchgear. Intertie utility is Rocky Mountain Power. Was not supplied with interconnect requirements for Rocky Mountain Power, will utilize IEEE 1547 as a guideline. This quotation is offered based on standard requirements for a project of this size. Project requirements may cause changes to the proposed equipment list and thus alter final prices.

Project General Information

The power plant will consist of one Pelton turbine-driven generator. The Pelton turbine will have hydraulically operated dual needle nozzles and deflector. The generator will be of the induction type, rated 480V, 3Ø, 60Hz, and rated 100kW. The controls will consist of manual hardwire control and PLC based automatic control. Automatic control will consist of auto start and auto nozzle position control. The generator will be placed on line when the unit is at rated speed by a dedicated main contractor.

Switchgear/Control Equipment List

Qty	1-	Double-Door, NEMA 12, Free-Standing Enclosure, painted with ASA61 gray paint
	1-	Main Circuit Breaker, 175AT/250AF, 480V, 35kA 3-pole fixed mount
	1-	Generator Main Contactor, 480V, 3 Pole, Rated 180A
	2-	(BPT) Bus Potential Transformer (4/1)
	1-	(CPT) Control Power Transformer (1000VA)
	3-	(CT) Current Transformers (200/5)
	1-	(12/13) Speed Relay/Tachometer
	1-	(MFR) Multifunction Protective Relay: (27/59) Under Over Voltage, (32R) Reverse Power, (40) Loss of Excitation, (47) Phase Sequence, (51V) Volt Restrained Overcurrent, (59G) Ground Overvoltage, (81O/U) Over/Under Frequency (utility grade)
	1-	(86) Lockout
	1-	(86V/F) Volt/Frequency Lockout Relay
	2-	(39) Vibration Trip Circuit
	1-	(63) Hydraulic Low Pressure Trip Circuit
	1-	(AM) Ammeter, 3½ in., 2%, (0-200A)
	1-	(DMM) Digital Multimeter (V, A, kW, PF, kVAR, Hz, kWh)
	1-	(HM) Hourmeter, 3½ in., 2%
	2-	(NM) Nozzle Meter, 3½", 2% (0-100%)
	1-	(VM) Voltmeter, 3½ in., 2% (0-600V)
	1-	(1CS) Start-Stop Control Switch
	1-	(AS) Ammeter Switch, 3-position with off
	1-	(DCS) Deflector Control Switches (Close-Open)
	1-	(ES) Emergency Stop
	1-	(MS) Mode Switch (Off-Local-Remote)
	2-	(NCS) Nozzle Control Switches (Open-Close)
	1-	(VS) Voltmeter Switch, 3-position with off
	2-	Breaker Indicating Lights (Open/Close)
	2-	Deflector Position Indicating Lights (Close-Open)
	4-	Nozzle Position Indicating Lights (Close/Open)
	2-	Start/Stop Indicating Lights
	1-	(PLC) Programmable Logic Controller

- 1- (OIU) Operator Interface Unit (6" Color Touch Screen)
- 1- Lot Nozzle Position Control
- 1- Fault Annunciator, 15-point
- 1- Lot Auxiliary Relays, Timers, and Controls
- 1- Lot Field Interconnect Terminal Blocks
- 1- Lot Test Switches
- 1- Lot Engraved Nameplates
- 1- Lot Control Fuses
- 1- Lot Interface with Turbine Hydraulic Pump Unit (HPU supplied by others)
- 1- Lot Interface with Penstock Pressure Transducer
- 1- Lot Interface with Facility PLC (supplied and programmed by others)

Miscellaneous Ship Loose Equipment

Qty 1- Magnetic Speed Pickup

Equipment Dimensions

The proposed dimensions for the switchgear and control panel are as follows:

Switchgear/Control Cubicle 72"(H) x 60"(W) x 12"(D)

Equipment Manufacturers

The following equipment manufacturers are proposed. BAT ELECTRIC reserves the right to substitute equipment of equal quality at time of manufacturer.

Generator Circuit Breaker, 600V	General Electric
Protective Relay	Beckwith
Digital Multi Meter	Multitek
Meters, 3½", 2%	Crompton
Switches	Shallco/General Electric
Instrument Transformers	GE-ITI
Indicating Lights	General Electric
Auxiliary Relays	General Electric/Idec
Programmable Logic Controller	Automation Direct DL205

Optional Equipment

1. 4 Point RTD Input Module for DL205 PLC. Temperature status, alarm and trip displayed on OIU.

Net Adder.....\$ 1,300.00 Each

2. 24VDC VRLA Battery Bank 100AH with 20 amp charger and rack.

Net Adder.....\$ 6,875.00

3. Power Factor Corrective Capacitor Bank (max. 30kVAR) switched with a 60Amp Contactor. Generator Power Factor to be corrected from 0.80PF to 0.92PF.

Net Adder.....\$ 1,860.00

4. Add dedicated ground over current relay with test block.

Net Adder.....\$ 1,600.00

5. Supply Software for PLC and OIU Programming.

PLC Software.....\$ 650.00

OIU Software.....\$ N/C

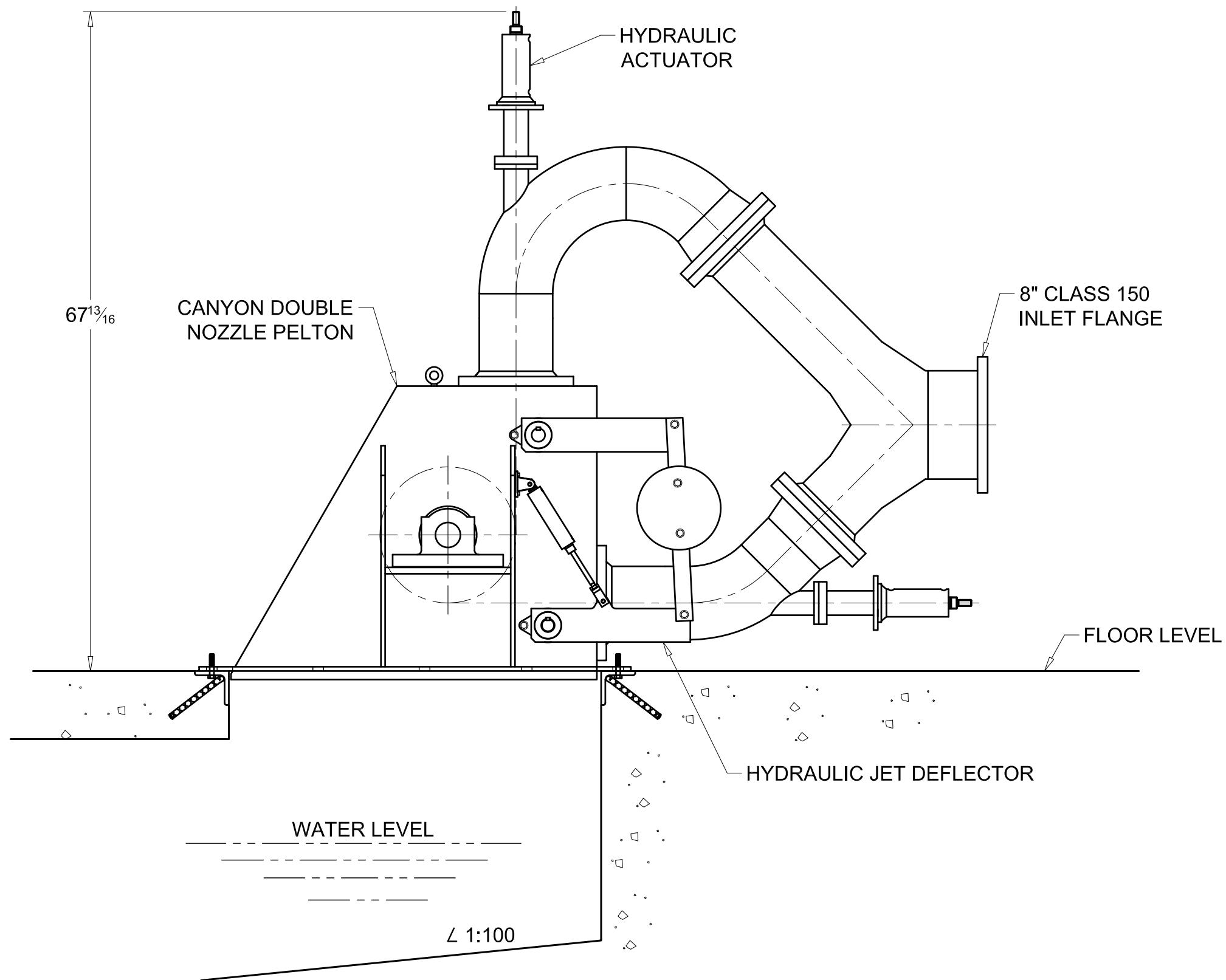
6. Bench Test Multi Function Protective Relay

Net Adder.....\$ 1,875.00

7. Supply 4 Channel or 8 Channel Dialer with Rechargeable Battery.

Net Adder 4 Channel.....	\$ 1,625.00
Net Adder 8 Channel.....	\$ 2,200.00

This quote has not allowed any provisions for taxes or duties required in shipping into or out of the State of California. Any extra charges incurred by BAT ELECTRIC for shipping or taxes will be billed on a cost basis. The prices listed in this quotation are effective for six (6) months from the date of this letter.


The control panel and switchgear will include four (4) sets of as-built drawings and manuals. The manuals will include manufacturers' published instructions, operation sequence, standard maintenance guideline, material list, suggested spare parts list, and terminal block interconnect diagrams.

The switchgear and controls will be completely shop tested before shipment. One site relay calibration and high potential testing is not included in this quotation. Bat Electric has offered as an option to have the multifunction protective relay bench tested. This includes supplying a certified test report by an independent third party.

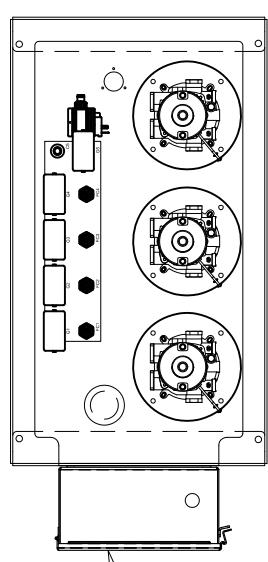
This switchboard panel is not configured to be shop UL Labeled. If panel labeling is required, panel will have to be reconfigured into an MCC (Motor Control Center) line up, price of panel will be affected. The other option is to have panel ETL field inspected, customer should allow between \$3,000.00-\$5,000.00 for third party inspection.

Startup service is available at the rate of \$1,000.00 per day, plus expenses. For a project of this size, you should allow approximately 3-6 days to verify installation, start up the units, parallel to utility and tune auto restart. Will need to allow additional field service days for OIU programmer if changes to OIU screens are required.

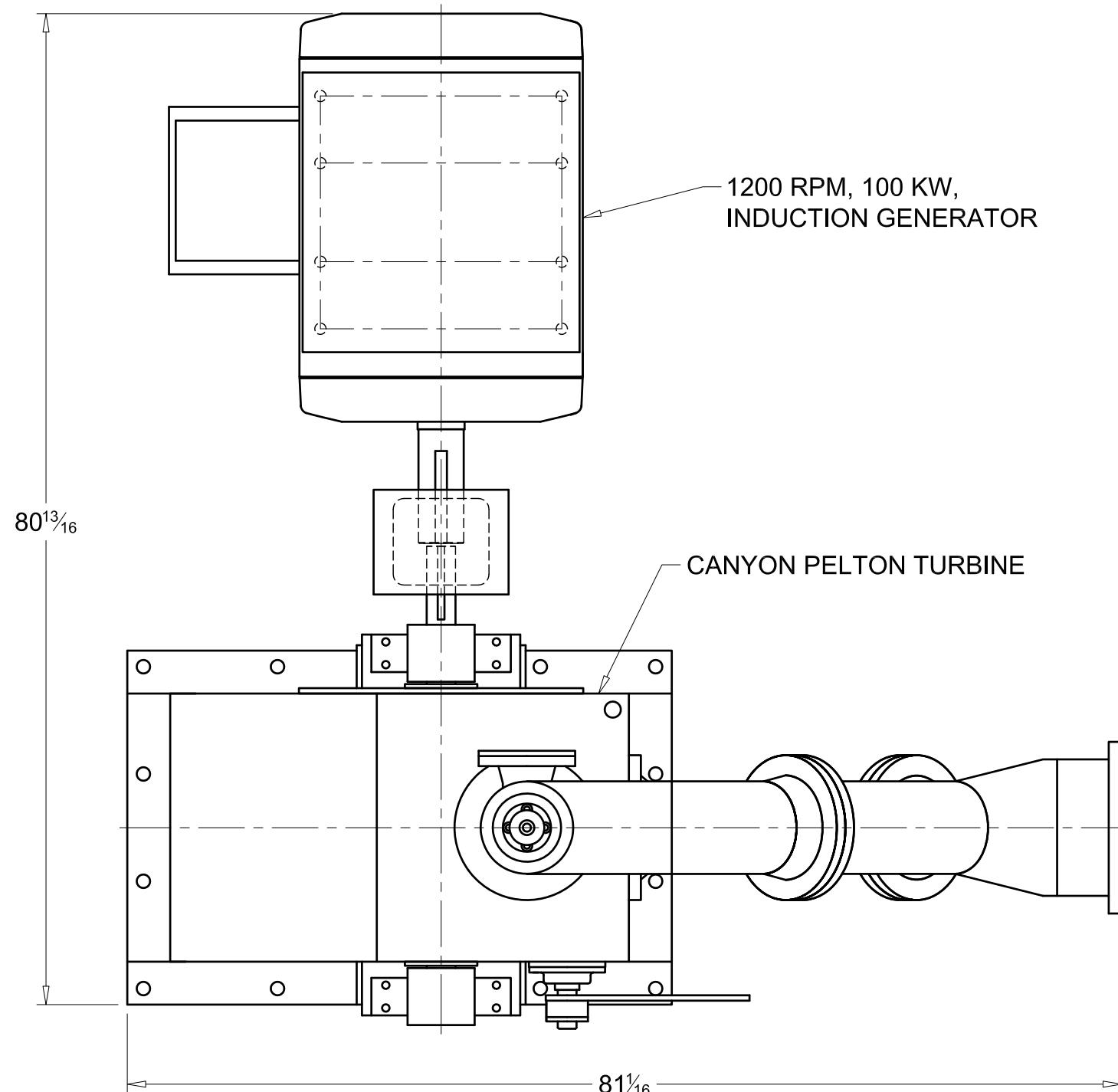
REVISIONS			
REV	DESCRIPTION	DATE	APPROVED

DIMENSIONS IN INCHES ARE APPROXIMATE
NOT INTENDED FOR CONSTRUCTION

PLEASANT GROVE REV1



5500 Blue Heron Lane
Deming, Washington 98244
(360) 592-5552


the water power division of Canyon Industries, Inc

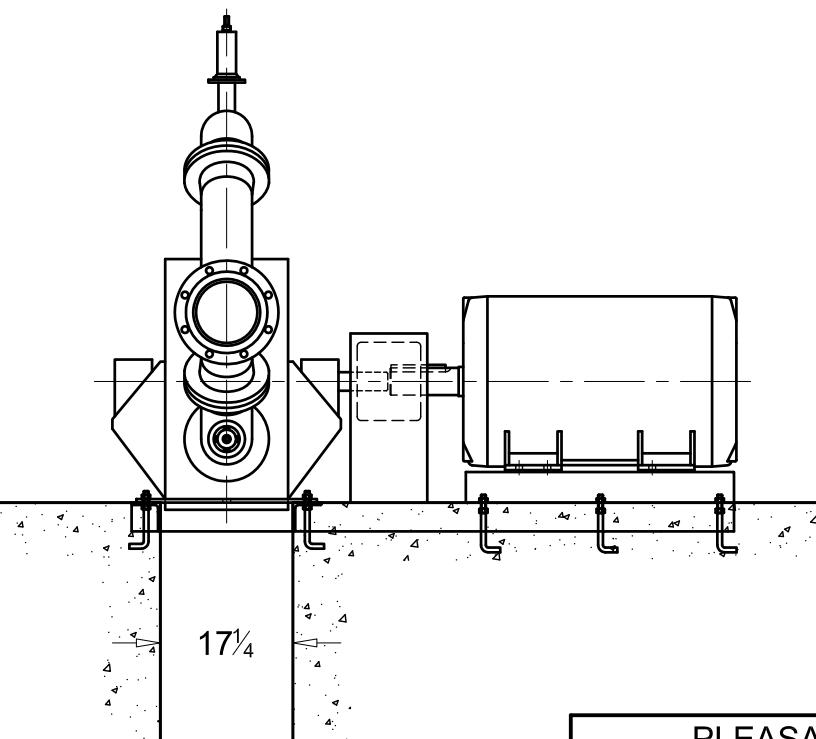
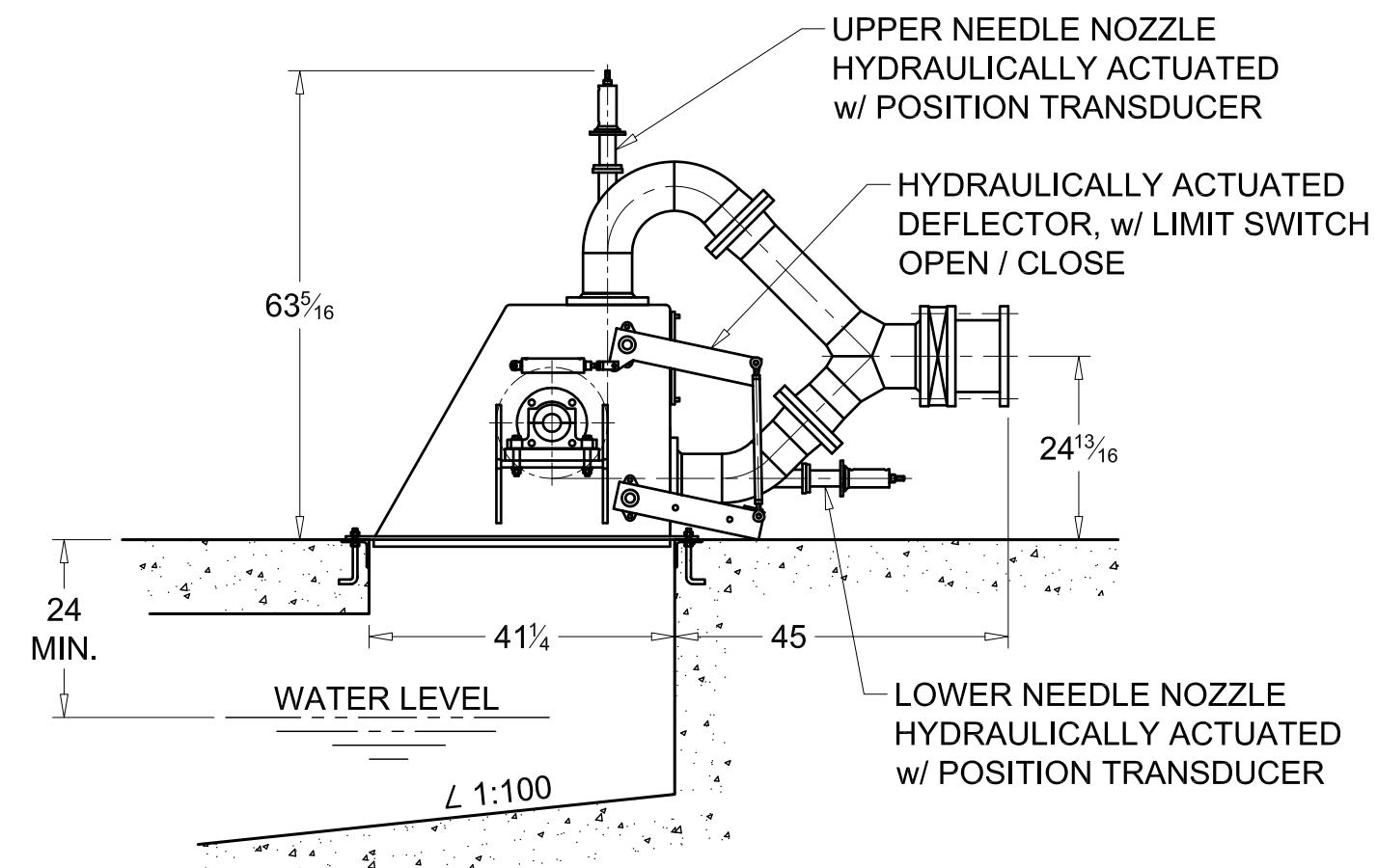
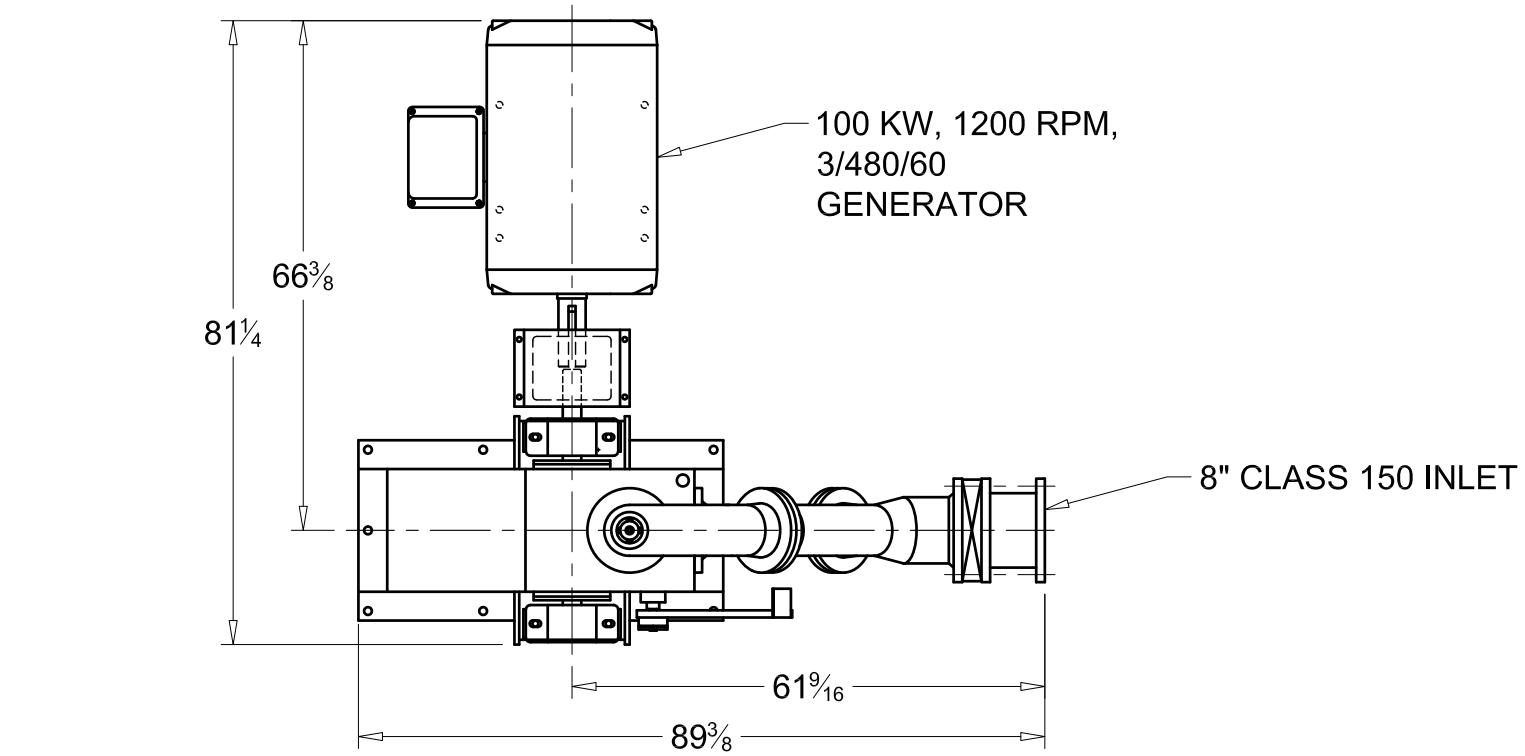
FILE: ELEVATION VIEW DATE: 2014-06-05

REVISIONS			
REV	DESCRIPTION	DATE	APPROVED

HYDRAULIC
POWER UNIT

DIMENSIONS IN INCHES ARE APPROXIMATE
NOT INTENDED FOR CONSTRUCTION

PLEASANT GROVE REV1

5500 Blue Heron Lane
Deming, Washington 98244
(360) 592-5552

the water power division of Canyon Industries, Inc
FILE: PLAN VIEW DATE: 2014-06-05

**City of Pleasant Grove
Battle Creek Microhydro Power Generation Project
Technical Report**

APPENDIX C Canyon Hydro Turbine Generator Drawing

DIMENSIONS IN INCHES ARE APPROXIMATE
NOT INTENDED FOR CONSTRUCTION

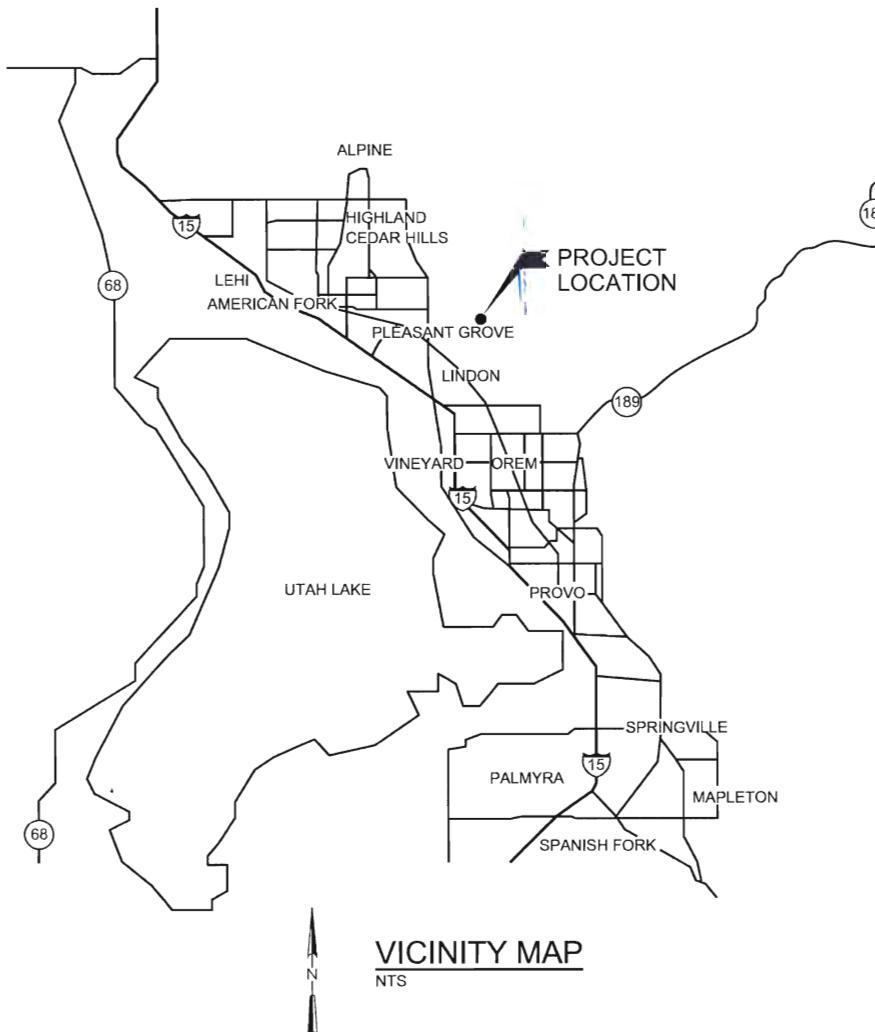
REV	DESCRIPTION	DATE	APPROVED	FILE:	DATE: 2014-04-28
-----	-------------	------	----------	-------	------------------

PLEASANT GROVE REV. 1

5500 Blue Heron Lane
Deming, Washington 98244
(360) 592-5552

the water power division of Canyon Industries, Inc

City of Pleasant Grove
Battle Creek Microhydro Power Generation Project
Technical Report

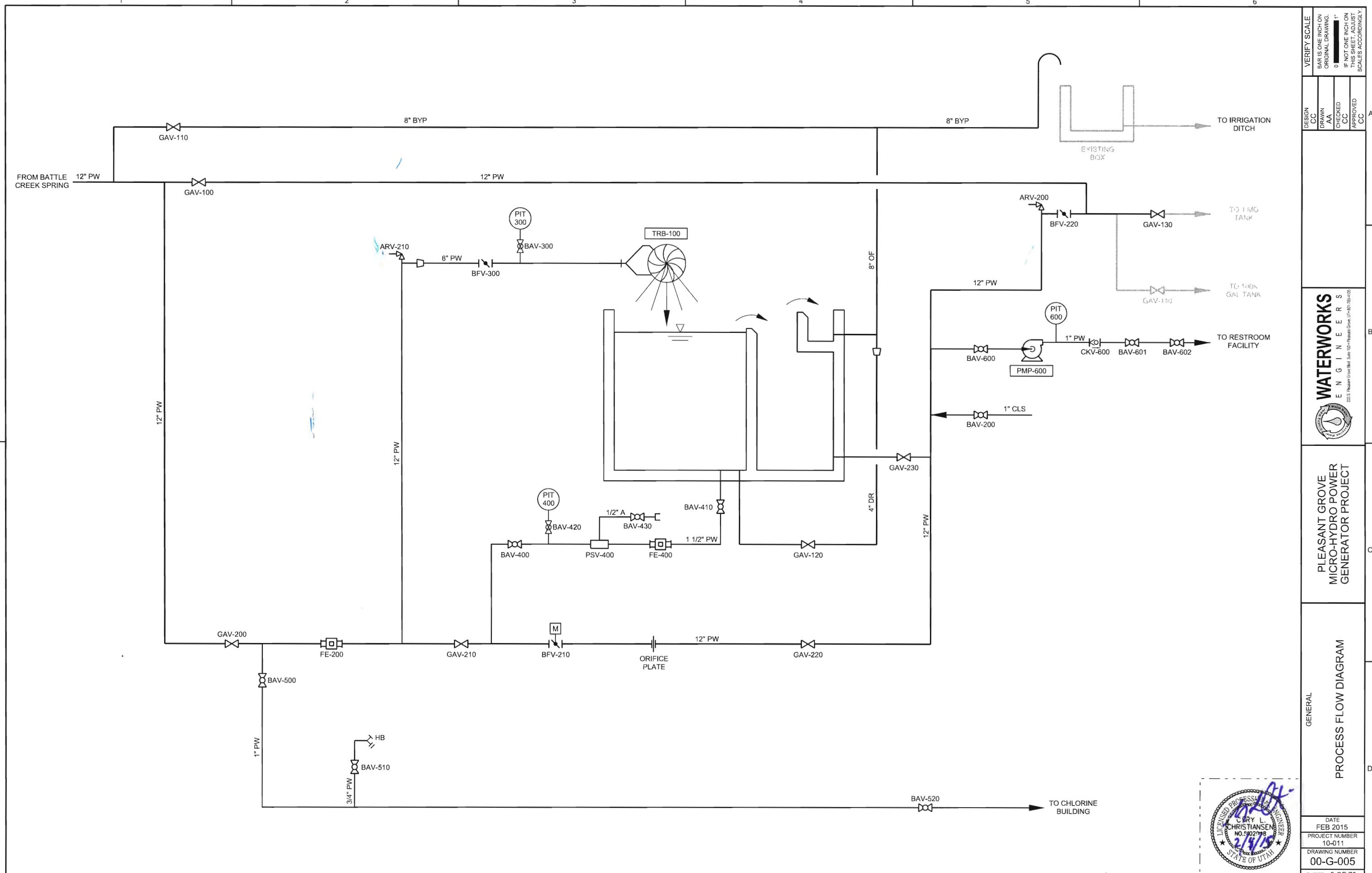


**APPENDIX D Battle Creek Microhydro Power Generation
Bid Drawings**

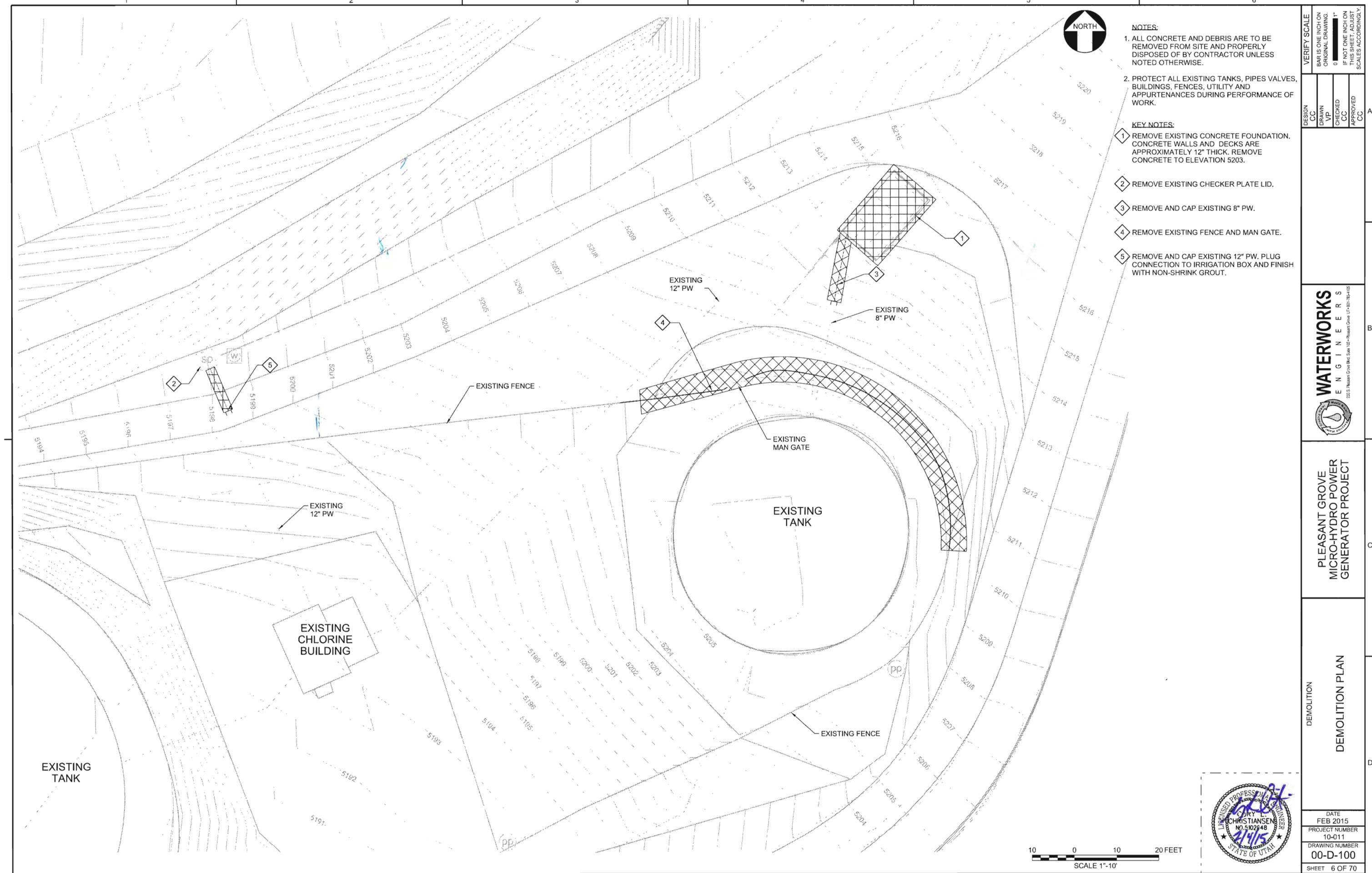
PLEASANT GROVE

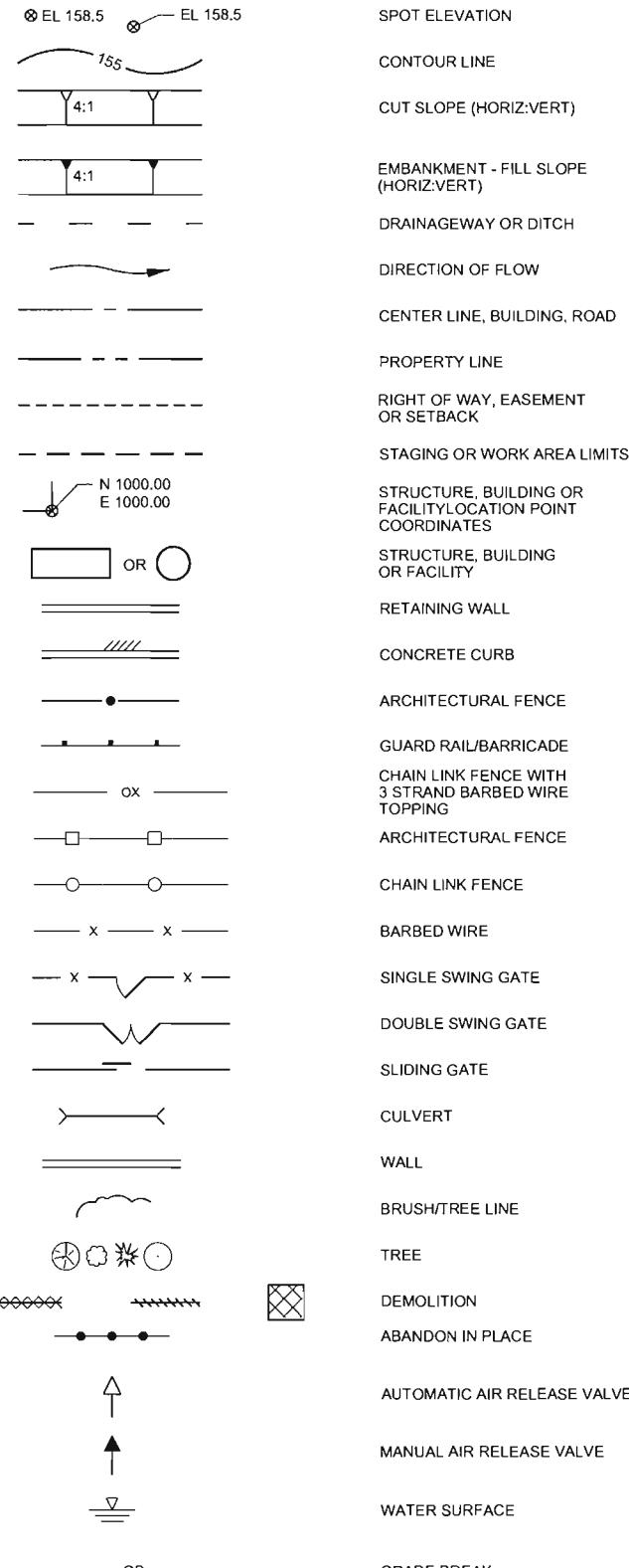
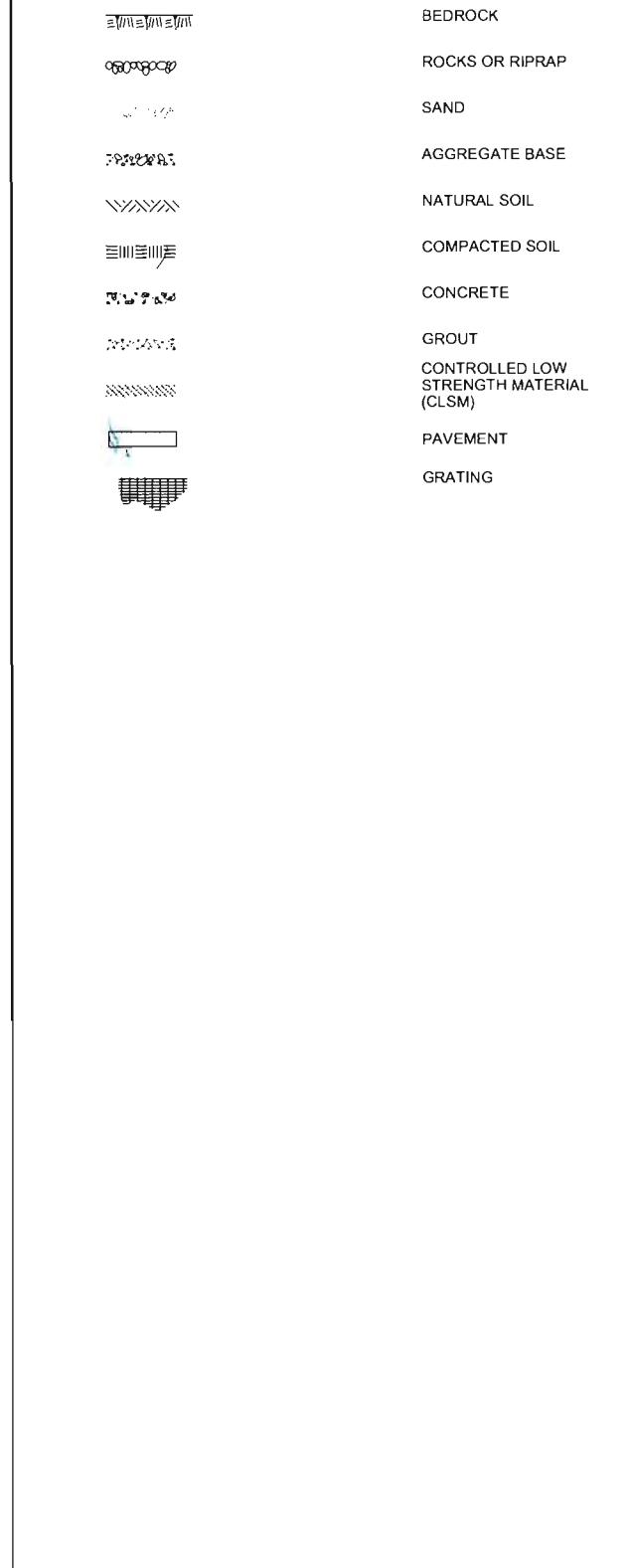
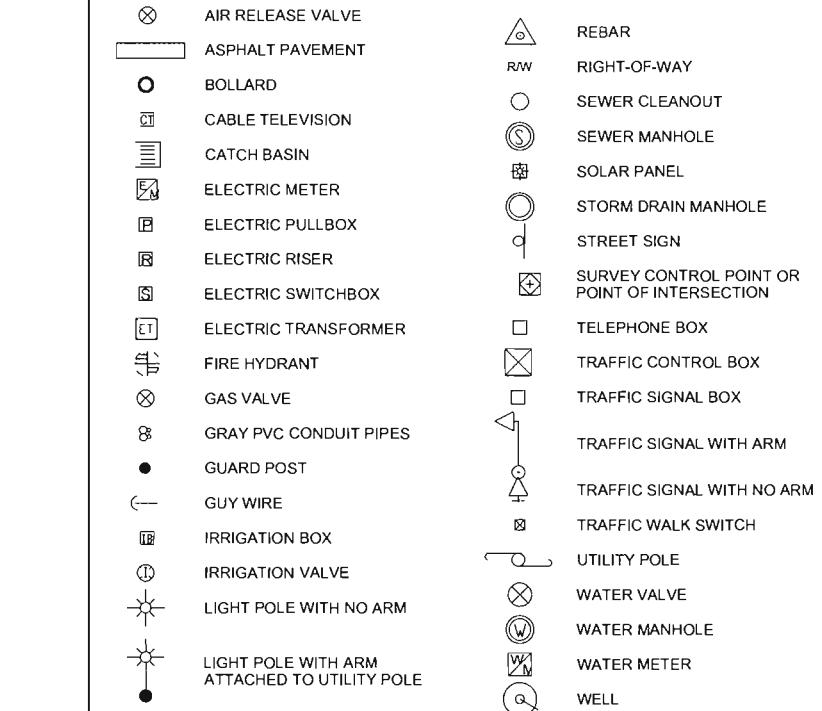
BATTLE CREEK MICRO-HYDRO POWER GENERATION PROJECT

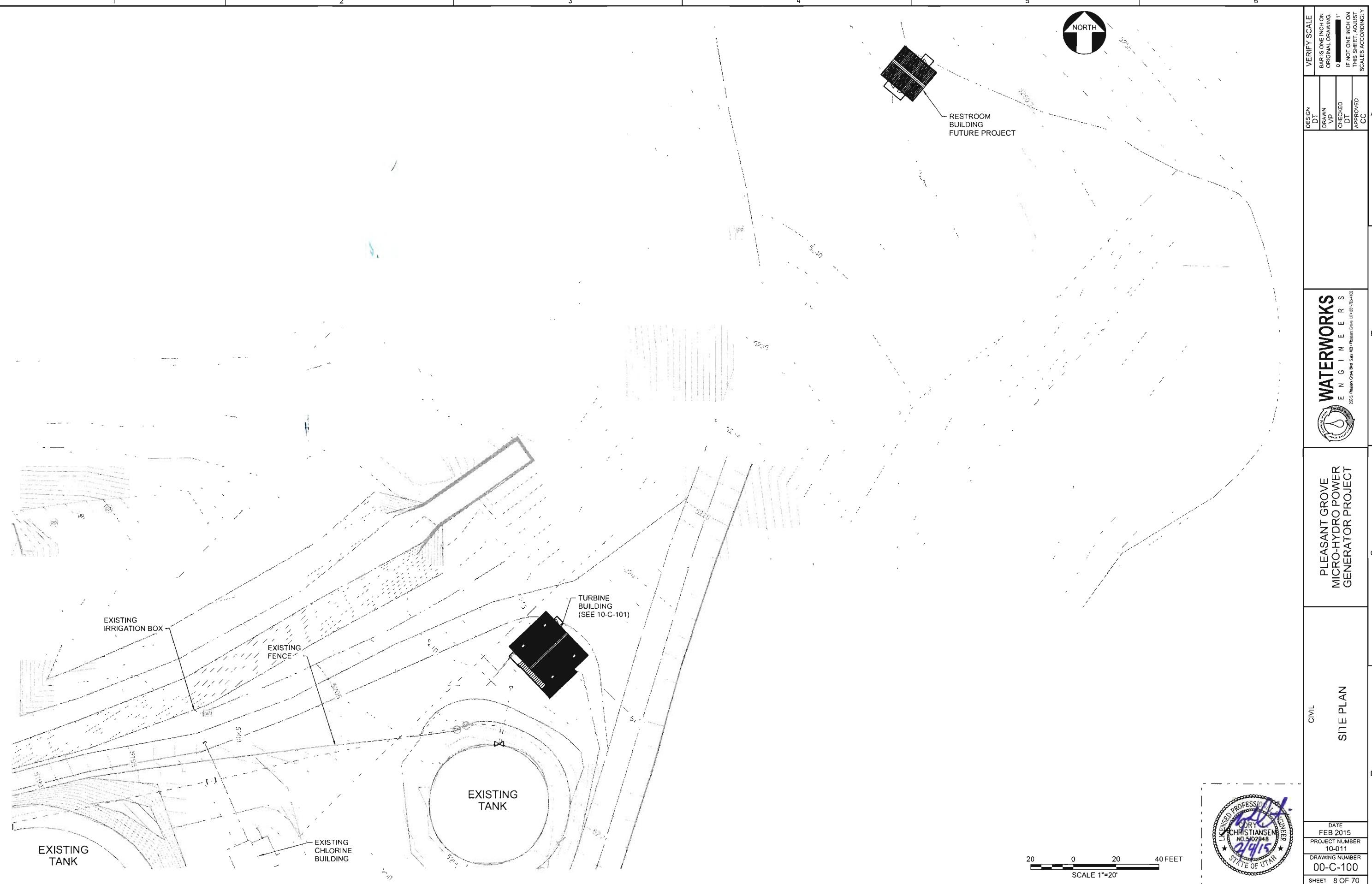
VOLUME 2 - DRAWINGS

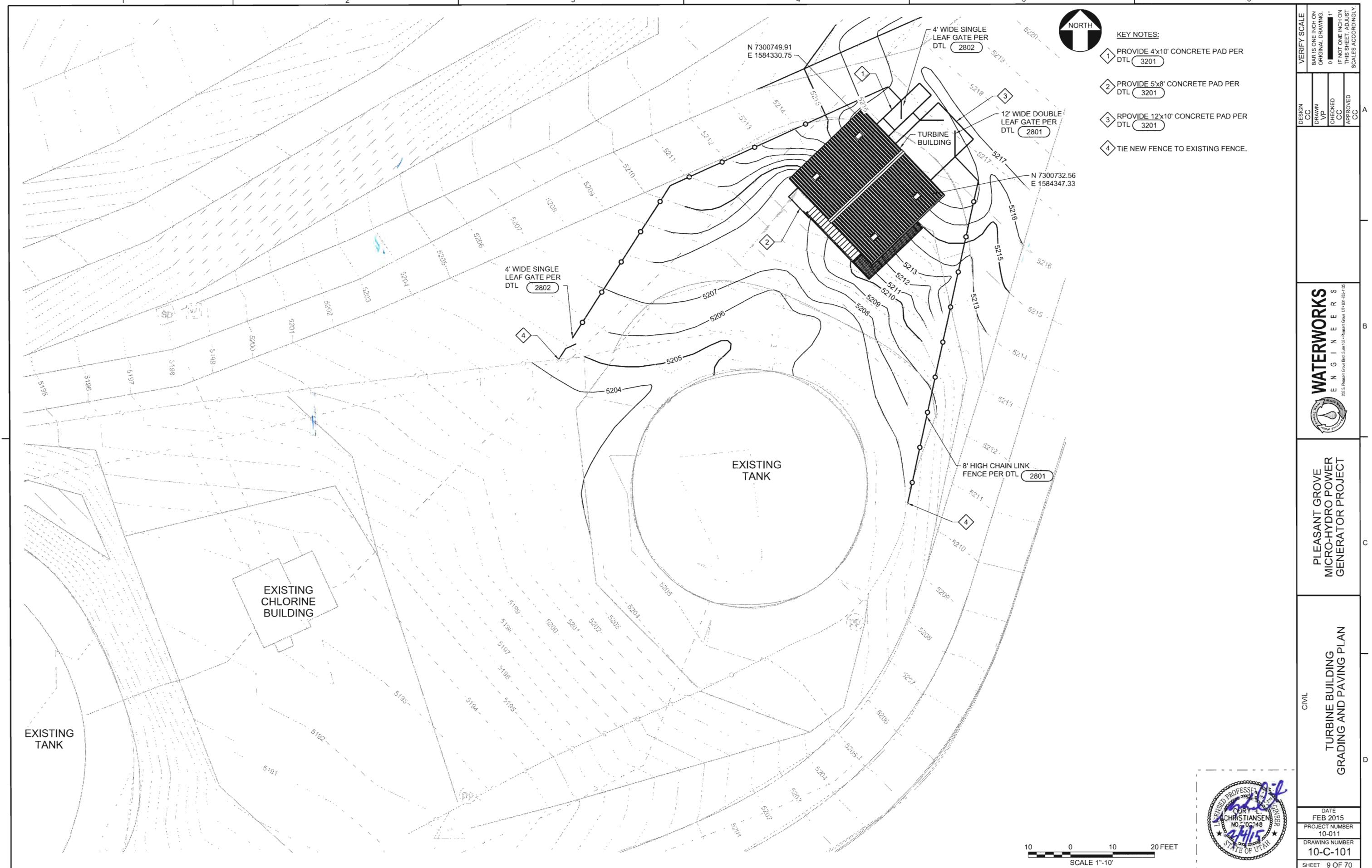
FOR CONSTRUCTION
FEBRUARY 2015


WATERWORKS
E N G I N E E R S

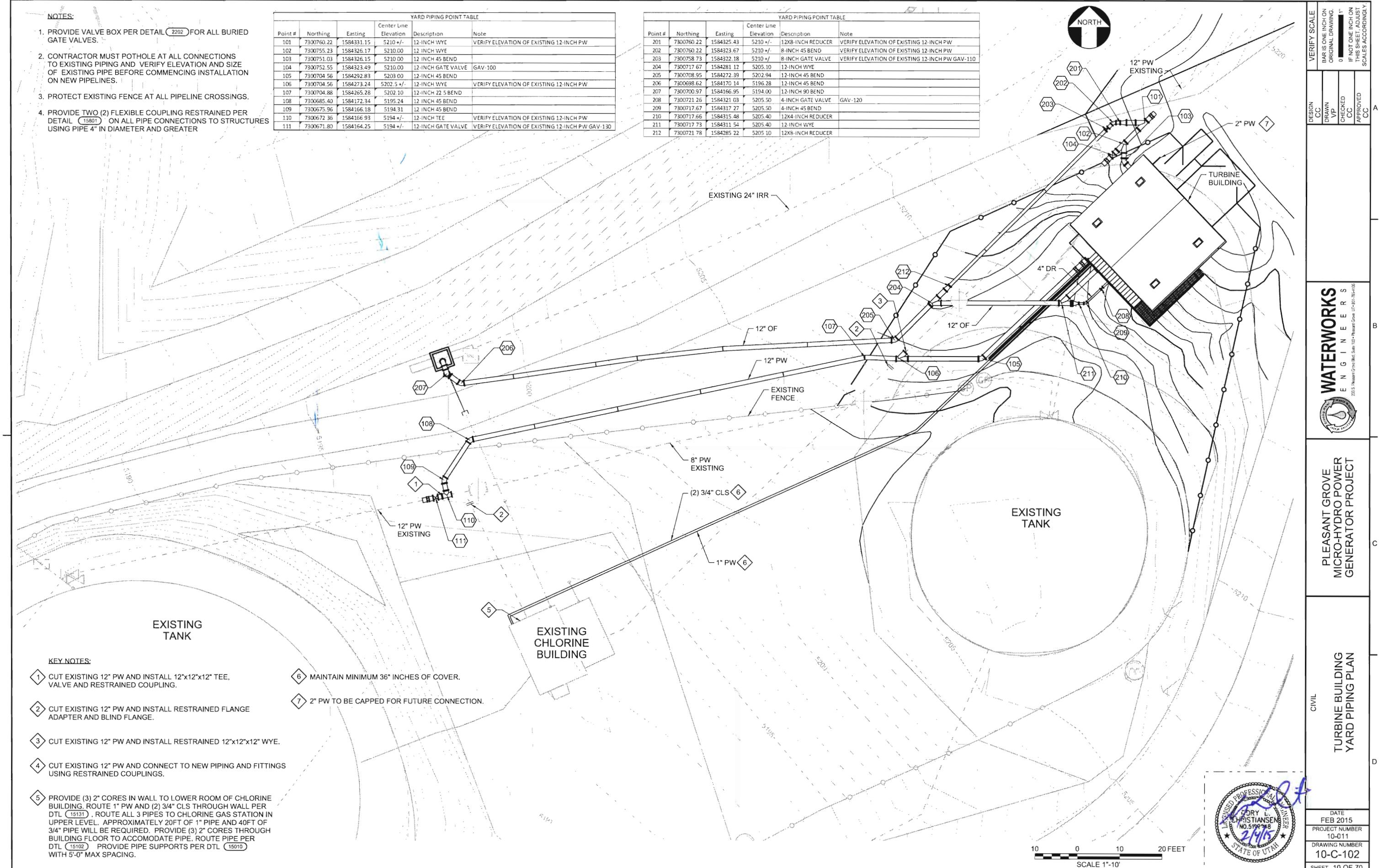



ABBREVIATIONS



1	2	3	4	5	6																																		
CIVIL LEGEND	CIVIL LEGEND (CONTINUED)		MAPPING LEGEND	NOTES:																																			
				<p>1 EXISTING PIPING, EQUIPMENT, AND TOPOGRAPHY IS SHOWN SCREENED AND/OR LIGHT-LINED. NEW PIPING, EQUIPMENT, STRUCTURE, AND FINISHED GRADE IS SHOWN HEAVY-LINED.</p> <p>2. THIS IS A STANDARD LEGEND SHEET. SOME SYMBOLS MAY APPEAR ON THIS SHEET AND NOT BE USED ON THE PLANS.</p>																																			
					<table border="1"> <tr> <td>VERIFY SCALE</td> <td>0</td> <td>1</td> <td>2</td> </tr> <tr> <td>DESIGN DRAWN</td> <td>✓</td> <td>✓</td> <td>✓</td> </tr> <tr> <td>DRAWN VP</td> <td>✓</td> <td>✓</td> <td>✓</td> </tr> <tr> <td>CHECKED CC</td> <td>✓</td> <td>✓</td> <td>✓</td> </tr> <tr> <td>APPROVED CC</td> <td>✓</td> <td>✓</td> <td>✓</td> </tr> </table>	VERIFY SCALE	0	1	2	DESIGN DRAWN	✓	✓	✓	DRAWN VP	✓	✓	✓	CHECKED CC	✓	✓	✓	APPROVED CC	✓	✓	✓														
VERIFY SCALE	0	1	2																																				
DESIGN DRAWN	✓	✓	✓																																				
DRAWN VP	✓	✓	✓																																				
CHECKED CC	✓	✓	✓																																				
APPROVED CC	✓	✓	✓																																				
					<table border="1"> <tr> <td>ENG IN EER S</td> <td>2335 Pleasant Grove Blvd Suite 102 Pleasant Grove, UT 84062</td> </tr> <tr> <td colspan="2"> </td> </tr> </table>	ENG IN EER S	2335 Pleasant Grove Blvd Suite 102 Pleasant Grove, UT 84062																																
ENG IN EER S	2335 Pleasant Grove Blvd Suite 102 Pleasant Grove, UT 84062																																						
			SITE UTILITIES IDENTIFICATION		<table border="1"> <tr> <td>CIVIL</td> <td>LEGEND</td> <td>PLEASANT GROVE MICRO-HYDRO POWER GENERATOR PROJECT</td> </tr> </table>	CIVIL	LEGEND	PLEASANT GROVE MICRO-HYDRO POWER GENERATOR PROJECT																															
CIVIL	LEGEND	PLEASANT GROVE MICRO-HYDRO POWER GENERATOR PROJECT																																					
			<table border="1"> <tr> <td>Aband</td> <td>ABANDON</td> </tr> <tr> <td>TV</td> <td>CABLE TELEVISION - OVERHEAD</td> </tr> <tr> <td>T-BUR</td> <td>CABLE TELEVISION - BURIED</td> </tr> <tr> <td>UGE</td> <td>UGE</td> </tr> <tr> <td>OHW</td> <td>OHW</td> </tr> <tr> <td>F/O</td> <td>FIBER OPTIC</td> </tr> <tr> <td>GAS</td> <td>NATURAL GAS</td> </tr> <tr> <td>GS</td> <td>NATURAL GAS SERVICE</td> </tr> <tr> <td>O</td> <td>PETROLEUM</td> </tr> <tr> <td>SD</td> <td>STORM DRAIN</td> </tr> <tr> <td>SS</td> <td>SANITARY SEWER</td> </tr> <tr> <td>T-OVH</td> <td>TELEPHONE - OVERHEAD</td> </tr> <tr> <td>T-BUR</td> <td>TELEPHONE - BURIED</td> </tr> <tr> <td>W</td> <td>WATER</td> </tr> </table>	Aband	ABANDON	TV	CABLE TELEVISION - OVERHEAD	T-BUR	CABLE TELEVISION - BURIED	UGE	UGE	OHW	OHW	F/O	FIBER OPTIC	GAS	NATURAL GAS	GS	NATURAL GAS SERVICE	O	PETROLEUM	SD	STORM DRAIN	SS	SANITARY SEWER	T-OVH	TELEPHONE - OVERHEAD	T-BUR	TELEPHONE - BURIED	W	WATER		<table border="1"> <tr> <td>DATE FEB 2015</td> <td>PROJECT NUMBER 10-011</td> <td>DRAWING NUMBER 00-C-001</td> </tr> <tr> <td colspan="3">SHEET 7 OF 70</td> </tr> </table>	DATE FEB 2015	PROJECT NUMBER 10-011	DRAWING NUMBER 00-C-001	SHEET 7 OF 70		
Aband	ABANDON																																						
TV	CABLE TELEVISION - OVERHEAD																																						
T-BUR	CABLE TELEVISION - BURIED																																						
UGE	UGE																																						
OHW	OHW																																						
F/O	FIBER OPTIC																																						
GAS	NATURAL GAS																																						
GS	NATURAL GAS SERVICE																																						
O	PETROLEUM																																						
SD	STORM DRAIN																																						
SS	SANITARY SEWER																																						
T-OVH	TELEPHONE - OVERHEAD																																						
T-BUR	TELEPHONE - BURIED																																						
W	WATER																																						
DATE FEB 2015	PROJECT NUMBER 10-011	DRAWING NUMBER 00-C-001																																					
SHEET 7 OF 70																																							
					<table border="1"> <tr> <td>LICENSED PROFESSIONAL ENGINEER CHRISTIANSEN NO.502946 STATE OF UTAH</td> </tr> </table>	LICENSED PROFESSIONAL ENGINEER CHRISTIANSEN NO.502946 STATE OF UTAH																																	
LICENSED PROFESSIONAL ENGINEER CHRISTIANSEN NO.502946 STATE OF UTAH																																							



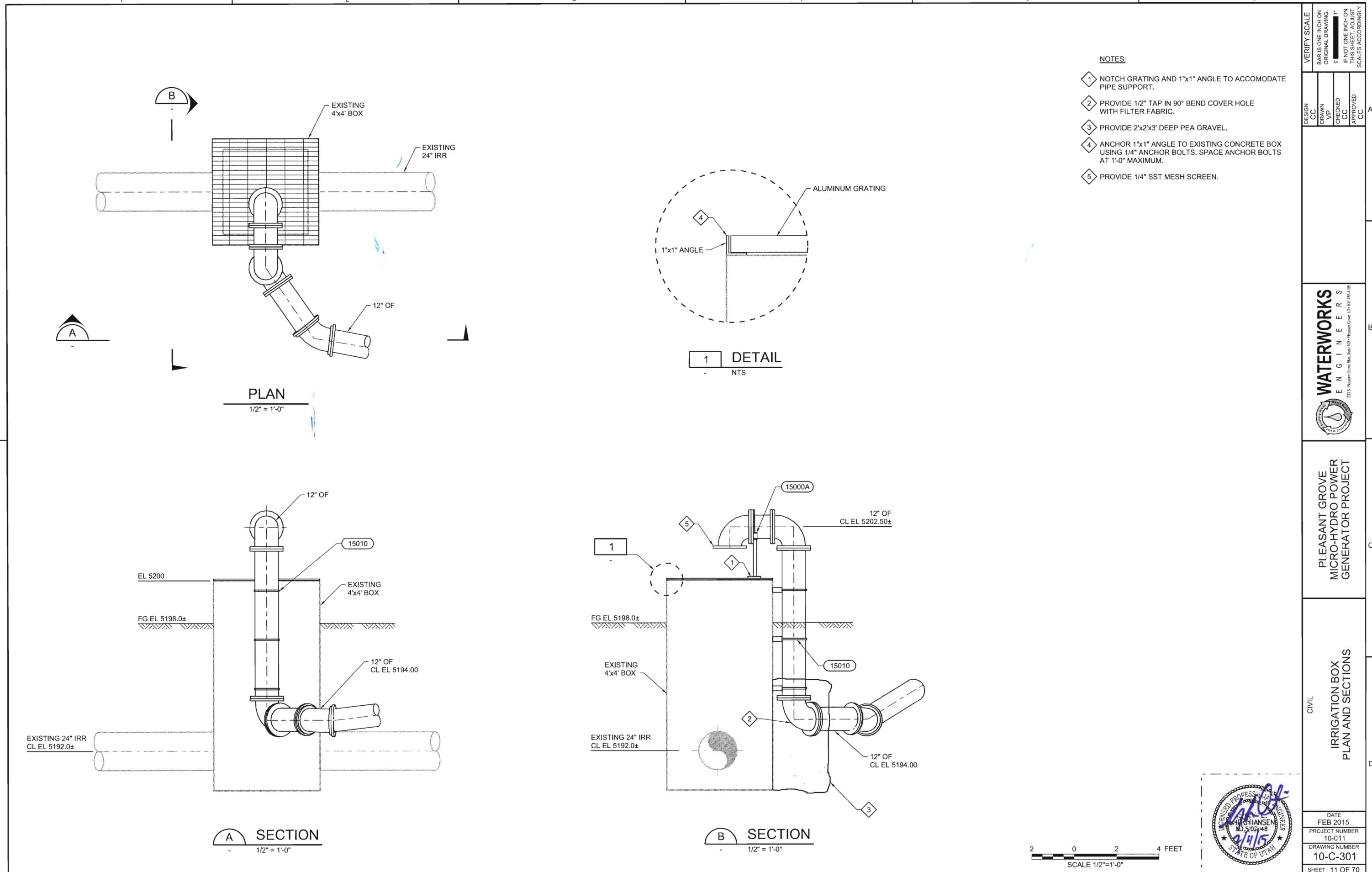
NOTES:

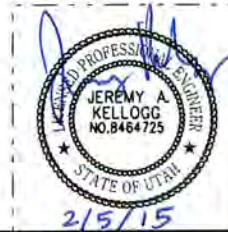
1. PROVIDE VALVE BOX PER DETAIL **2202** FOR ALL BURIED GATE VALVES.
2. CONTRACTOR MUST POTHOLE AT ALL CONNECTIONS TO EXISTING PIPING AND VERIFY ELEVATION AND SIZE OF EXISTING PIPE BEFORE COMMENCING INSTALLATION ON NEW PIPELINES.
3. PROTECT EXISTING FENCE AT ALL PIPELINE CROSSINGS.
4. PROVIDE TWO (2) FLEXIBLE COUPLING RESTRAINED PER DETAIL **15801** ON ALL PIPE CONNECTIONS TO STRUCTURES USING PIPE 4" IN DIAMETER AND GREATER

YARD PIPING POINT TABLE					
Point #	Northing	Easting	Center Line Elevation	Description	Note
101	7300760.22	1584331.15	5210 +/-	12-INCH WYE	VERIFY ELEVATION OF EXISTING 12-INCH PW
102	7300755.23	1584326.17	5210.00	12 INCH WYE	
103	7300751.03	1584326.15	5210.00	12 INCH 45 BEND	
104	7300752.55	1584323.49	5210.00	12-INCH GATE VALVE	GAV-100
105	7300704.56	1584292.83	5203.00	12-INCH 45 BEND	
106	7300704.56	1584273.24	5202.5 +/-	12-INCH WYE	VERIFY ELEVATION OF EXISTING 12-INCH PW
107	7300704.88	1584265.28	5202.10	12-INCH 22.5 BEND	
108	7300685.40	1584172.34	5195.24	12 INCH 45 BEND	
109	7300675.96	1584166.18	5194.31	12 INCH 45 BEND	
110	7300672.36	1584166.93	5194 +/-	12-INCH TEE	VERIFY ELEVATION OF EXISTING 12-INCH PW
111	7300671.80	1584164.25	5194 +/-	12-INCH GATE VALVE	VERIFY ELEVATION OF EXISTING 12-INCH PW GAV-130

YARD PIPING POINT TABLE					
Point #	Nothing	Eastng	Center line Elevation	Description	Note
201	7300760.22	1584325.43	5210 +/-	12X8-INCH REDUCER	VERIFY ELEVATION OF EXISTING 12-INCH PW
202	7300760.22	1584323.67	5210 +/-	8-INCH 45 BEND	VERIFY ELEVATION OF EXISTING 12-INCH PW
203	7300758.73	1584322.18	5210 +/-	8-INCH GATE VALVE	VERIFY ELEVATION OF EXISTING 12-INCH PW GAV-110
204	7300717.67	1584281.17	5205.10	12-INCH WYE	
205	7300708.95	1584272.39	5202.94	12-INCH 45 BEND	
206	7300698.62	1584170.14	5196.28	12-INCH 45 BEND	
207	7300700.97	1584166.95	5194.00	12-INCH 90 BEND	
208	7300721.26	1584321.03	5205.50	4-INCH GATE VALVE	GAV-120
209	7300717.67	1584317.27	5205.50	4-INCH 45 BEND	
210	7300717.66	1584315.48	5205.40	12X4-INCH REDUCER	
211	7300717.73	1584311.54	5205.40	12-INCH WYE	
212	7300721.28	1584285.22	5205.10	12X8-INCH REDUCER	

REUSE OF DOCUMENTS: THIS DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED HEREIN, AS AN INSTRUMENT OF PROFESSIONAL SERVICE, IS THE PROPERTY OF WATER WORKS ENGINEERS, LLC, AND IS NOT TO BE USED, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF WATER WORKS ENGINEERS, LLC.


FILENAME: S:\CAD\Projects\10-011 Pleasant Grove Microhydro\Drawings\Deliverables\10011D-10C102.dgn


LAST DATE: 2/16/2015

WT TIME: 8:39:33 AM

SCALE: 1:20

1	2	3	4	5	6																																						
DESIGN CRITERIA: <ol style="list-style-type: none"> APPLICABLE CODE: 2012 INTERNATIONAL BUILDING CODE (IBC). REFER TO THE SPECIFICATIONS FOR ADDITIONAL AND SPECIFIC STRUCTURAL LOADINGS AND REQUIREMENTS. ROOF LOAD: <ul style="list-style-type: none"> MINIMUM LIVE LOAD 20 psf FLAT ROOF SNOW LOAD, P 30 psf FLOOR LOAD: <ul style="list-style-type: none"> LIGHT MANUFACTURING 125 psf STAIRS AND EXISTS 100 psf WIND LOAD: <ul style="list-style-type: none"> BASIC WIND SPEED (ASCE 7-10) 120 psf EXPOSURE CATEGORY C DESIGN METHOD DIRECTIONAL PROCEDURE SEISMIC LOAD: <table border="0"> <tr> <td>RISK CATEGORY III</td> <td>IMPORTANCE FACTOR I, 1.25</td> </tr> <tr> <td>S: 1.129</td> <td>S: 0.753</td> </tr> <tr> <td>S: 0.422</td> <td>S: 0.388</td> </tr> <tr> <td>SITE CLASS C</td> <td></td> </tr> <tr> <td>SEISMIC DESIGN CATEGORY D</td> <td></td> </tr> </table> LATERAL FORCE RESISTING SYSTEM: <ul style="list-style-type: none"> TURBINE BUILDING <ul style="list-style-type: none"> SPECIAL REINFORCED CONCRETE/MASONRY SHEAR WALLS V = CW C = 0.188 R = 5 ANALYSIS PROCEDURE = EQUIVALENT LATERAL FORCE RESTROOM BUILDING <ul style="list-style-type: none"> SPECIAL REINFORCED MASONRY SHEAR WALLS V = CW C = 0.188 R = 5 ANALYSIS PROCEDURE = EQUIVALENT LATERAL FORCE 		RISK CATEGORY III	IMPORTANCE FACTOR I, 1.25	S: 1.129	S: 0.753	S: 0.422	S: 0.388	SITE CLASS C		SEISMIC DESIGN CATEGORY D		CONCRETE: <ol style="list-style-type: none"> STRUCTURAL CONCRETE SHALL HAVE A MINIMUM OF COMPRESSIVE STRENGTH OF 4,000 PSI AT 28 DAYS AND A SLUMP AS SPECIFIED IN SECTION 03300 - CAST-IN-PLACE CONCRETE. THE CONTRACTOR SHALL SUBMIT THE CONCRETE MIX DESIGNS TO THE ENGINEER FOR REVIEW AND APPROVAL PRIOR TO USE. HORIZONTAL CONSTRUCTION JOINTS SHALL BE PREPARED TO EXPOSE CLEAN, SOLIDLY EMBEDDED AGGREGATE OVER THE ENTIRE JOINT INTERFACE. PLACEMENT OF PIPES, CONDUITS OR OTHER EMBEDDED ITEMS IN THE CONCRETE SHALL BE IN ACCORDANCE WITH THESE DRAWINGS OR SHALL BE APPROVED BY THE ENGINEER. NO ALUMINUM OR ANY OTHER MATERIAL INJURIOUS TO CONCRETE SHALL BE EMBEDDED IN THE CONCRETE. CONCRETE SHALL BE MIXED AND DELIVERED IN ACCORDANCE WITH ASTM C94. THE REQUIREMENTS FOR CONCRETE MIXES, PLACING, TESTING AND CURING ARE CONTAINED IN ACI 318 CHAPTER 5 AND THE PROJECT SPECIFICATIONS. PORTLAND CEMENT SHALL CONFORM TO ASTM C150 TYPE II, AGGREGATE SHALL CONFORM TO ASTM C33. CONTINUOUS WATERSTOP, AS SPECIFIED, SHALL BE INSTALLED IN ALL EXPANSION, CONTRACTION, CONTROL AND CONSTRUCTION JOINTS IN WALLS AND SLABS OF CONTAINMENT STRUCTURES, WATER HOLING BASINS, CHANNELS, AND BELOW GRADE STRUCTURES, EXCEPT WHERE SPECIFICALLY NOTED OTHERWISE. THE CONCRETE JOINTS IN SLABS AND WALLS, AS SHOWN, ARE MINIMUM REQUIREMENTS. CONTRACTOR MAY SUBMIT ALTERNATE CONSTRUCTION JOINT LAYOUT DRAWINGS, SUBJECT TO SPECIFIED REQUIREMENTS, TO THE ENGINEER FOR REVIEW AND APPROVAL PRIOR TO CONSTRUCTION. 		MASONRY CONTINUED: <ol style="list-style-type: none"> HORIZONTAL REINFORCING BARS SHALL BE CONTINUOUS AROUND WALL CORNERS AND THROUGH WALL INTERSECTIONS AND HOOKED AT WALL ENDS AS SHOWN IN THE DETAILS. VERTICAL REINFORCING SHALL BE PLACED AT CORNERS, EACH SIDE OF OPENINGS, END WALLS (INCLUDING EACH SIDE OF CONTROL JOINTS), AT A MAXIMUM SPACING INDICATED IN THE DRAWINGS, AND CONTINUOUS FROM FOUNDATION TO TOP OF WALL. CMU REINFORCING AT WALL INTERSECTIONS AND CORNERS SHALL BE AS INDICATED IN STANDARD DETAIL 4001 - CMU WALL CORNERS, UNLESS INDICATED OTHERWISE. CMU REINFORCING AT ALL WALL ENDS, JAMBS AND DOOR OPENINGS, WINDOW LINTELS, LOUVERS AND PENETRATIONS SHALL BE INDICATED IN STANDARD DETAIL 4004 - CMU OPENINGS GREATER THAN 3'-0" OR STANDARD DETAIL 4003 - CMU OPENINGS LESS THAN 3'-0", UNLESS INDICATED OTHERWISE. 																													
RISK CATEGORY III	IMPORTANCE FACTOR I, 1.25																																										
S: 1.129	S: 0.753																																										
S: 0.422	S: 0.388																																										
SITE CLASS C																																											
SEISMIC DESIGN CATEGORY D																																											
GENERAL INFORMATION: <ol style="list-style-type: none"> ALL CONSTRUCTION SHALL CONFORM TO THE 2012 EDITION OF THE BUILDING CODE. DESIGN DETAILS ARE INTENDED TO BE TYPICAL AND SHALL APPLY TO ALL SIMILAR SITUATIONS OCCURRING THROUGHOUT THE PROJECT, WHETHER OR NOT THEY ARE KEYED IN EACH LOCATION. CONSULT THE ENGINEER FOR REVIEW PRIOR TO CONSTRUCTION. VERIFY ALL OPENING DIMENSIONS IN WALLS, SLABS, AND DECKS WITH THE ARCHITECTURAL, MECHANICAL, HVAC AND ELECTRICAL DRAWINGS. FOR NUMBER, TYPE, SIZE, ARRANGEMENT, AND/OR LOCATION OF EQUIPMENT PADS AND OPENINGS SEE ARCHITECTURAL, MECHANICAL, ELECTRICAL, HVAC AND PLUMBING DRAWINGS. COORDINATE ALL OPENINGS AND EQUIPMENT PADS WITH OTHER DISCIPLINES AND EQUIPMENT SUPPLIERS PRIOR TO PLACING SLABS, WALLS AND FOUNDATIONS. NO STRUCTURAL MEMBER SHALL BE CUT FOR PIPES, DUCTS, ETC UNLESS SPECIFICALLY DETAILED OR APPROVED IN WRITING BY THE ENGINEER. 		CONCRETE REINFORCING: <ol style="list-style-type: none"> PROVIDE LARGER SIZES AND MORE REINFORCING IN ALL SECTIONS OF CONCRETE WHERE REQUIRED BY THE DETAILS ON THE DRAWINGS OR BY THE SPECIFICATIONS. CLEARANCE FOR REINFORCEMENT BARS, UNLESS SHOWN OTHERWISE, SHALL BE: CAST AGAINST EARTH = 3", CONCRETE SURFACES OF CONTAINMENT STRUCTURES = 2", ALL OTHER CONCRETE SURFACES: #5 BAR OR SMALLER = 1 1/2", #6 BAR OR LARGER = 2". REFER TO WALL CORNER AND WALL INTERSECTION REINFORCING DETAIL 3303. WALL CORNER REINFORCING SIZES AND SPACINGS SHALL BE AS SHOWN ON THE DRAWINGS AND REFERENCED TO THIS DETAIL. TYPICAL HORIZONTAL WALL REINFORCING SHALL LAP WITH THE CORNER HORIZONTAL REINFORCING. PROVIDE A MINIMUM OF TWO VERTICAL WALL BARS WITH MATCHING DOWELS AT WALL ENDS, CORNERS AND INTERSECTIONS WITH SIZE TO MATCH TYPICAL VERTICAL REINFORCING STEEL AS SHOWN. VERTICAL WALL BARS SHALL BE LAPPED WITH DOWELS FROM BASE SLABS AND EXTENDED INTO THE TOP FACE OF ROOF SLABS AND LAPPED WITH TOP SLAB REINFORCEMENT. ALL BENDS, UNLESS OTHERWISE SHOWN, SHALL BE 90 DEGREE ACI 318 STANDARD HOOKS. ALL REINFORCING BENDS AND LAPS, UNLESS OTHERWISE NOTED, SHALL SATISFY THE FOLLOWING MINIMUM REQUIREMENTS: 		ROUGH CARPENTRY: <ol style="list-style-type: none"> STRUCTURAL FRAMINGS SHALL BE DOUGLAS FIR (DF) OF THE GRADES INDICATED OR BETTER (WWPA GRADING RULES): BEAMS AND STRINGERS: <table border="0"> <tr> <td>4x</td> <td>NO. 1</td> </tr> <tr> <td>6x</td> <td>NO. 1</td> </tr> <tr> <td>STUDS, SILL & PLATES: 2x4</td> <td>STUD</td> </tr> <tr> <td>2x6 AND LARGER</td> <td>NO. 1</td> </tr> <tr> <td>MISC. FRAMING LUMBER NOT NOTED</td> <td>NO. 2</td> </tr> </table> SILLS BE APPROVED PRESSURE TREATED DF. EACH PIECE SHALL BEAR THE AWPA STAMP. CUTS AND BORED HOLES OF TREATED DF SHALL BE TREATED WITH COPPER GREEN. FASTENERS FOR PRESERVATIVE-TREATED WOOD SHALL BE OF HOT DIPPED ZINC-COATED GALVANIZED STEEL, STAINLESS STEEL, SILICON BRONZE OR COPPER. THE COATING WEIGHTS FOR ZINC-COATED FASTENERS SHALL BE IN ACCORDANCE WITH ASTM A153. HARDWARE SHALL BE COATED PER SIMPSON STRONG TIE 'CORROSION INFORMATION'. WOOD SILLS FOR BEARING SHEATHED WALLS OR TRUSS SUPPORT BEARING ON MASONRY OR CONCRETE SHALL BE BOLTED WITH 5/8" x 1'-0" BOLTS WITH 8" EMBEDMENT AT 4'-0" MAXIMUM SPACING, UNLESS OTHERWISE SHOWN, AND WITHIN 9" MAX, 5" MIN, OF END OF EACH PIECE. USE 5/8" x 1'-6" BOLTS @ 6" CURBS. WOOD STRUCTURAL MEMBERS SHALL NOT BE DRILLED OR NOTCHED EXCEPT AS SHOWN OR AS APPROVED BY THE ENGINEER. FRAMING HARDWARE NOTED IS SIMPSON STRONG-TIE AND SHALL BE INSTALLED WITH CONNECTORS SPECIFIED FOR EACH SPECIFIC DEVICE BY THE MANUFACTURER'S CURRENT CATALOG. EQUIVALENT DEVICES APPROVED BY THE ENGINEER MAY BE SUBSTITUTED. SINKERS SHALL NOT BE USED. BOLT HOLES IN WOOD AND/OR STEEL SHALL BE 1/16" LARGER THAN BOLTS. STANDARD CUT WASHERS SHALL BE PROVIDED UNDER THE HEADS AND NUTS OF ALL BOLTS BEARING ON WOOD. 3"x3"x1/4" PLATE WASHERS SHALL BE USED UNDER ALL ANCHOR BOLTS. ALL NUTS SHALL BE TIGHTENED WHEN PLACED AND RETIGHTENED PRIOR TO APPLICATION OF FINISH OR AT COMPLETION OF JOB. 		4x	NO. 1	6x	NO. 1	STUDS, SILL & PLATES: 2x4	STUD	2x6 AND LARGER	NO. 1	MISC. FRAMING LUMBER NOT NOTED	NO. 2																												
4x	NO. 1																																										
6x	NO. 1																																										
STUDS, SILL & PLATES: 2x4	STUD																																										
2x6 AND LARGER	NO. 1																																										
MISC. FRAMING LUMBER NOT NOTED	NO. 2																																										
FOUNDATIONS: <ol style="list-style-type: none"> IN ACCORDANCE WITH THE BATTLE CREEK IRRIGATION WATER TANK GEOTECHNICAL INVESTIGATION REPORT BY EARTHTEC TESTING AND ENGINEERING, FOUNDATIONS HAVE BEEN DESIGNED FOR THE FOLLOWING VALUES: <table border="0"> <tr> <td>ALLOWABLE BEARING, DEAD + LIVE LOADS</td> <td>1,500 psf</td> </tr> <tr> <td>LATERAL EARTH PRESSURES (DRAINED)</td> <td></td> </tr> <tr> <td> AT-REST</td> <td>92 pcf</td> </tr> <tr> <td> SEISMIC</td> <td>116 pcf</td> </tr> <tr> <td>SLIDING FRICTION COEFFICIENT</td> <td>0.25</td> </tr> </table> NO BACKFILL SHALL BE PLACED BEHIND CANTILEVERED, FREE TOP WALLS UNTIL THE CONCRETE HAS ATTAINED 100% OF ITS SPECIFIED COMPRESSIVE STRENGTH. NO BACKFILL SHALL BE PLACED BEHIND WALLS THAT ARE CONNECTED TO ELEVATED FLOOR OR ROOF SLABS OR DECKS UNTIL THE FLOOR OR ROOF SLAB HAS ATTAINED 100% OF ITS SPECIFIED COMPRESSIVE STRENGTH AND ALL ROOF AND FLOOR DECKING IS IN PLACE AND WELDED, SCREWED, OR NAILED AS APPROPRIATE. GRADE TO DRAIN AWAY FROM STRUCTURES A MINIMUM GRADE OF 5% FOR A MINIMUM OF 10'-0" FROM STRUCTURE PERIMETER. THE CONTRACTOR SHALL PROVIDE THE ENGINEER AT LEAST 48 HOURS NOTICE FOLLOWING EXCAVATION FOR FOUNDATIONS AND PRIOR TO THE PLACEMENT OF FORMWORK, REINFORCING STEEL AND CONCRETE. 		ALLOWABLE BEARING, DEAD + LIVE LOADS	1,500 psf	LATERAL EARTH PRESSURES (DRAINED)		AT-REST	92 pcf	SEISMIC	116 pcf	SLIDING FRICTION COEFFICIENT	0.25	CONCRETE DESIGN STRENGTH = 4,000 PSI GRADE 60 REINF STEEL <table border="1"> <thead> <tr> <th>BAR SIZE</th> <th>#3</th> <th>#4</th> <th>#5</th> <th>#6</th> <th>#7</th> <th>#8</th> </tr> </thead> <tbody> <tr> <td>LAP SPLICING LENGTH</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td> TOP BAR *</td> <td>1'-4"</td> <td>2'-0"</td> <td>3'-0"</td> <td>4'-0"</td> <td>5'-10"</td> <td>6'-8"</td> </tr> <tr> <td> OTHER BAR</td> <td>1'-4"</td> <td>1'-7"</td> <td>2'-4"</td> <td>3'-1"</td> <td>4'-6"</td> <td>5'-2"</td> </tr> </tbody> </table> <p>* TOP BARS SHALL BE DEFINED AS ANY HORIZONTAL BARS PLACED SUCH THAT MORE THAN 12" OF CONCRETE IS CAST IN THE MEMBER BELOW THE BAR IN ANY SINGLE POUR. HORIZONTAL WALL BARS ARE CONSIDERED TOP BARS.</p> <p># WHERE 3,000 PSI CONCRETE IS USED, INCREASE ABOVE LENGTHS BY 16%.</p>		BAR SIZE	#3	#4	#5	#6	#7	#8	LAP SPLICING LENGTH							TOP BAR *	1'-4"	2'-0"	3'-0"	4'-0"	5'-10"	6'-8"	OTHER BAR	1'-4"	1'-7"	2'-4"	3'-1"	4'-6"	5'-2"	MASONRY: <ol style="list-style-type: none"> SOLID GROUT ALL CELLS UNLESS INDICATED OTHERWISE. MORTAR SHALL CONFORM TO ASTM C270, TYPE S, HYDRATED AND SHALL HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 1,900 PSI. GROUT SHALL CONFORM TO ASTM C476 AND SHALL HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 2,000 PSI CONTAINING NO MASONRY CEMENT. CONCRETE BLOCK UNITS SHALL BE MEDIUM WEIGHT AND CONFORM TO ASTM C90 GRADE N-1 AND SHALL HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 1,900 PSI. LINEAR SHRINKAGE SHALL NOT EXCEED 0.065 PERCENT. PLACE COURSES IN RUNNING BONG PATTERN, UNLESS SPECIFICALLY INDICATED OTHERWISE. REINFORCING STEEL FOR MASONRY SHALL CONFORM TO ASTM A615, GRADE 60 FOR DEFORMED BARS. LAP VERTICAL REINFORCING 48 BAR DIAMETERS WITH DOWELS AT BUILDING WALLS. LAP ALL OTHER VERTICAL BARS 72 BAR DIAMETERS. LAP VERTICAL BARS IN CANTILEVER WALLS 72 BAR DIAMETERS. STAGGER ADJACENT LAP SPLICES BY 24 INCHES, WHEN SEPARATED BY 3 INCHES OR LESS. REFERENCE STANDARD DETAIL 4002 - REINFORCED CMU WALL. 	
ALLOWABLE BEARING, DEAD + LIVE LOADS	1,500 psf																																										
LATERAL EARTH PRESSURES (DRAINED)																																											
AT-REST	92 pcf																																										
SEISMIC	116 pcf																																										
SLIDING FRICTION COEFFICIENT	0.25																																										
BAR SIZE	#3	#4	#5	#6	#7	#8																																					
LAP SPLICING LENGTH																																											
TOP BAR *	1'-4"	2'-0"	3'-0"	4'-0"	5'-10"	6'-8"																																					
OTHER BAR	1'-4"	1'-7"	2'-4"	3'-1"	4'-6"	5'-2"																																					
FORMWORK, SHORING AND BRACING: <ol style="list-style-type: none"> THE STRUCTURES SHOWN ON THE DRAWINGS HAVE BEEN DESIGNED FOR STABILITY UNDER FINAL CONDITIONS ONLY. THE DESIGN SHOWN DOES NOT INCLUDE THE NECESSARY COMPONENTS OR EQUIPMENT FOR THE STABILITY OF THE STRUCTURE DURING CONSTRUCTION. THE CONTRACTOR IS RESPONSIBLE FOR ALL WORK RELATING TO CONSTRUCTION ERECTION METHODS, BRACING, SHORING, RIGGING, GUYS, SCAFFOLDING, FORMWORK, AND OTHER WORK AIDS REQUIRED TO SAFELY PERFORM THE WORK SHOWN. CONSTRUCTION OF SHORING AND BRACING OF FORMWORK SHALL BE IN ACCORDANCE WITH ACI 347 "GUIDE TO FORMWORK FOR CONCRETE". 		WATERWORKS 		GENERAL NOTES ARCHITECTURAL / STRUCTURAL GENERAL NOTES D																																							
<div style="text-align: right;"> <p>PROFESSIONAL ENGINEER JEREMY A. KELLOGG NO. 8464725 STATE OF UTAH 2/5/15 00-AS-001</p> <p>DATE: FEB 2015 PROJECT NUMBER: 10-011 DRAWING NUMBER: 00-AS-001 SHEET 16 OF 70</p> </div>																																											

WOOD NAILING:

1. NAILS SHALL BE "COMMON" WIRE NAILS, UNLESS OTHERWISE SPECIFIED. NAILS SHALL BE PREDRILLED, IF REQUIRED, TO AVOID SPLITTING THE MEMBER. NAILS SHALL BE THE FOLLOWING SIZES:
 - 10d COMMON = 0.148"φ x 3"
 - 16d COMMON = 0.162"φ x 3 1/2"
2. THE EDGE DISTANCE FOR NAILING IN MEMBERS WHERE PLYWOOD PANELS ARE TO ABUT SHALL BE 3/4" FOR 3x OR WIDER AND 3/8" FOR 2x NOMINAL MEMBERS.
3. FASTENERS FOR PRESERVATIVE-TREATED AND FIRE RETARDANT-TREATED WOOD SHALL BE OF HOT DIPPED ZINC-COATING. FASTENERS SHALL BE IN ACCORDANCE WITH ASTM A153.
4. NAILS IN STRUCTURAL WOOD PANELS SHALL BE DRIVEN SO THAT THEIR HEADS ARE FLUSH WITH THE PANEL SURFACE.
5. USE OF MACHINE NAILING IS SUBJECT TO A SATISFACTORY JOB SITE DEMONSTRATION AND ENGINEER'S APPROVAL. APPROVAL IS SUBJECT TO SATISFACTORY PERFORMANCE. IF NAIL HEADS PENETRATE THE FACE PLY MORE THAN WOULD BE NORMAL FOR A HAND HAMMER, OR IF MINIMUM ALLOWABLE EDGE DISTANCES ARE NOT MAINTAINED, THE PERFORMANCE WILL BE DEEMED UNSATISFACTORY.
6. SHEATHING PANELS SHALL BUTT AT CENTERLINE OF A SINGLE SUPPORTING MEMBER WITH EDGE NAILING FROM EACH PANEL INTO THAT MEMBER.
7. PIECES OF WALL, ROOF OR FLOOR SHEATHING SHALL BE NO LESS THAN 12" IN LEAST DIMENSION. PIECES LESS THAN 24" SHALL HAVE 3x4 FLAT MIN BLKG @ UNSUPPORTED PANEL EDGES.
8. UNLESS NOTED ON DRAWINGS, FASTENING SHALL BE AS SPECIFIED BELOW:

BLOCKING BETWEEN JOIST OR TRUSSES:	
TO JOIST OR TRUSS EACH END	2 - 16d EN OR 4 - 10d TN
BRIDGING TO JOIST OR TRUSS, TO NAIL END EACH	2 - 8d
SILL PLATE TO TRUSS OR BLOCKING, FACE NAIL	16d @ 16" O.C.
DOUBLED STUDS OR JOISTS, FACE NAIL	16d @ 12" O.C.

ALUMINUM:

1. ALUMINUM CONSTRUCTION SHALL CONFORM TO THE LATEST EDITION OF THE ALUMINUM CONSTRUCTION MANUAL OF THE ALUMINUM ASSOCIATION.
2. UNLESS OTHERWISE INDICATED, STRUCTURAL ALUMINUM MEMBERS SHALL BE ALLOY 6061-T6.
3. WHERE ALUMINUM IS IN CONTACT WITH CONCRETE OR MASONRY SURFACES, CONTACT SURFACES SHALL BE COATED WITH HEAVY ALKALI-RESISTANT BITUMINOUS PAINT.
4. GRATING AND CHECKERED PLATE SHALL BE ALUMINUM, UNLESS NOTED OTHERWISE. PROVIDE FULLY BANDED ALUMINUM GRATING WITH NON-SKID SURFACE OVER AREAS INDICATED ON THE DRAWINGS. MATERIAL SHALL BE 6061-T6 OR 6063-T6 PROVIDED WITH AN ANODIZED FINISH AND MEET THE STRENGTH AND DEFLECTION REQUIREMENTS.
5. THE ALUMINUM FABRICATOR/CONTRACTOR SHALL FURNISH SHOP DRAWINGS OF ALL ALUMINUM MEMBERS AND GRATING FOR ENGINEERS REVIEW AND APPROVAL PRIOR TO FABRICATION.

ADHESIVE ANCHORS:

1. THE ADHESIVE ANCHOR SYSTEM USED FOR POST-INSTALLED ANCHORAGE TO CONCRETE SHALL CONFORM TO THE REQUIREMENTS OF THE MOST RECENTLY PUBLISHED ACI 355.4, ACCEPTANCE CRITERIA FOR QUALIFICATION OF POST-INSTALLED ADHESIVE ANCHORS IN CONCRETE AND COMMENTARY. THE ANCHOR SYSTEM SHALL BE ONE OF THE FOLLOWING:
 - HILTI HIT-HY 200.
 - SIMPSON SET-XP.
2. ADHESIVE ANCHORS SHALL BE SUPPLIED AS AN ENTIRE SYSTEM INCLUDING, BUT NOT LIMITED TO, THE NEW ADHESIVE CARTRIDGE, A CLEAN MIXING NOZZLE, EXTENSION TUBE, A DISPENSING GUN, AND ALL MANUFACTURER RECOMMENDED SUPPLIES FOR PROPERLY CLEANING THE DRILLED HOLE.
3. ALL-THREAD ROD TO BE USED IN ADHESIVE ANCHOR ASSEMBLIES SHALL CONFORM TO ASTM A36, A193 (GR B7), A307, OR F1554. STAINLESS STEEL ANCHOR RODS SHALL BE TYPE 316. NUTS, WASHERS, AND OTHER HARDWARE USED WITH AN ALL-THREAD SHALL HAVE A MATERIAL OR ALLOY DESIGNATION THAT MATCHES THE ALL-THREAD MATERIAL / ALLOY.
4. REINFORCING BARS SHALL BE ASTM A615 OR A706.
5. CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 2,500 PSI AT THE TIME OF ADHESIVE ANCHOR INSTALLATION. CONCRETE SHALL HAVE A MINIMUM AGE OF 21 DAYS AT THE TIME OF ADHESIVE ANCHOR INSTALLATION.
6. CONCRETE TEMPERATURE AT THE TIME OF ADHESIVE ANCHOR INSTALLATION SHALL BE AT LEAST 50°F.
7. EMBEDMENT DEPTH AND ANCHOR PROJECTION FROM THE CONCRETE SURFACE SHALL BE AS SHOWN ON THE DRAWINGS FOR THE PARTICULAR ANCHOR OR GROUP OF ANCHORS BEING INSTALLED. ABSENT ANY INFORMATION, THE MINIMUM EMBEDMENT DEPTH SHALL BE 12d WHERE "d" IS THE ANCHOR DIAMETER.
8. ADHESIVE ANCHORS SHALL BE INSTALLED BY QUALIFIED PERSONNEL TRAINED TO INSTALL ADHESIVE ANCHORS IN ACCORDANCE WITH THE SPECIFICATIONS. POST-INSTALLED ADHESIVE ANCHORS SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS.
9. INSTALLATION OF ADHESIVE ANCHORS HORIZONTALLY OR UPWARDLY INCLINED TO SUPPORT SUSTAINED TENSION LOADS SHALL BE PERFORMED BY PERSONNEL CERTIFIED BY ACI/CRSI ADHESIVE ANCHOR INSTALLER CERTIFICATION PROGRAM. THESE ANCHORS ARE DESIGNATED WITH A (CERT) AFTER THE ANCHOR CALL-OUT.
10. THE INSTALLER'S QUALIFICATIONS SHALL BE SUBMITTED AND APPROVED IN ACCORDANCE WITH SECTION 05051 OF THE SPECIFICATIONS.

ADHESIVE ANCHORS CONTINUED:

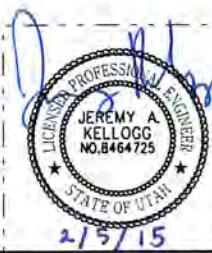
11. WHEN DRILLING HOLES IN EXISTING CONCRETE, USE CARE AND CAUTION TO AVOID CUTTING OR DAMAGING THE EXISTING REINFORCING BARS. MAINTAIN A REASONABLE CLEARANCE BETWEEN REINFORCEMENT AND THE DRILLED-IN ANCHOR.
12. SPECIAL INSPECTION IS REQUIRED PER IBC SECTION 1705 AND THE REQUIREMENTS OF THE ICC REPORT. THE SPECIAL INSPECTOR MUST BE PERIODICALLY ON THE JOBSITE DURING ANCHOR INSTALLATION TO VERIFY ANCHOR TYPE, ANCHOR DIMENSIONS, HOLE CLEANLINESS, EMBEDMENT DEPTH, CONCRETE TYPE, DRILL BIT DIAMETER, HOLE DEPTH, EDGE DISTANCE, ANCHOR SPACING, AND CONCRETE THICKNESS.
13. ADHESIVE ANCHORS INSTALLED IN HORIZONTAL OR UPWARDLY INCLINED ORIENTATIONS TO RESIST SUSTAINED TENSION LOADS SHALL BE CONTINUOUSLY INSPECTED DURING INSTALLATION BY AN INSPECTOR SPECIALLY APPROVED FOR THAT PURPOSE BY THE BUILDING OFFICIAL.

DEFERRED SUBMITTALS:

1. PER 2012 IBC 107.3.4.1 THE FOLLOWING ITEMS, DRAWINGS AND CALCULATIONS, SHALL BE STAMPED BY AN ENGINEER REGISTERED IN THE STATE OF THE PROJECT. ITEMS SHALL BE SUBMITTED TO THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE FOR REVIEW AND APPROVAL. FOLLOWING APPROVAL BY THE REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE, THE CONTRACTOR SHALL SUBMIT THE ITEMS TO THE BUILDING OFFICIAL WITH A NOTATION INDICATING THAT THE DEFERRED SUBMITTAL DOCUMENTS HAVE BEEN REVIEWED AND FOUND TO BE IN GENERAL CONFORMANCE TO THE DESIGN OF THE STRUCTURE. THE CONTRACTOR SHALL NOT START FABRICATION OR ERECTION PRIOR TO REVIEW AND APPROVAL BY THE BUILDING OFFICIAL. THE CONTRACTOR SHALL INCLUDE IN HIS BID ALL TIME AND EFFORT REQUIRED TO OBTAIN A BUILDING OFFICIAL REVIEW/PERMIT FOR THE FOLLOWING PREFABRICATED STRUCTURAL COMPONENTS:
 - HANDRAIL AND GUARDRAIL
 - PIPE SUPPORT SYSTEM
 - ANCHORAGE OF MECHANICAL EQUIPMENT OVER 400 POUNDS
 - WOOD TRUSSES

STRUCTURAL OBSERVATION:

1. STRUCTURAL OBSERVATION SHALL BE IN ACCORDANCE WITH THE 2012 IBC SECTION 1704.5 TOGETHER WITH LOCAL AND STATE AMENDMENTS.
2. THE OWNER SHALL EMPLOYE A REGISTERED DESIGN PROFESSIONAL TO PERFORM STRUCTURAL OBSERVATIONS FOR GENERAL CONFORMANCE TO THE APPROVED CONSTRUCTION DOCUMENTS. STRUCTURAL OBSERVATION DOES NOT WAIVE THE RESPONSIBILITY FOR ANY REQUIRED SPECIAL INSPECTIONS OR INSPECTIONS BY THE BUILDING OFFICIAL.
3. ONSITE STRUCTURAL OBSERVATION SHALL BE PERFORMED AT LEAST ONCE A MONTH, PLUS AT COMPLETION, FOR EACH SEISMIC FORCE OR WIND FORCE RESISTING SYSTEM IDENTIFIED, INCLUDING FOUNDATIONS AND CONNECTIONS.
4. AT THE CONCLUSION OF CONSTRUCTION, THE STRUCTURAL OBSERVER SHALL SUBMIT TO THE BUILDING OFFICIAL A WRITTEN STATEMENT THAT THE SITE VISITS HAVE BEEN MADE AND IDENTIFY ANY REPORTED DEFICIENCIES WHICH, TO THE BEST OF THE STRUCTURAL OBSERVER'S KNOWLEDGE, HAVE NOT BEEN RESOLVED.
5. STRUCTURAL OBSERVATION SHALL INCLUDE VISUAL OBSERVATION OF THE STRUCTURAL SYSTEM AT SIGNIFICANT CONSTRUCTION STAGES AND AT COMPLETION OF THE STRUCTURAL SYSTEM FOR EACH STRUCTURE CONTAINED IN THE WORK. THE CONTRACTOR SHALL SCHEDULE AND FACILITATE STRUCTURAL OBSERVATION INCLUDING THE FOLLOWING:
 - FOUNDATION REINFORCING STEEL, WATERSTOPS, EMBEDS, AND SIMILAR ITEMS PRIOR TO CONCRETE PLACEMENT.
 - WALL TO FOUNDATION CONNECTIONS PRIOR TO FORM CLOSURE FOR ALL MATERIALS.
 - ELEVATED CONCRETE SLABS AND BEAMS PRIOR TO CONCRETE PLACEMENT.
 - MASONRY WALL REINFORCING STEEL PRIOR TO GROUTING AND PRIOR TO CLOSING OF CLEANOUTS.
 - SYSTEM CONNECTION EMBEDS PRIOR TO GROUT OR CONCRETE PLACEMENTS.
 - ALL OTHER WALL ANCHORAGE CONNECTIONS FOR MATERIALS NOT SPECIFICALLY IDENTIFIED ABOVE.


VERIFY SCALE	
BAR IS ONE INCH ON ORIGINAL DRAWING.	0
IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY.	1

PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

GENERAL
STRUCTURAL NOTES 2

DATE
FEB 2015
PROJECT NUMBER
10-011
DRAWING NUMBER
00-AS-002
SHEET 17 OF 70

STATEMENT OF SPECIAL INSPECTIONS:

1. SPECIAL INSPECTION IS IN ADDITION TO THE INSPECTIONS REQUIRED BY SECTION 110 OF THE IBC. THE OWNER OR CONTRACTOR SHALL EMPLOY A SPECIAL INSPECTOR DURING CONSTRUCTION ON THE TYPES OF WORK INDICATED BELOW. REFERENCE THE PROJECT SPECIFICATIONS FOR DETERMINATION OF WHO IS RESPONSIBLE TO PAY FOR SPECIAL INSPECTIONS SERVICES AND ASSOCIATED TESTS.
2. SPECIAL INSPECTIONS SHALL BE PERFORMED BY AN INDEPENDENT QUALIFIED PERSON WHO IS ACCEPTABLE TO THE ENGINEER AND BUILDING DEPARTMENT. THE INSPECTORS FOR EACH SYSTEM AND MATERIAL WILL BE ICC CERTIFIED OR OTHERWISE APPROVED BY THE BUILDING OFFICIAL. THE SPECIAL INSPECTOR SHALL OBSERVE THE INDICATED WORK FOR COMPLIANCE WITH THE APPROVED CONTRACT DOCUMENTS AND SUBMIT RECORDS OF INSPECTION.
3. INSPECTION RECORDS AND TESTING REPORTS SHALL BE SUBMITTED TO THE ENGINEER, OWNER, AND BUILDING OFFICIAL WITHIN ONE WEEK OF INSPECTION OR WITHIN ONE WEEK OF TEST COMPLETION.
4. AT THE CONCLUSION OF CONSTRUCTION, A FINAL REPORT DOCUMENTING REQUIRED SPECIAL INSPECTIONS AND CORRECTION OF DISCREPANCIES SHALL BE SUBMITTED.
5. PERIODIC SPECIAL INSPECTION IS DEFINED AS SPECIAL INSPECTION BY THE SPECIAL INSPECTOR WHO IS INTERMITTENTLY PRESENT WHERE THE WORK TO BE INSPECTED HAS BEEN OR IS BEING PERFORMED.
6. SPECIAL INSPECTION IS REQUIRED PER CHAPTER 17 OF THE IBC FOR THE FOLLOWING ITEMS:
 - SOILS
 - CONCRETE CONSTRUCTION
 - MASONRY CONSTRUCTION

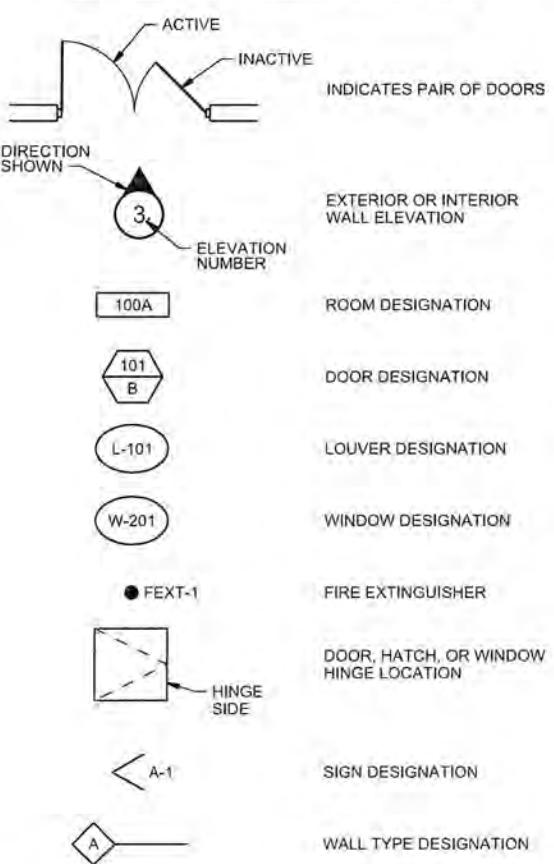
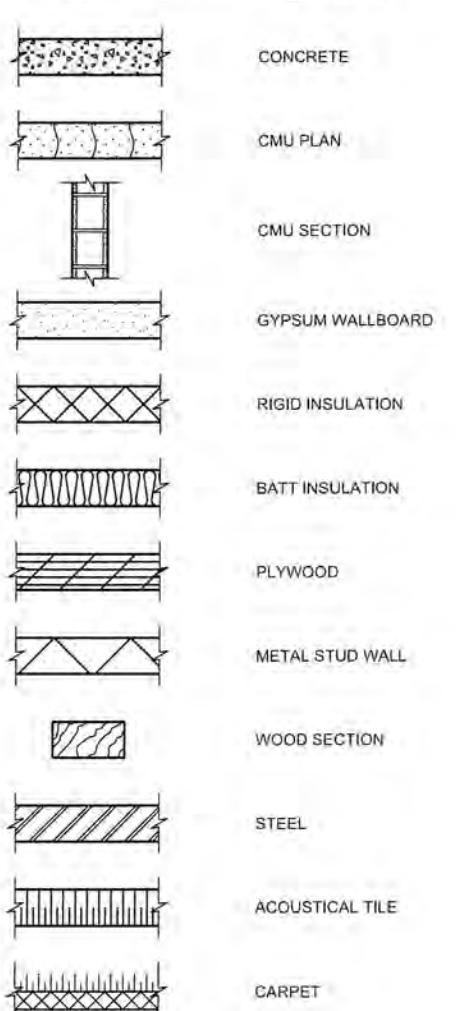
REQUIRED VERIFICATION AND SPECIAL INSPECTION OF SOILS				
VERIFICATION AND INSPECTION	CONTINUOUS	PERIODIC	REFERENCED STANDARD	2012 IBC REFERENCE
1. VERIFY MATERIALS BELOW SHALLOW FOUNDATIONS ARE ADEQUATE TO ACHIEVE THE DESIGN BEARING CAPACITY	-	X	SECTION 02300 - EARTHWORK	1705.6, 1804
2. VERIFY EXCAVATIONS ARE EXTENDED TO PROPER DEPTH AND HAVE REACHED PROPER MATERIAL	-	X	SECTION 02300 - EARTHWORK	1705.6
3. PERFORM CLASSIFICATION AND TESTING OF COMPACTED FILL MATERIALS	-	X	SECTION 02300 - EARTHWORK	1705.6
4. VERIFY USE OF PROPER MATERIALS, DENSITIES AND LIFT THICKNESSES DURING PLACEMENT AND COMPACTION OF COMPACTED FILL	X	-	SECTION 02300 - EARTHWORK	1705.6
5. PRIOR TO PLACEMENT OF COMPACTED FILL, OBSERVE SUBGRADE AND VERIFY THAT SITE HAS BEEN PREPARED PROPERLY	-	X	SECTION 02300 - EARTHWORK	1705.6

REQUIRED SPECIAL INSPECTION OF MASONRY CONSTRUCTION, LEVEL B				
INSPECTION TASK	CONTINUOUS	PERIODIC	REFERENCE STANDARD:	REFERENCE STANDARD:
1. VERIFY COMPLIANCE WITH THE APPROVED SUBMITTALS	-	X	-	Art. 1.5
2. AS MASONRY CONSTRUCTION BEGINS, VERIFY THAT THE FOLLOWING ARE IN COMPLIANCE:				
2a. PROPORTIONS OF SITE-PREPARED MORTAR AND GROUT	-	X	-	Art. 2.1, 2.6 A
2b. CONSTRUCTION OF MORTAR JOINTS	-	X	-	Art. 3.3 B
2d. LOCATION OF REINF AND CONNECTORS	-	X	-	Art. 3.4, 3.6 A
3. PRIOR TO GROUTING, THE FOLLOWING SHALL BE VERIFIED TO ENSURE COMPLIANCE:				
3a. GROUT SPACE	-	X	-	Art. 3.2 D, 3.2 F
3b. GRADE, TYPE, AND SIZE OF REINF AND ANCHOR BOLTS	-	X	Sec. 1.16	Art. 2.4, 3.4
3c. PLACEMENT OF REINF AND CONNECTORS	-	X	Sec. 1.16	Art. 3.2 E, 3.4, 3.6 A
3d. PROPORTIONS OF SITE-PREPARED GROUT	-	X	-	Art. 2.6 B, 2.4 G.1.b
3e. CONSTRUCTION OF MORTAR JOINTS	-	X	-	Art. 3.3 B
4. VERIFY DURING CONSTRUCTION:				
4a. SIZE AND LOCATION OF STRUCTURAL ELEMENTS	-	X	-	Art. 3.3 F
4b. TYPE, SIZE AND LOCATION OF ANCHORS, INCLUDING OTHER DETAILS OF ANCHORAGE OF MASONRY TO STRUCTURAL MEMBERS, FRAMES OR OTHER CONSTRUCTION	-	X	Sec. 1.16.4.3, 1.17.1	-
4c. WELDING AND REINFORCING BARS	X	-	Sec. 2.1.7.7.2, 3.3.3.4 (c), 8.3.3.4 (b)	-
4d. PREPARATION, CONSTRUCTION, AND PROTECTION OF MASONRY DURING COLD WEATHER OR HOT WEATHER	-	X	-	Art. 1.8 C, 1.8 D
5. OBSERVE PREPARATION OF GROUT SPECIMENS, MORTAR SPECIMENS, AND/OR PRISMS	-	X	-	Art. 1.4 B.2.a, 3, 1.4 B.2.b.3, 1.4 B.2.c.3, 1.4 B.3, 1.4 B.4
REQUIRED MINIMUM TESTS:				
1. VERIFICATION OF SLUMP FLOW AND VSI AS DELIVERED TO THE SITE FOR SELF-CONSOLIDATING GROUT	-	X	-	Art. 1.5 B.1.b.3
2. VERIFICATION OF f'm PRIOR TO CONSTRUCTION	-	X	-	Art. 1.4 B

REQUIRED SPECIAL INSPECTION OF CONCRETE CONSTRUCTION				
VERIFICATION AND INSPECTION	CONTINUOUS	PERIODIC	REFERENCED STANDARD	2012 IBC REFERENCE
1. INSPECTION OF REINF STEEL AND PLACEMENT	-	X	ACI 318: 3.5, 7.1-7.7	1910.4
2. INSPECTION OF REINF STEEL WELDING	-	-	AWS D1.4, ACI 318: 3.5.2	-
3. INSPECTION OF ANCHORS TO BE CAST IN CONCRETE	-	X	ACI 318: 8.1.3, 21.1.8	1908.5, 1909.1
4. INSPECTION OF POST INSTALLED ANCHORS IN HARDENED CONCRETE	-	X	ACI 318: 3.8.6, 8.1.3, 21.1.8	1908.5, 1909.1
5. VERIFYING USE OF REQUIRED DESIGN MIX	-	X	ACI 318: Ch.4, 5.2-5.4	1904.2, 1910.2, 1910.3
6. AT THE TIME FRESH CONCRETE IS SAMPLED TO FABRICATE SPECIMENS FOR STRENGTH TESTS, PERFORM SLUMP AND AIR CONTENT TESTS, AND DETERMINE THE TEMPERATURE OF THE CONCRETE.	X	-	ASTM: C172, C31 ACI 318: 5.6, 5.8	1910.10
8. INSPECTION FOR MAINTENANCE OF SPECIFIED CURING TEMPERATURE AND TECHNIQUES	-	X	ACI 318: 5.11-5.13	1910.9
12. INSPECTION FORMWORK FOR SHAPE, LOCATION AND DIMENSIONS OF THE CONCRETE MEMBER BEING FORMED	-	X	ACI 318: 6.1.1	-

VERIFY SCALE
BAR IS ONE INCH ON ORIGINAL DRAWING.
0 IF NOT ONE INCH ON THIS SHEET ADJUST SCALES ACCORDINGLY

DESIGN JK
DRAWN VP
CHECKED JK
APPROVED CC



WATERWORKS
Engineering and Construction
2012 IBC and Uniform Building Code Compliant Drawings

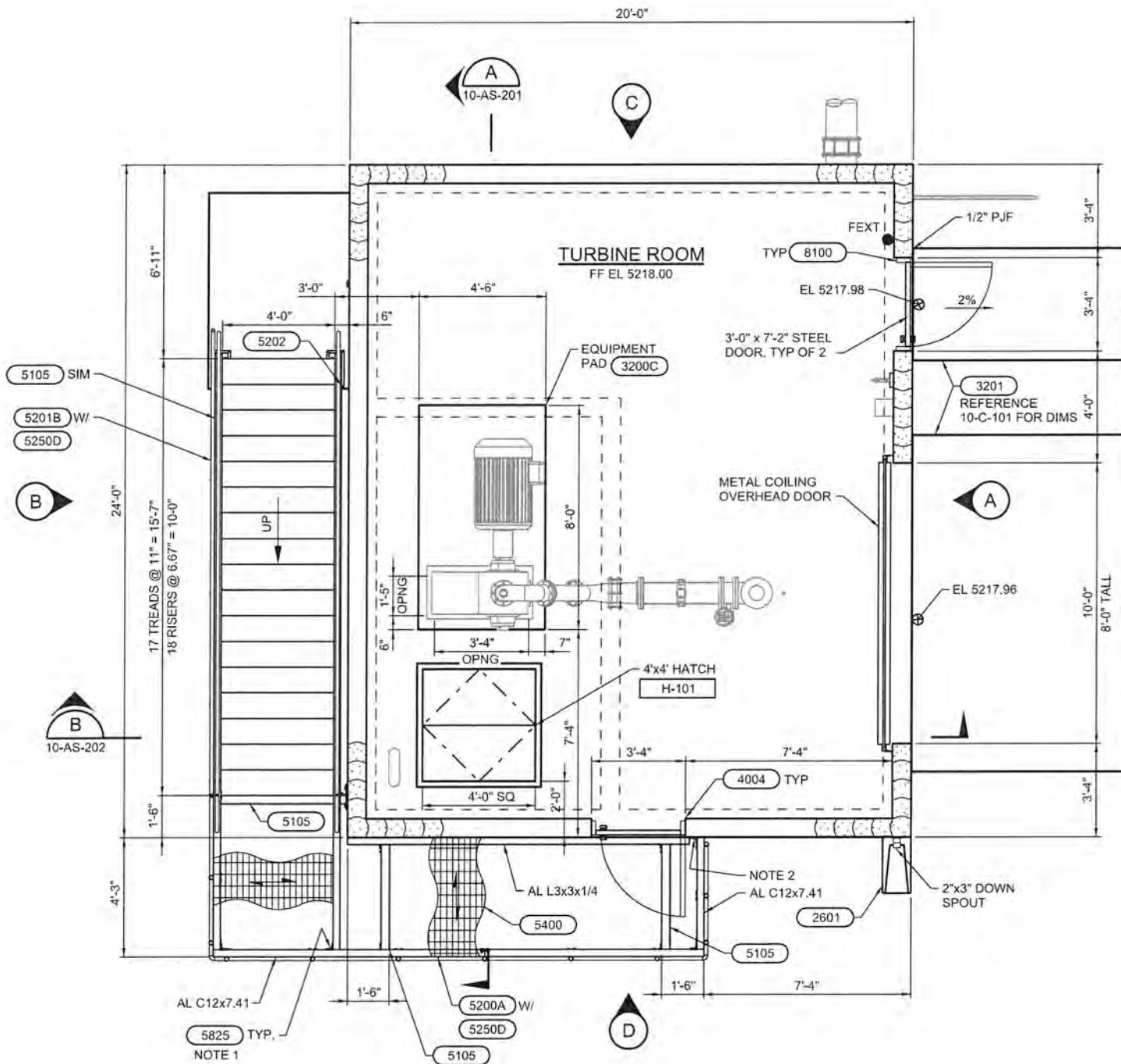
PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

ARCHITECTURAL / STRUCTURAL
GENERAL STRUCTURAL
GENERAL INSPECTION NOTES

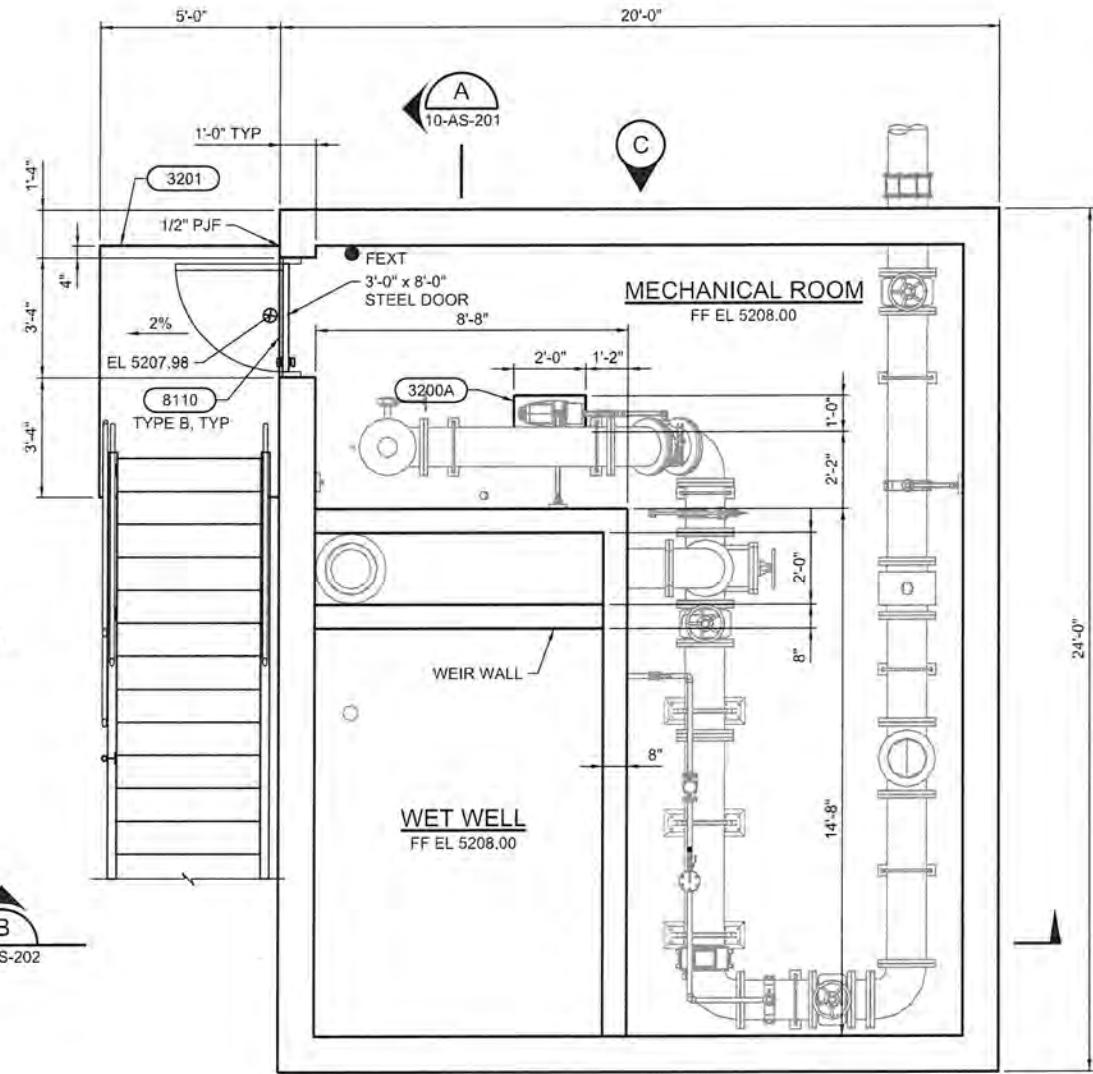
DATE
FEB 2015
PROJECT NUMBER
10-011
DRAWING NUMBER
00-AS-003
SHEET 18 OF 70

1	2	3	4	5	6														
ARCHITECTURAL LEGEND	MATERIAL SYMBOLS			GENERAL ARCHITECTURAL NOTES: <ol style="list-style-type: none"> 1. UNLESS OTHERWISE NOTED, PLAN DIMENSIONS ARE TO NOMINAL SURFACE OF MASONRY, FACE OF STUDS AND FACE OF CONCRETE WALLS. 2. REPETITIVE FEATURES ARE NOT DRAWN IN THEIR ENTIRETY AND SHALL BE COMPLETELY PROVIDED AS IF DRAWN IN FULL. 3. VERIFY ALL ROUGH-IN DIMENSIONS FOR EQUIPMENT PROVIDED IN THIS CONTRACT, OR BY OTHERS. 4. REFER TO ARCHITECTURAL, STRUCTURAL, MECHANICAL, ELECTRICAL AND OTHER CATEGORIES OF DRAWINGS FOR ADDITIONAL NOTES. 5. VERIFY SIZE AND LOCATION OF, AND PROVIDE: ALL OPENINGS THROUGH FLOORS AND WALLS, ACCESS DOORS, FURRING, CURBS, ANCHORS AND INSERTS. PROVIDE ALL BASES, BLOCKING REQUIRED FOR ACCESSORIES, MECHANICAL, ELECTRICAL AND OTHER EQUIPMENT. 	VERIFY SCALE <table border="1"> <tr> <td>BAR IS ONE INCH ON ORIGINAL DRAWING</td> <td>1"</td> </tr> <tr> <td>IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY</td> <td></td> </tr> </table>	BAR IS ONE INCH ON ORIGINAL DRAWING	1"	IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY											
BAR IS ONE INCH ON ORIGINAL DRAWING	1"																		
IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY																			
				WATERWORKS ENGINEERS <small>© 2015 Waterworks Engineers, LLC. All rights reserved.</small>	DESIGN <table border="1"> <tr> <td>JK</td> <td></td> </tr> <tr> <td>DRAWN</td> <td></td> </tr> <tr> <td>VP</td> <td></td> </tr> <tr> <td>CHECKED</td> <td></td> </tr> <tr> <td>JK</td> <td></td> </tr> <tr> <td>APPROVED</td> <td></td> </tr> <tr> <td>CC</td> <td></td> </tr> </table> PLEASANT GROVE MICRO-HYDRO POWER GENERATOR PROJECT	JK		DRAWN		VP		CHECKED		JK		APPROVED		CC	
JK																			
DRAWN																			
VP																			
CHECKED																			
JK																			
APPROVED																			
CC																			

ARCHITECTURAL / STRUCTURAL
ARCHITECTURAL LEGEND
AND MATERIAL SYMBOLS


DATE
FEB 2015
PROJECT NUMBER
10-011
DRAWING NUMBER
00-AS-004
SHEET 19 OF 70

OTES


SIMILAR SINGLE ANGLE CONNECTION, PROVIDE ALUMINUM MEMBERS AND STAINLESS STEEL BOLTS.
PROVIDE 2-3/4" DIA ADHESIVE ANCHORS AT 6" GAGE, OMIT ANCHOR AT CENTER HOLE SHOWN IN **5825**
SEE GENERAL STRUCTURAL NOTES AND STANDARD DETAILS FOR ADDITIONAL INFORMATION.

VERIFY SCALE	
DESIGN JK	BAR IS ONE INCH ON ORIGINAL DRAWING.
DRAWN VP	<input checked="" type="checkbox"/> 1"
CHECKED JK	<input type="checkbox"/> IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY.
APPROVED JK	

SECOND FLOOR
PLAN

3/8" = 1'- 0"

FOUNDATION PLAN

3/8" = 1'-0"

0 2 4 FEET
SCALE 3 1/2"-1 1/2"

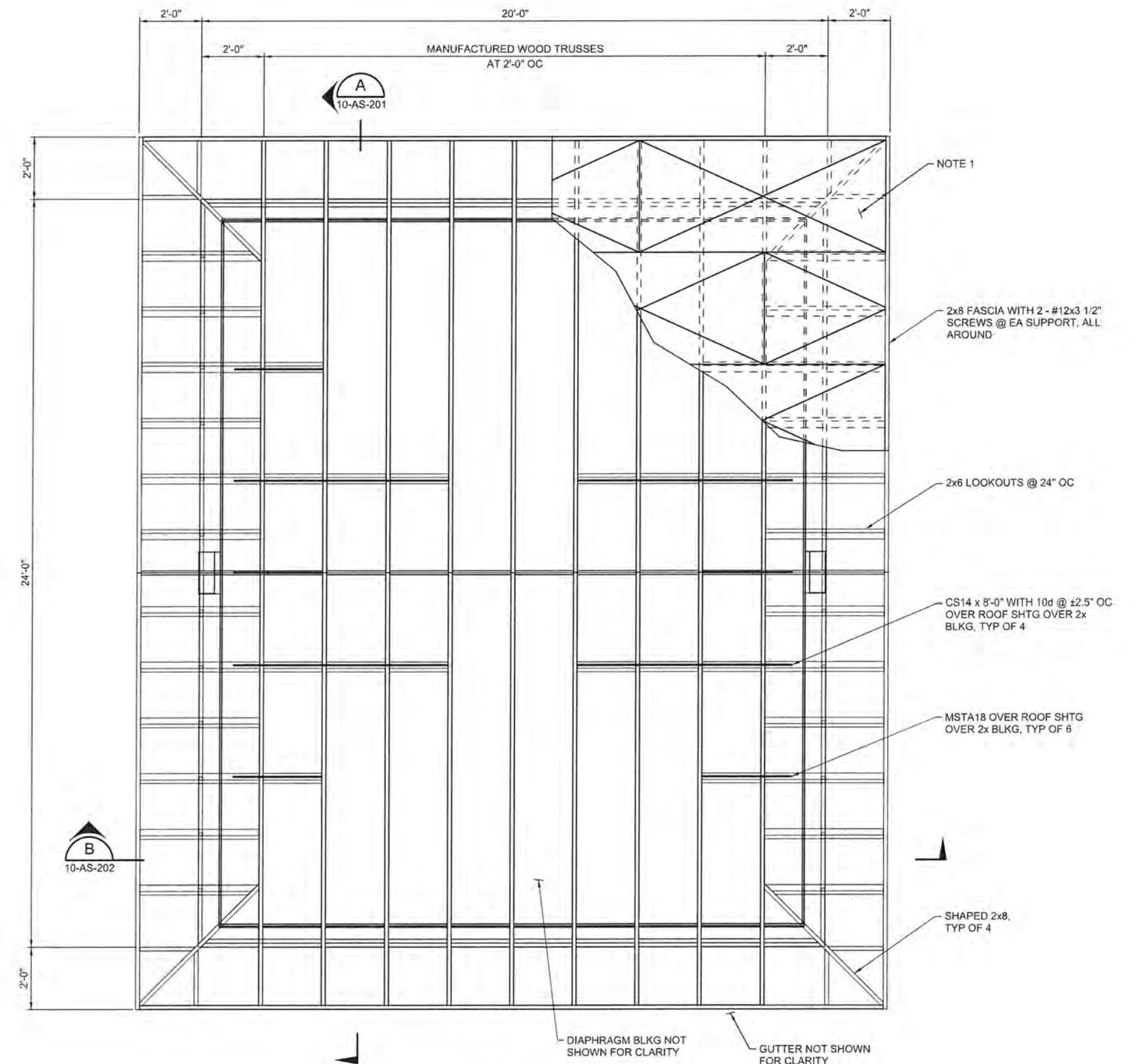
THE BING DING FOUNDATION

TURBINE BUILDING FOUNDATION AND SECOND FLOOR PLANS

WATERWORKS

Engineering
2515 Pennsylvania Ave. N.W. (D.C. 20037) (202) 293-4114

JUBBINE BIMI DING FOUNDATION


TURBINE BUILDING FOUNDATION AND SECOND FLOOR PLANS

DATE
FEB 2
OBJECT
10-0
DRAWING
0-AS
EET 20

ATE
2015
T NUMBER
-011
G NUMBER
S-101
20 OF 70

SCALE: 1

1:5.33333

NOTES:

1. 15/32 PLWD SHTG, CDX APA RATED EXPOSURE 1 FULLY BLOCKED. NAIL DIAPHRAGM WITH 10d @ 2 1/2" OC AT CONTINUOUS PANEL EDGES AND PERIMETER BLKG, 4" OC AT REMAINING PANEL EDGES AND 12" OC IN FIELD.

2. CONTRACTOR SHALL FINISH SUBMITTAL OF TRUSS DRAWINGS AND CALCULATIONS TO THE ENGINEER FOR REVIEW AND APPROVED PRIOR TO TRUSS FABRICATION.

3. NOTES TO TRUSS MFR:

- A. ROOF DL = 15 psf
- B. ROOF LL = 20 psf
- C. ROOF SL = 30 psf
- D. NET UPLIFT = 30 psf
- E. AXIAL FORCE = 0.5k (SEISMIC, ASD)

4. PROVIDE 2x6 TOP CHORD AT ROOF TRUSSES.

VERIFY SCALE	
BAR IS ONE INCH ON ORIGINAL DRAWING.	0 IF NOT ONE INCH ON THIS SHEET. ADJUST SCALES ACCORDINGLY.

A

B

C

D

WATERWORKS
ENGINEERS
10011D-10AS102.dgn (10011D-10AS102.dwg)

PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

ARCHITECTURAL / STRUCTURAL
TURBINE BUILDING
ROOF PLAN

DATE

FEB 2015

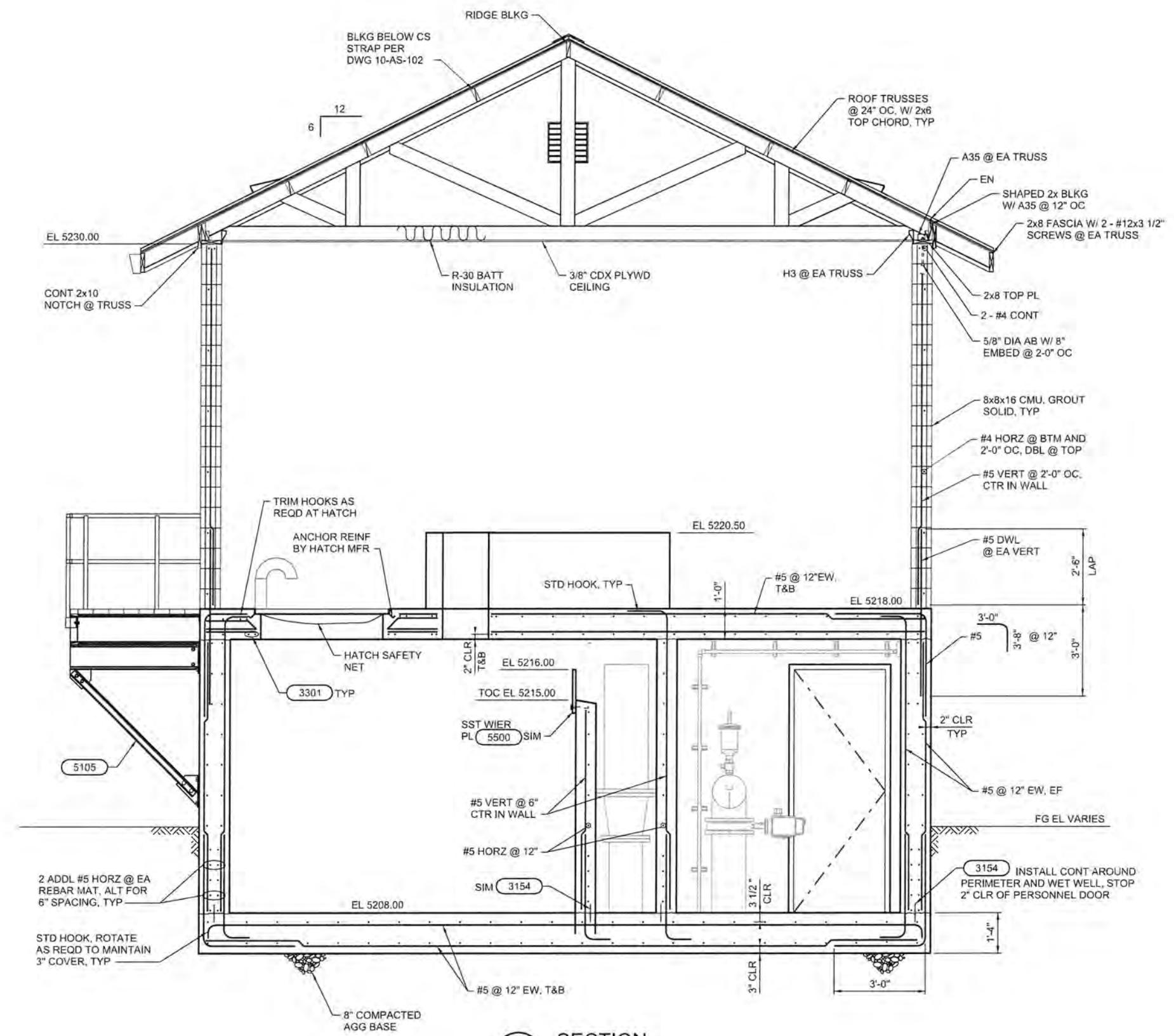
PROJECT NUMBER

10-011

DRAWING NUMBER

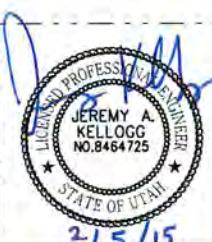
10-AS-102

SHEET 21 OF 70


SCALE: 1/4"

2 0 2 4 FEET
SCALE 1/2"=1'-0"
10-AS-102

NOTES:

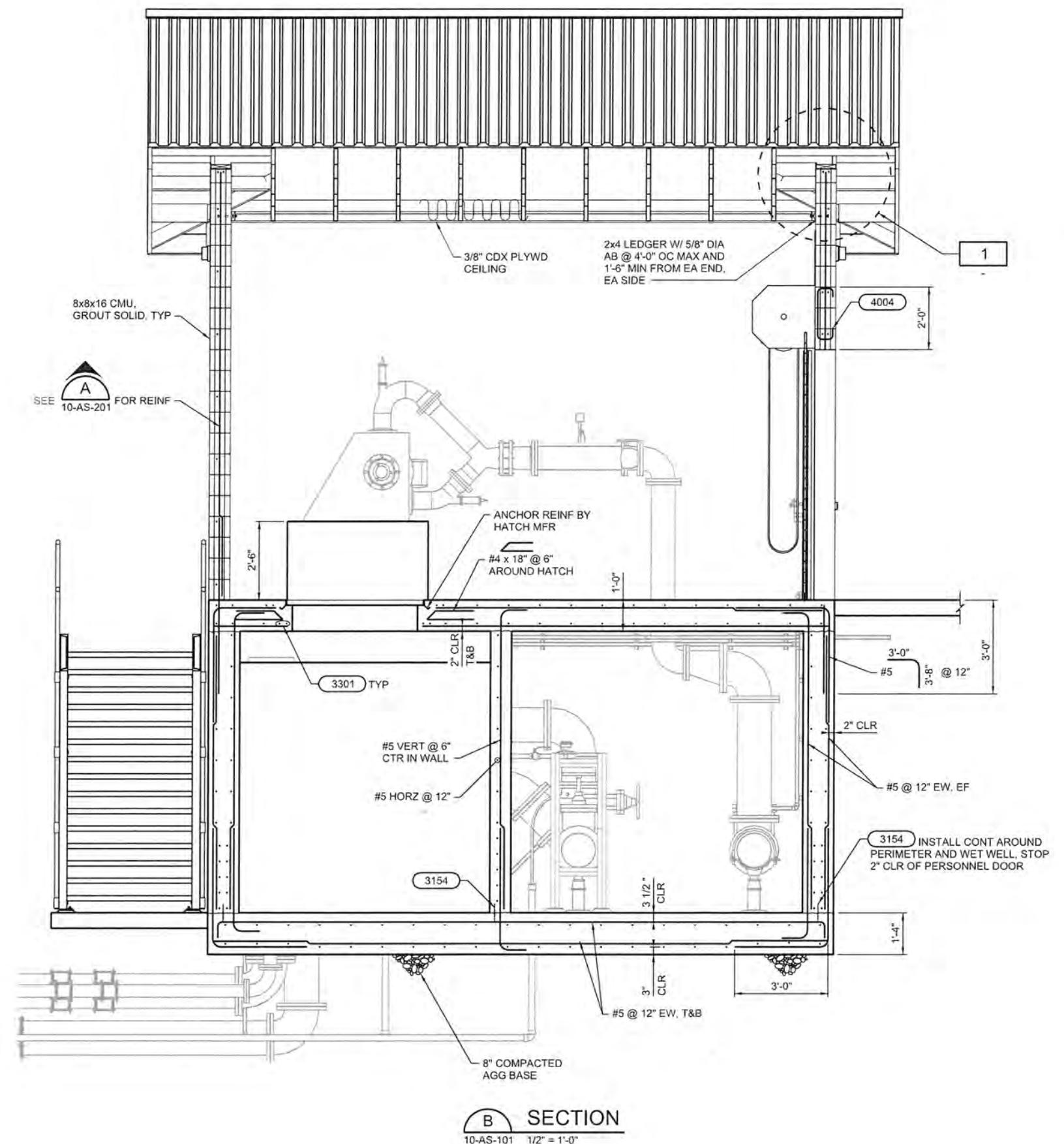

1. SEE 3000 AND 4000 SERIES STANDARD DETAILS FOR ADDITIONAL INFORMATION.

WATERWORKS ENGINEERS

PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

TURBINE BUILDING SECTION

REUSE OF DOCUMENTS: THIS DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED HEREIN, AS AN INSTRUMENT OF PROFESSIONAL SERVICE, IS THE PROPERTY OF WATER WORKS ENGINEERS, LLC, AND IS NOT TO BE USED, IN WHOLE OR IN PART, FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF WATER WORKS ENGINEERS, LLC.


FILENAME: S:\CAD\Projects\10-011 Pleasant Grove Microhydro\Drawings\Deliverables\10011D-10AS201.dgn

PLOT DATE: 2/4/2015

PLOT TIME: 11:02:59 AM

SCALE: 1:4

NOTES:
1. SEE 3000 AND 4000 SERIES STANDARD DETAILS FOR ADDITIONAL INFORMATION.

1-1 DETAIL
1" = 1'-0"

WATERWORKS
ENGINEERS
2015 Pleasant Grove Blvd. S.E. • Pleasant Grove, UT 84062-1515

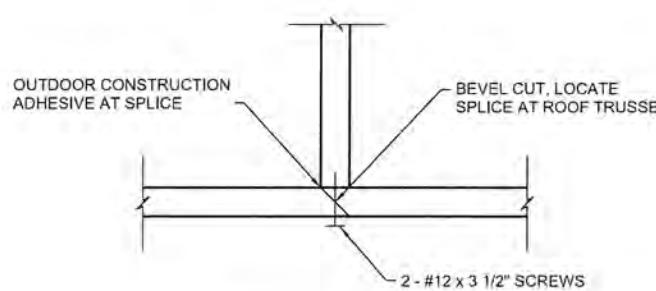
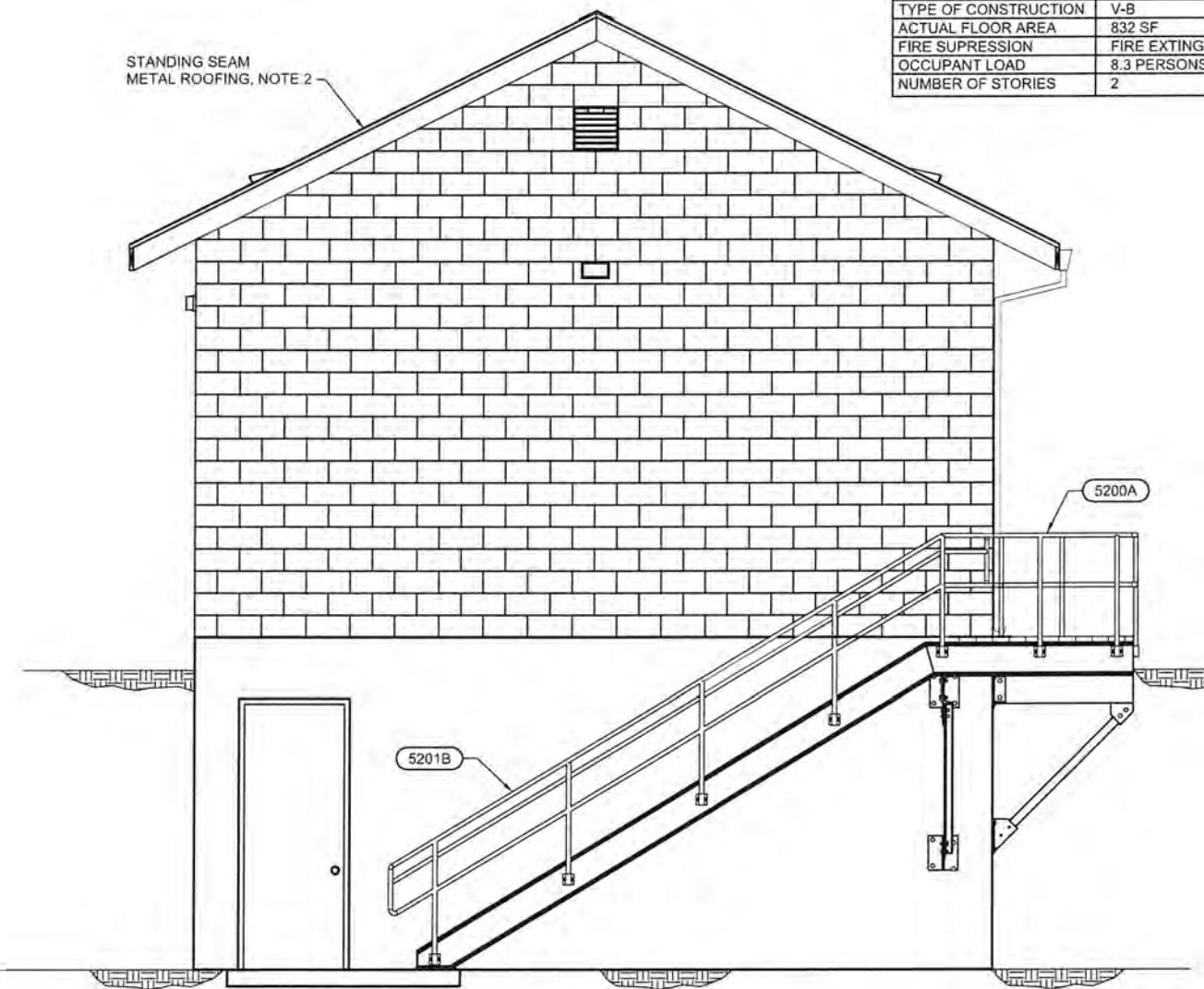
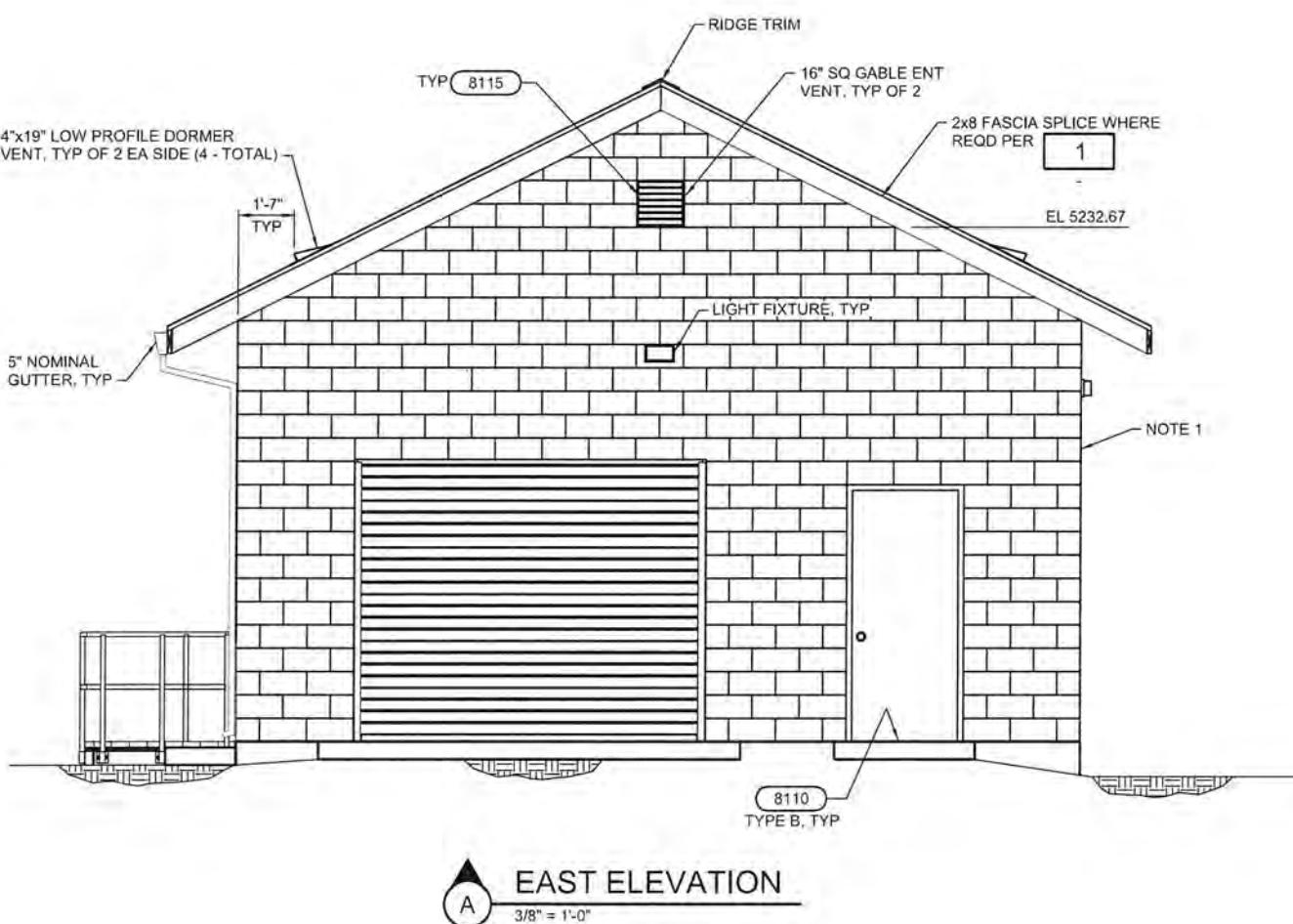
PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

ARCHITECTURAL / STRUCTURAL
TURBINE BUILDING
SECTION

LICENSED PROFESSIONAL ENGINEER
JEREMY A. KELLOGG
NO. 8464725
STATE OF UTAH
2/5/15

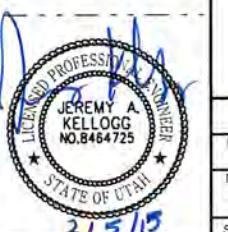
DATE
FEB 2015
PROJECT NUMBER
10-011
DRAWING NUMBER
10-AS-202
SHEET 23 OF 70

VERIFY SCALE
BAR IS ONE INCH ON
ORIGINAL DRAWING.
0 1⁺
IF NOT ONE INCH ON
THIS SHEET, ADJUST
SCALES ACCORDINGLY




NOTES:

1. ALL CMU TO BE SPLIT-FACED BLOCK WITH COLOR SELECTED BY OWNER.
2. ALL DOORS, LOUVERS, ROOFING TO BE MATCHING COLOR, AS APPROVED BY OWNER.

VERIFY SCALE
BAR IS ONE INCH ON
ORIGINAL DRAWING.
0 1
IF NOT ONE INCH
THIS SHEET ADJUST
SCALES ACCORDINGLY


BUILDING CODE INFORMATION	
BUILDING CODE	2012 IBC
OCCUPANCY CLASS	F-1
TYPE OF CONSTRUCTION	V-B
ACTUAL FLOOR AREA	832 SF
FIRE SUPPRESSION	FIRE EXTINGUISHERS
OCCUPANT LOAD	8.3 PERSONS
NUMBER OF STORIES	2

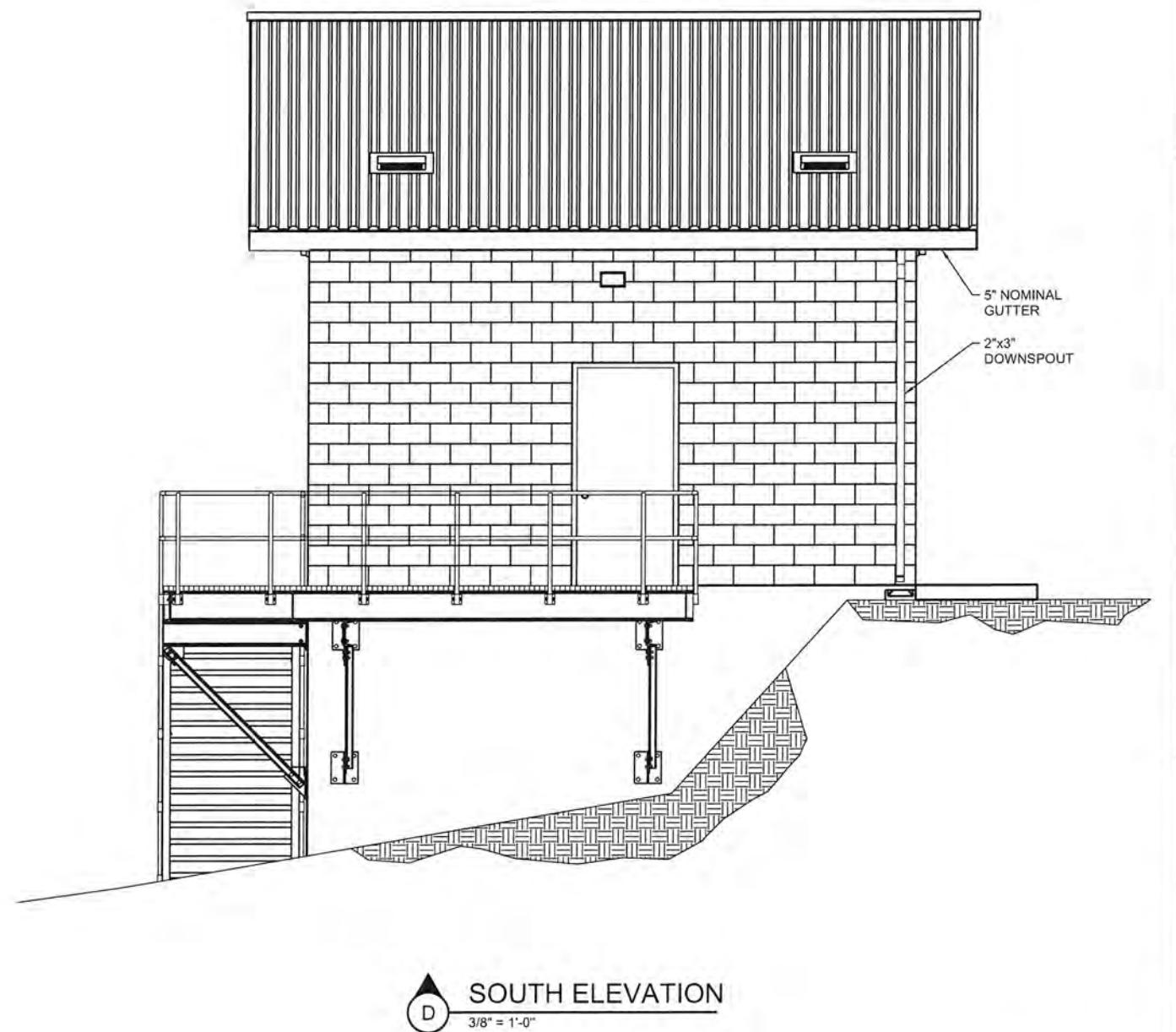
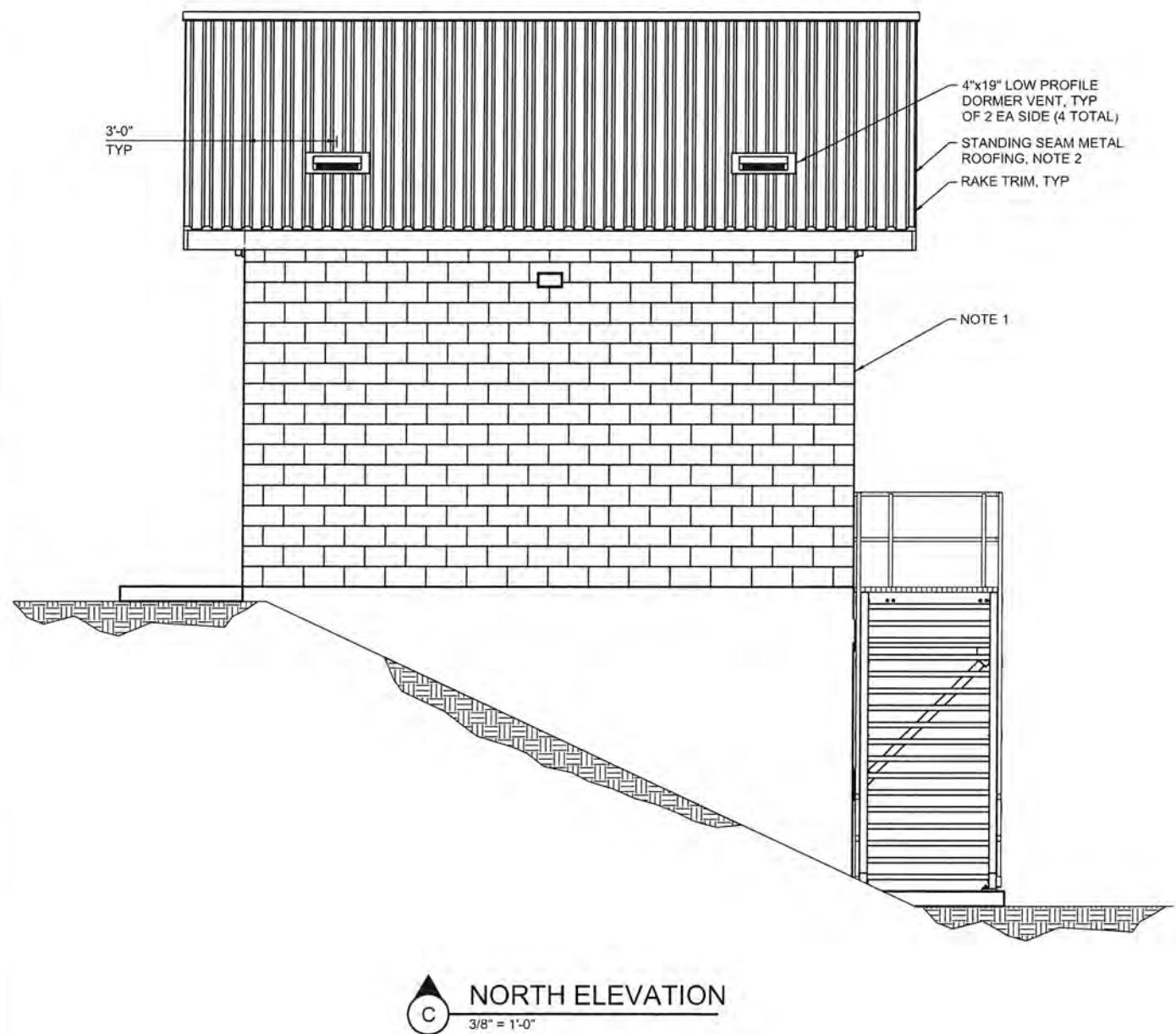
DESIGN
DRAWN
VP
CHECKED
JK
APPROVED
CC

1 **DETAIL**
- NTS

2 0 2 4 FEET
SCALE 3/8"=1'-0"

WATERWORKS
ENGINEERS
© 2015 Waterworks Engineers, LLC. All rights reserved.

PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

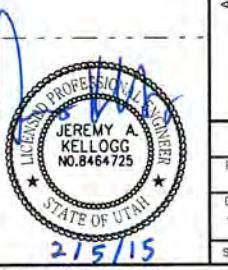


ARCHITECTURAL/STRUCTURAL
TURBINE BUILDING
ELEVATIONS

SCALE: 1:5.33333

NOTES:

1. ALL CMU TO BE SPLIT-FACED BLOCK WITH COLOR SELECTED BY OWNER.
2. ALL DOORS, LOUVERS, ROOFING TO BE MATCHING COLOR, AS APPROVED BY OWNER.

VERIFY SCALE
BAR IS ONE INCH ON ORIGINAL DRAWING.
0 1" IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY


WATERWORKS
E N G I N E E R S
21515 Waterworks, LLC (21515 Waterworks, LLC)

PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

ARCHITECTURAL / STRUCTURAL
TURBINE BUILDING
ELEVATIONS

LICENSURE PROFESSIONAL
JEREMY A. KELLOGG
NO. 8464725
FEB 2015
PROJECT NUMBER
10-011
DRAWING NUMBER
10-AS-402
SHEET 25 OF 70

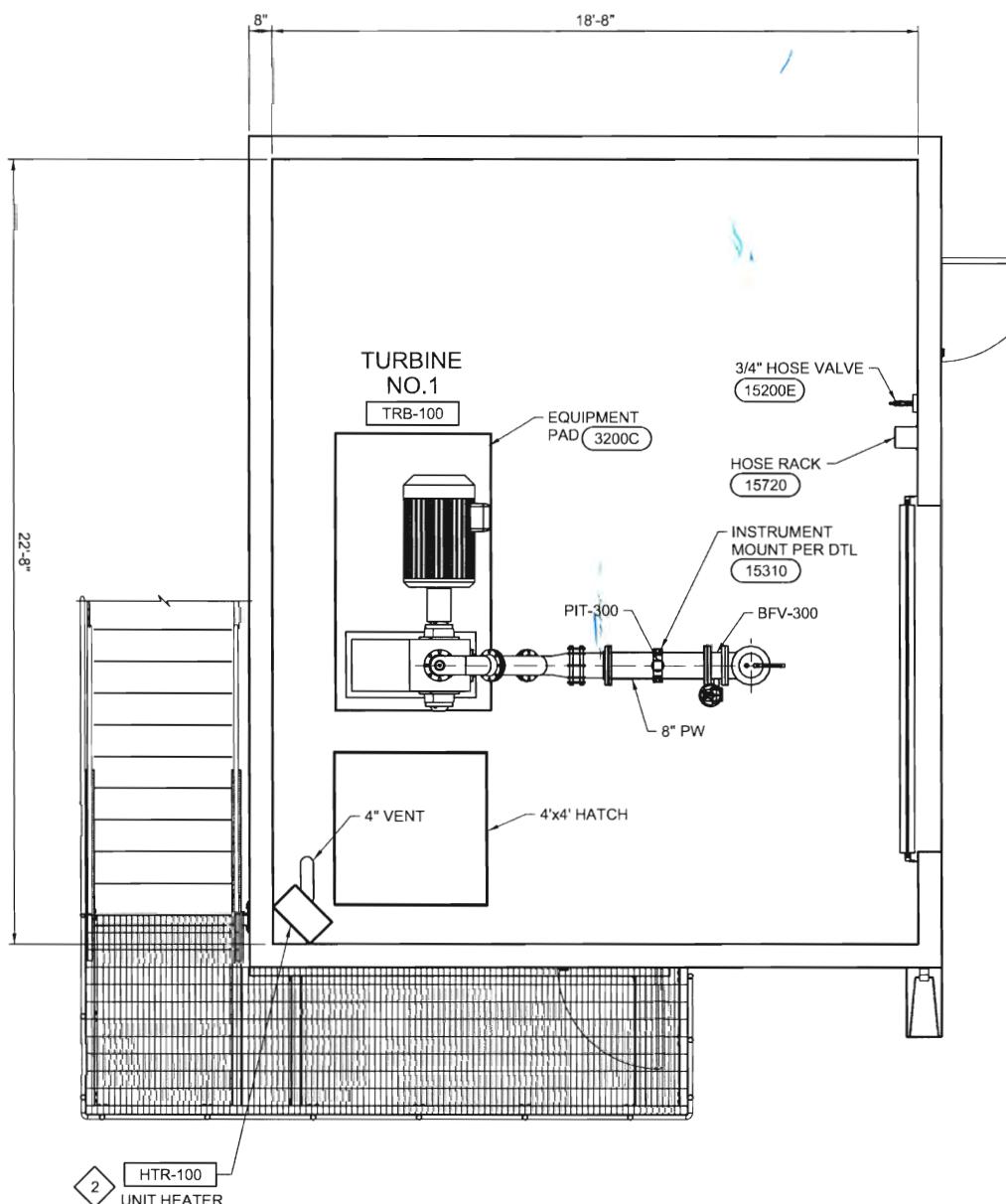
2 0 2 4 FEET
SCALE 3/8"=1'-0"

PIPE AND FITTING SYMBOLS		PIPE AND FITTING SYMBOLS (CONTINUED)		FLOW METERS		PIPING DESIGNATIONS		VERIFY SCALE BAR IS ONE INCH ORIGINAL DRAWING 0 _____ IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY.
<u>DOUBLE LINE</u>	<u>SINGLE LINE</u>	<u>DOUBLE LINE</u>	<u>SINGLE LINE</u>	<u>DOUBLE LINE</u>	<u>SINGLE LINE</u>	<u>DOUBLE LINE</u>	<u>SINGLE LINE</u>	
VALVE SYMBOLS		<u>DOUBLE LINE</u>	<u>SINGLE LINE</u>					
VALVE SYMBOLS		<u>DOUBLE LINE</u>	<u>SINGLE LINE</u>					
FLOW METERS		<u>DOUBLE LINE</u>	<u>SINGLE LINE</u>					
PUMPS								
MIXERS								
ACTUATORS								
MISCELLANEOUS PIPING SYMBOLS								
PIPING DESIGNATIONS		<u>DOUBLE LINE</u>	<u>SINGLE LINE</u>					
X 4" CIT: a single line with an arrow indicating flow direction.								
VALVE DESIGNATIONS								
RW: a single line with an arrow indicating flow direction.								
WATERWORKS								
NOTES								
1. ELECTRIC VALVE SHOWN, MANUAL VALVE SIMILAR.								
NOTES								
1. ONLY FLANGED END CONNECTIONS ARE SHOWN HERE FOR DOUBLE LINE FITTINGS. FITTINGS WITH OTHER END PATTERNS ARE SHOWN SIMILARLY ON THE CONSTRUCTION DRAWINGS. ALSO SEE PIPING SPECIFICATIONS AND THE PIPING SCHEDULE.								
2. SYMBOLS SHOWN HERE FOR SINGLE LINE FITTINGS ARE GENERIC ONLY. REFER TO PIPING SPECIFICATIONS FOR SPECIFIC END CONNECTIONS FOR SINGLE LINE PIPE AND FITTINGS.								
GENERAL PIPING NOTES								
1. LAY PIPE TO UNIFORM GRADE BETWEEN INDICATED ELEVATION POINTS. MINIMUM COVER SHALL BE 36 INCHES UNLESS OTHERWISE SHOWN.								
2. SIZE OF FITTINGS SHOWN ON DRAWINGS SHALL CORRESPOND TO ADJACENT STRAIGHT RUN OF PIPE, UNLESS OTHERWISE INDICATED. TYPE OF JOINT AND FITTING MATERIAL SHALL BE THE SAME AS SHOWN FOR ADJACENT STRAIGHT RUN OF PIPE.								
3. LOCATION AND NUMBER OF PIPE HANGERS AND PIPE SUPPORTS SHOWN IS ONLY APPROXIMATE. FINAL SUPPORT REQUIREMENTS SHALL BE DETERMINED IN THE FIELD AND APPROVED BY THE ENGINEER PRIOR TO INSTALLATION. MAXIMUM SPACING SHALL BE AS SPECIFIED.								
4. APPROPRIATE STANDARD WALL PIPE DETAIL SHALL BE USED WHEREVER PIPING PASSES FROM A STRUCTURE TO BACKFILL.								
5. ALL FLEXIBLE CONNECTORS OR FLANGED COUPLING ADAPTERS SHALL BE PROVIDED WITH THRUST TIES, BLOCKS, OR ANCHORS, UNLESS OTHERWISE NOTED. THRUST PROTECTION SHALL BE ADEQUATE FOR TEST PRESSURES								

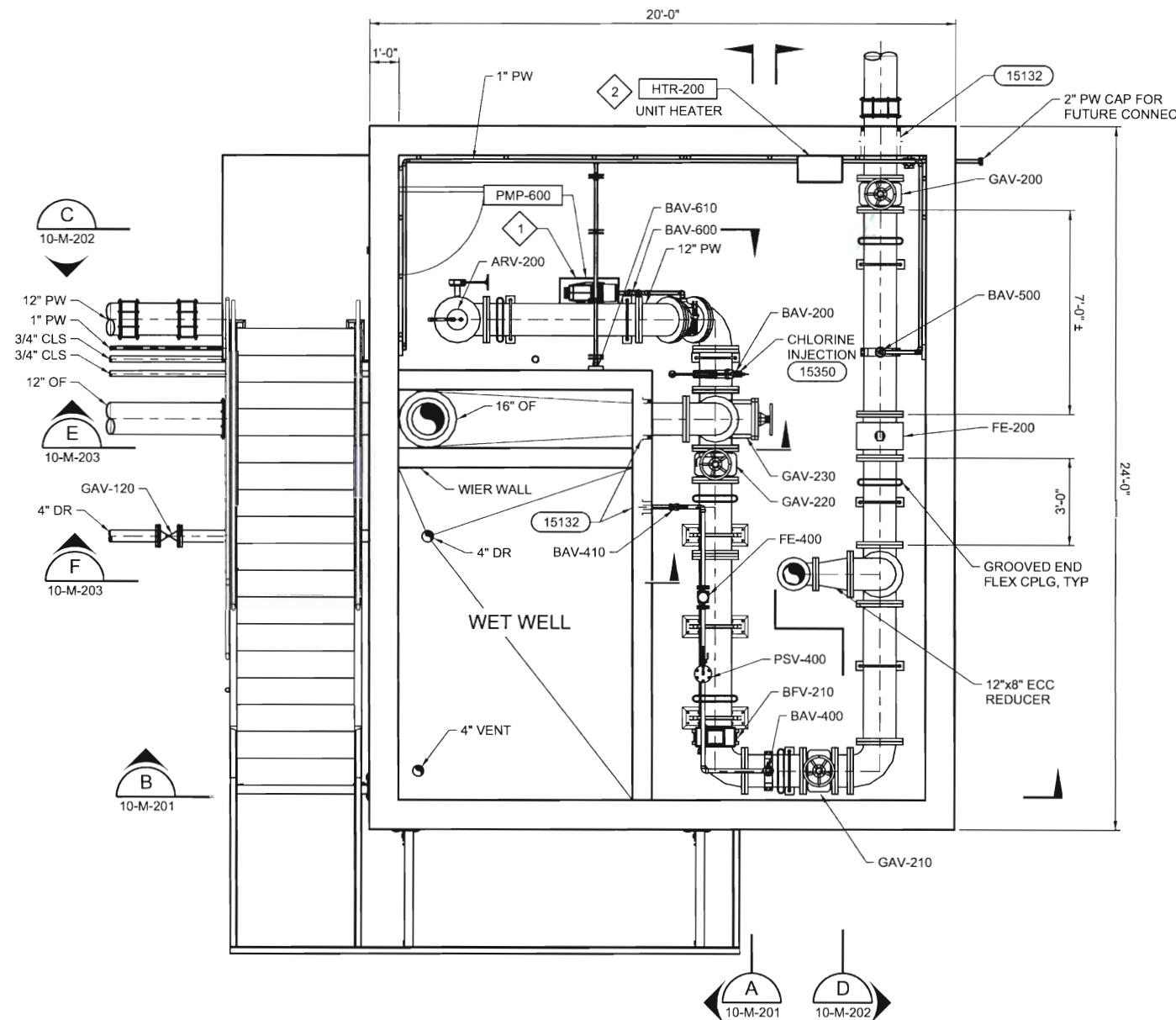
KEY NOTES:

1 PROVIDE ON DEMAND SYSTEM PUMP CAPABLE OF 8 GPM AT 45 PSI PUMP DISCHARGE. GRUNDFOS MQ 3-45 A-B-A-BVBP, 230V, 1 PHASE OR EQUAL.

2 MOUNT UNIT HEATER TO WALL, APPROXIMATELY 8FT ABOVE FINISHED FLOOR. USE STANDARD WALL MOUNT SYSTEM SUPPLIED BY EQUIPMENT MANUFACTURER.


VERIFY SCALE
BAR IS ONE INCH ON ORIGINAL DRAWING
0 IF NOT ONE INCH ON THIS SHEET. ADJUST SCALES ACCORDINGLY.

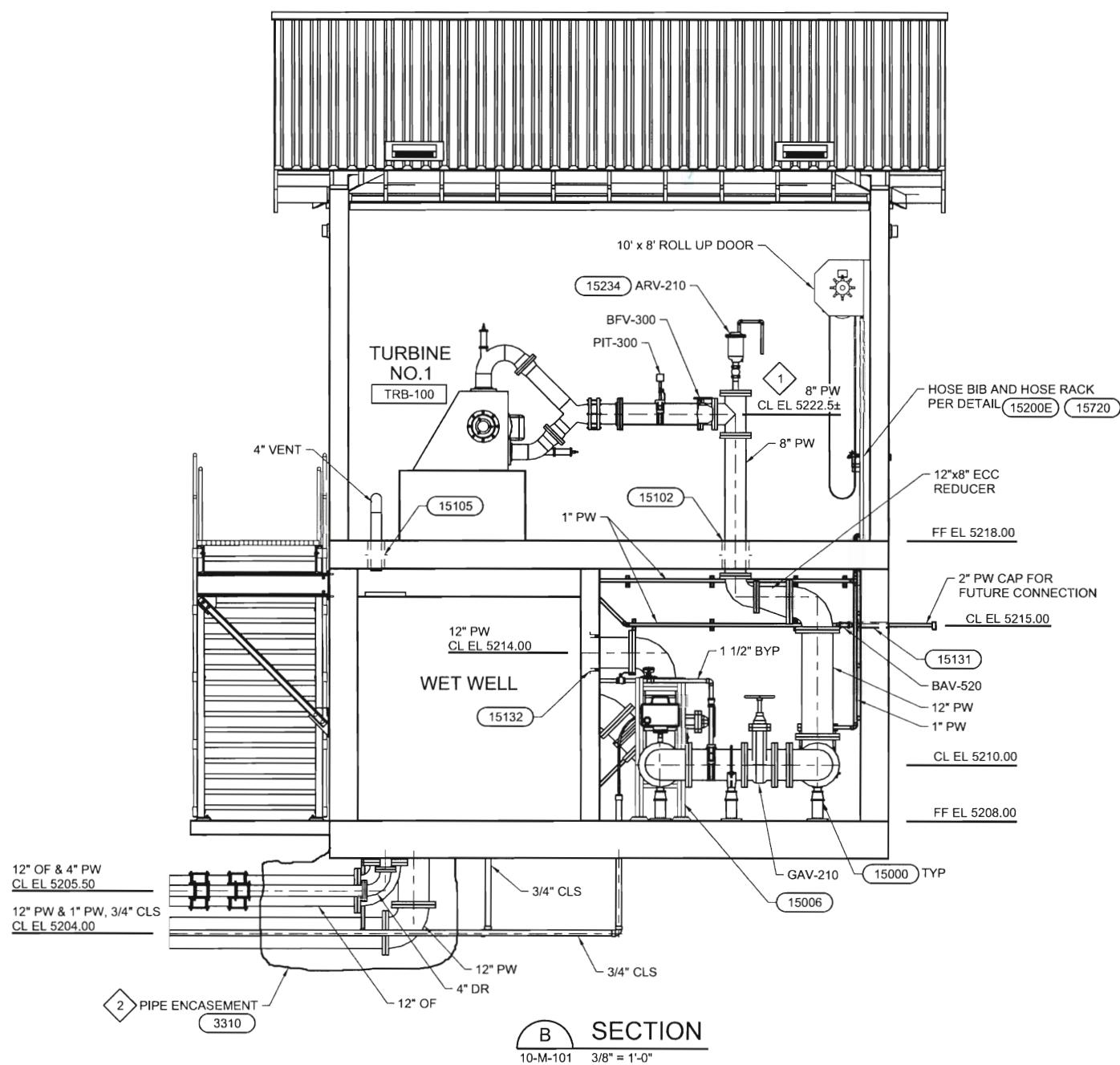
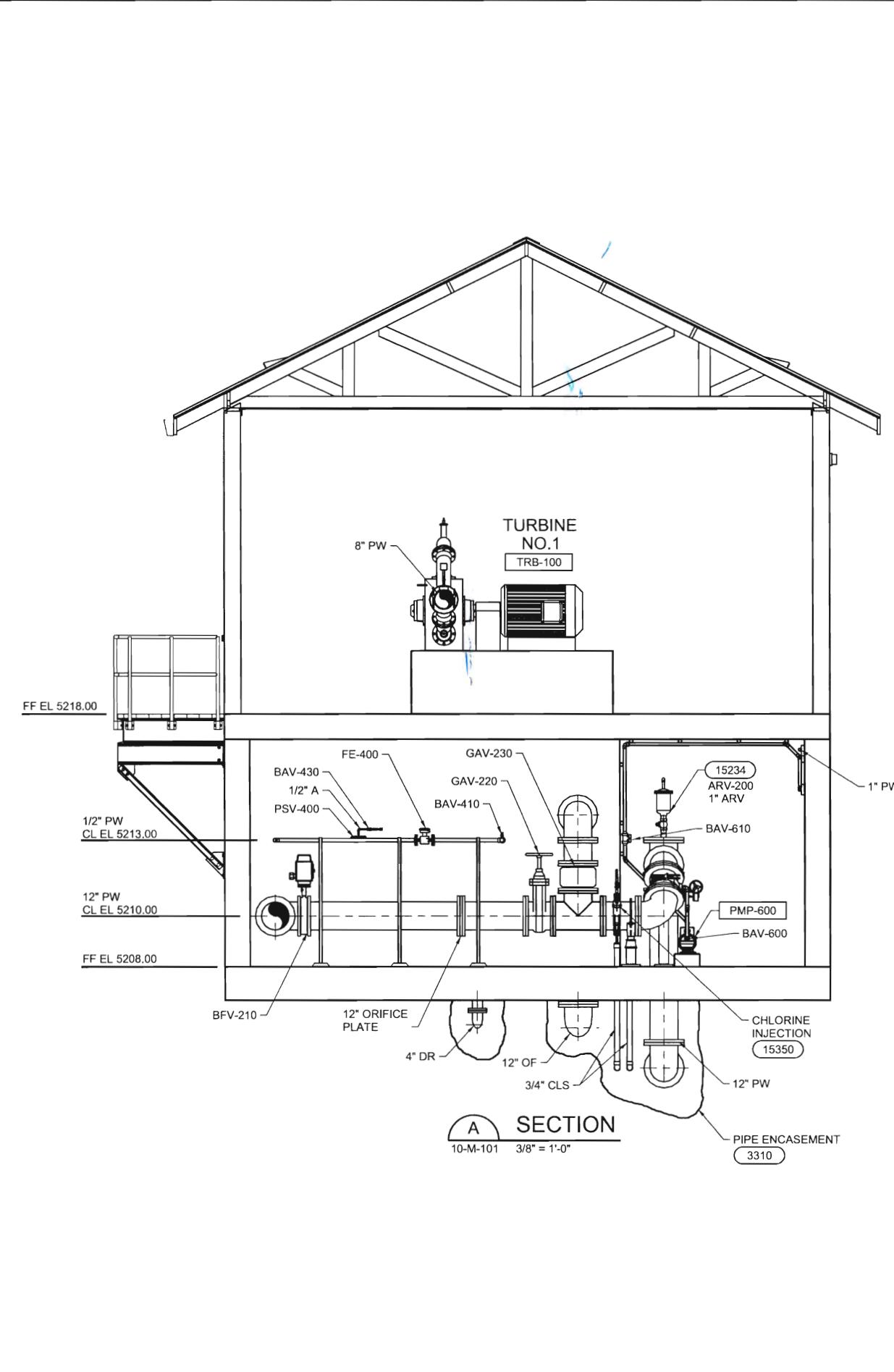
DESIGN
DRAWN
VP
CHECKED
APPROVED
CC


PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

MECHANICAL
TURBINE BUILDING
PLAN

UPPER PLAN

3/8" = 1'-0"



LOWER PLAN

3/8" = 1'-0"

2 0 2 4 FEET
SCALE 3/8"=1'-0"

DATE
FEB 2015
PROJECT NUMBER
10-011
DRAWING NUMBER
10-M-101
SHEET 30 OF 70

VERIFY SCALE
BAR IS ONE INCH ON ORIGINAL DRAWING.
0 IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY.

A

WATERWORKS
ENGINEERS
233 S. Pleasant Grove, Box 103 • Pleasant Grove, UT 84062
800-332-4444 • 801-765-4106

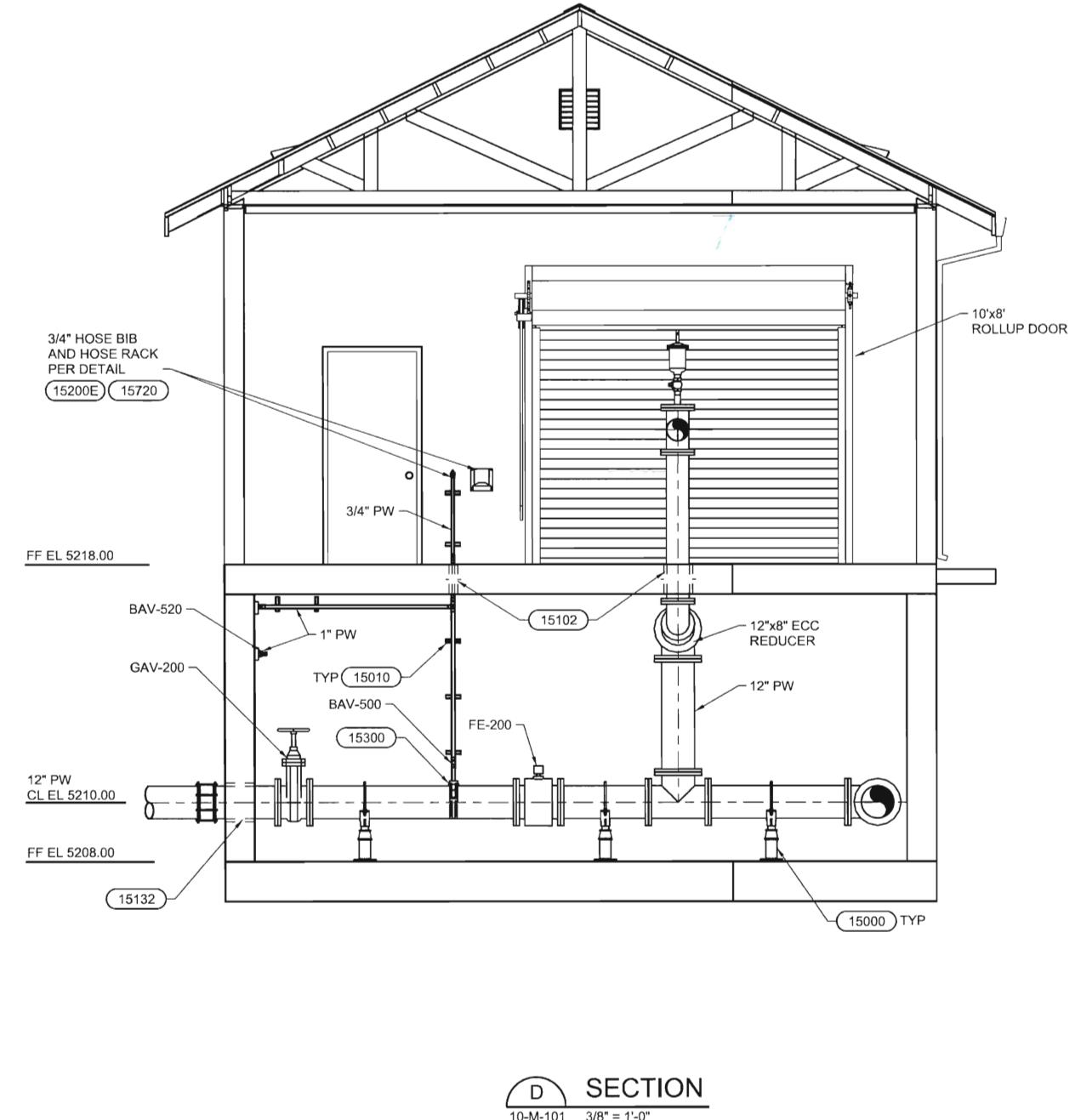
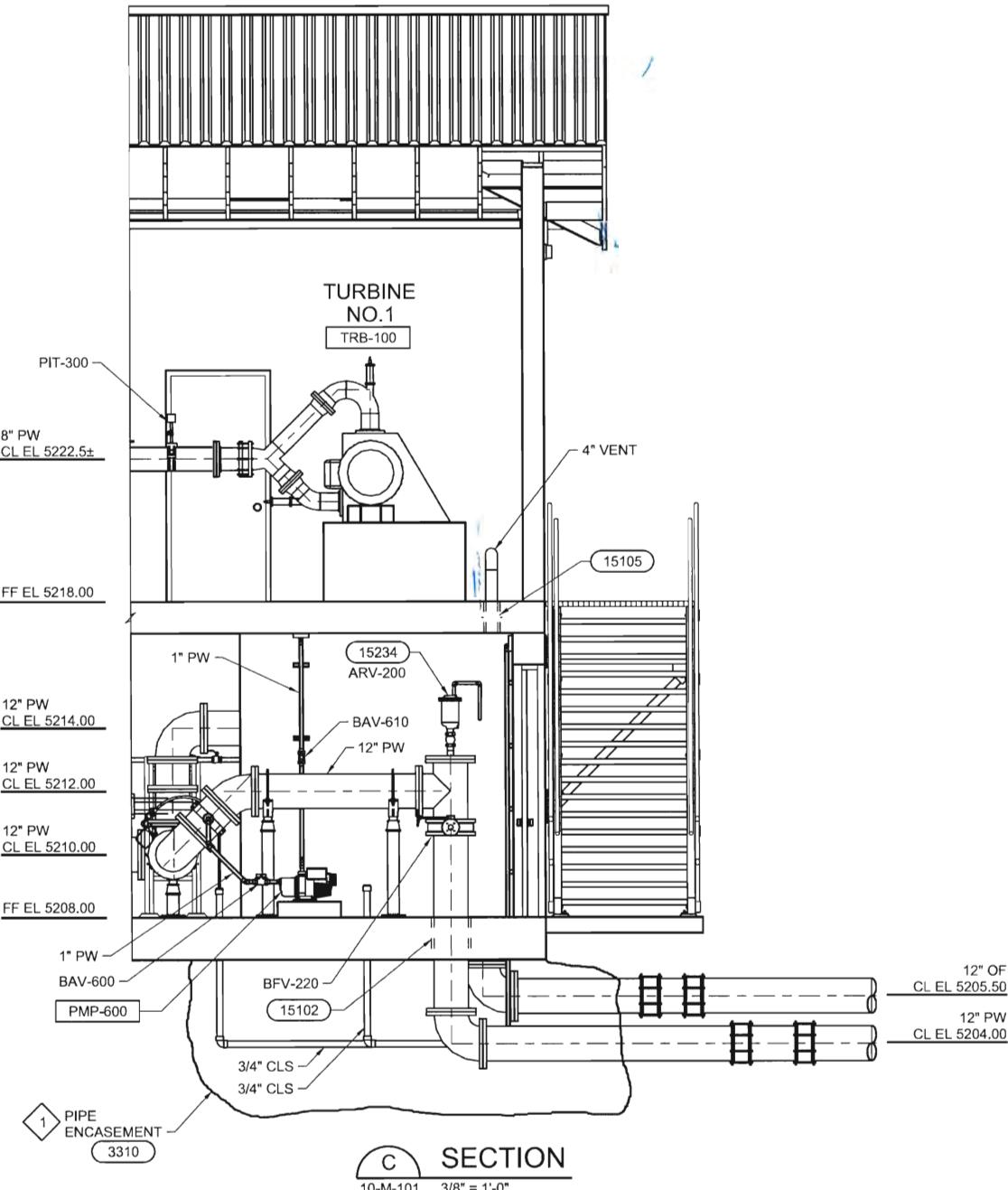
PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

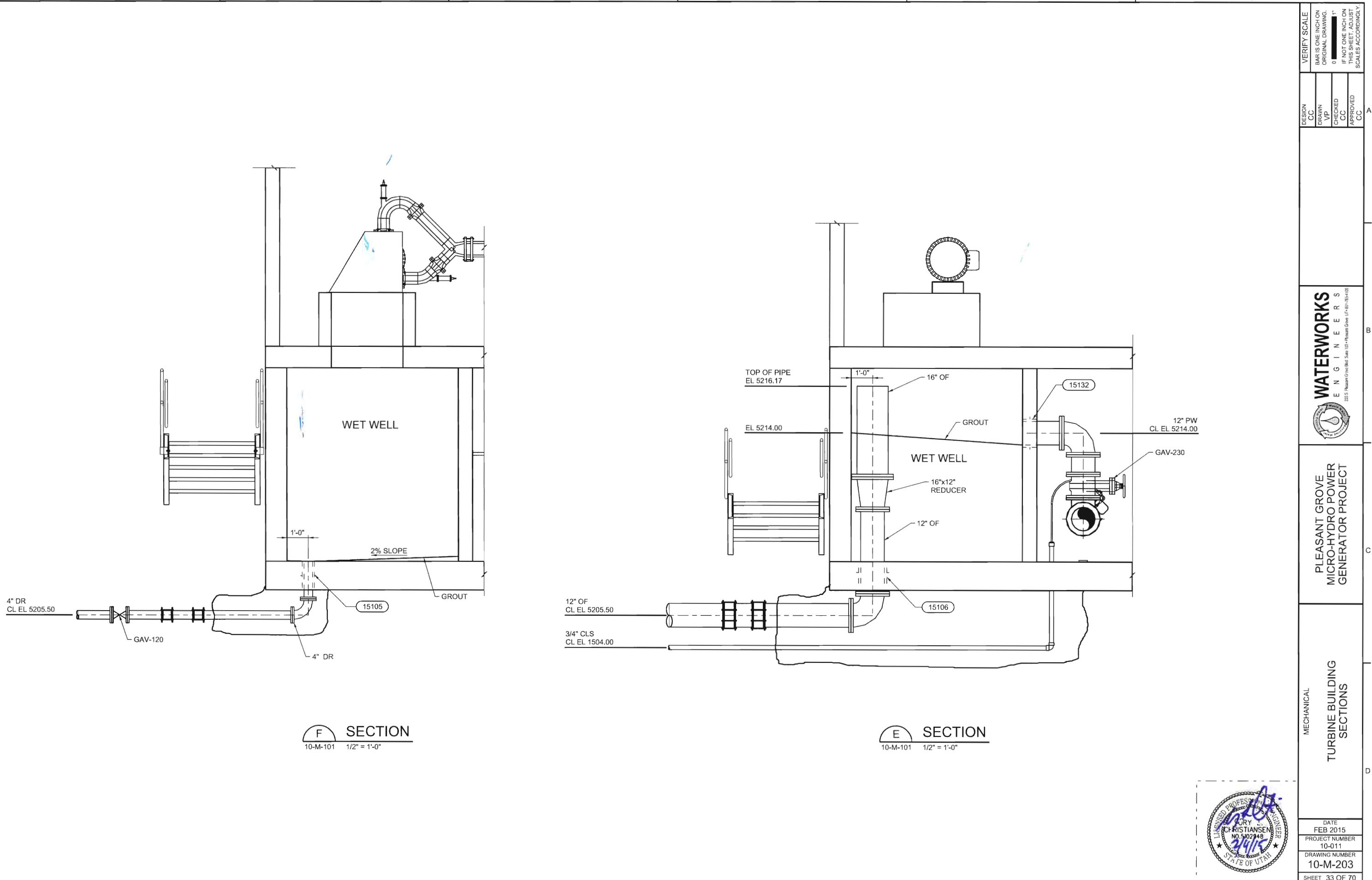
MECHANICAL
TURBINE BUILDING
SECTIONS

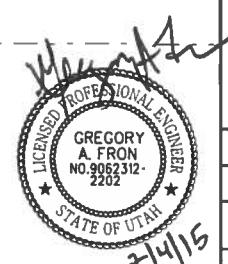
DATE
FEB 2015
PROJECT NUMBER
10-011
DRAWING NUMBER
10-M-201
SHEET 31 OF 70

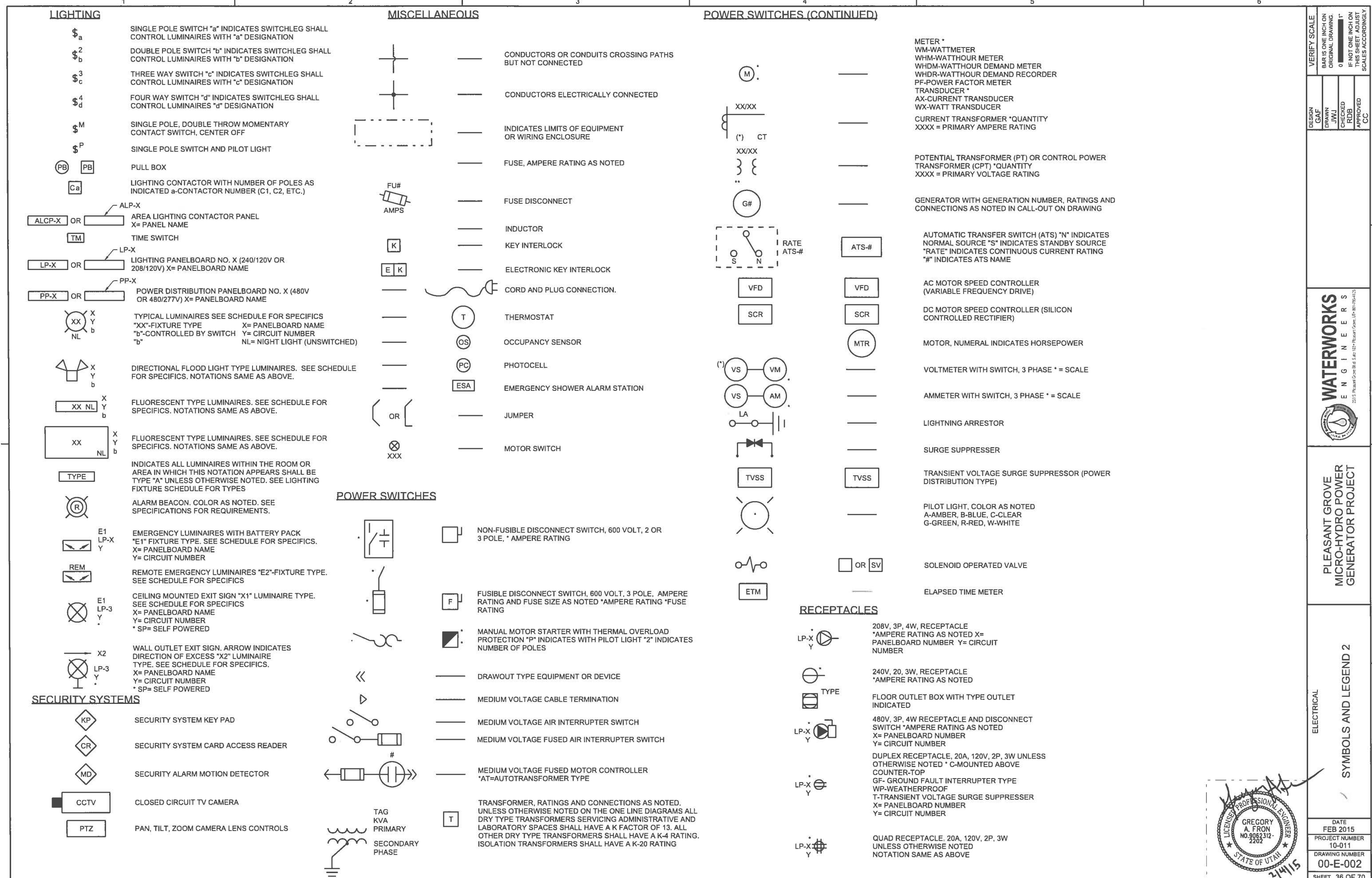
2 0 2 4 FEET
SCALE 3/8"=1'-0"

1 2 3 4 5 6

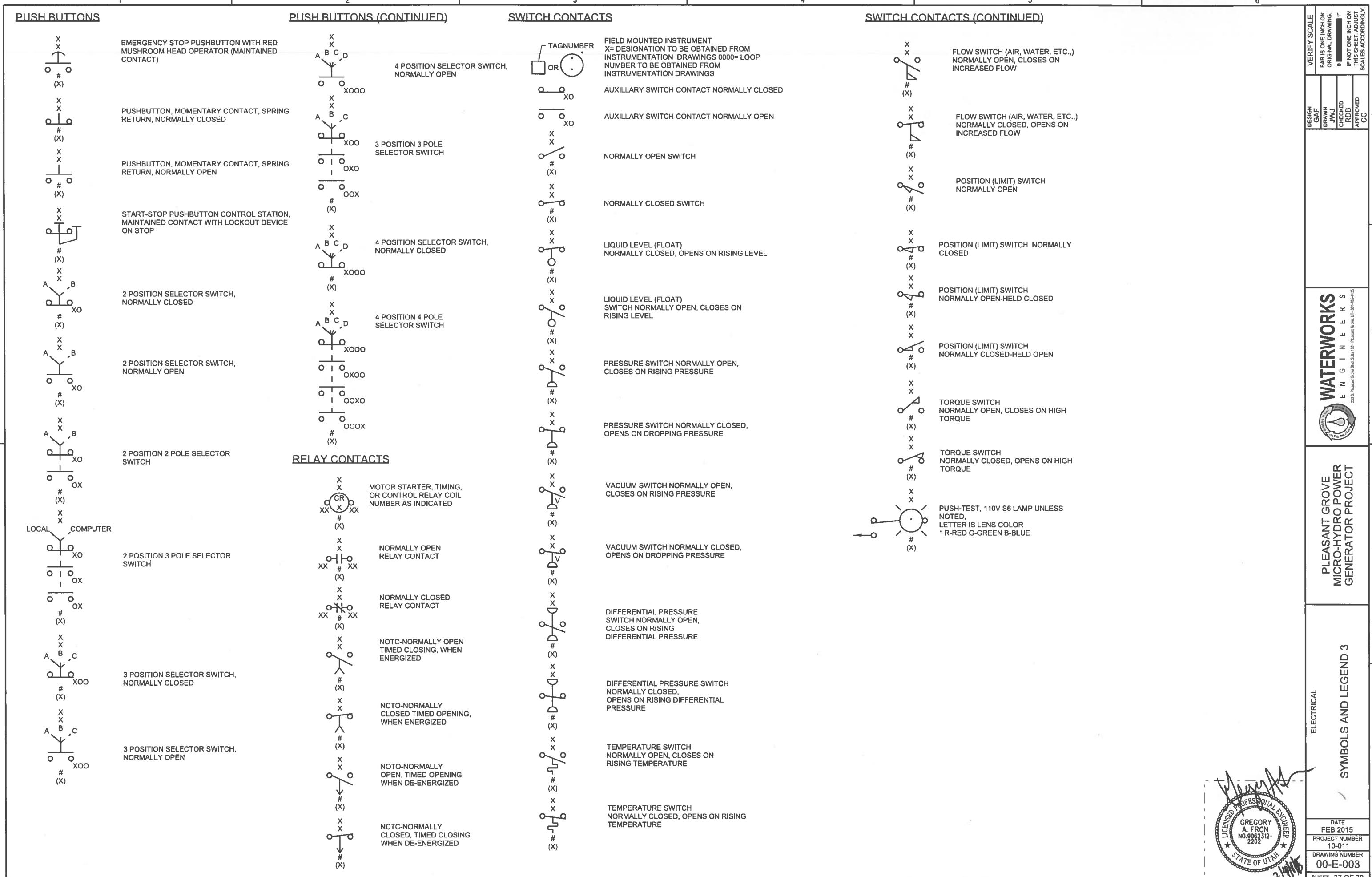


NOTES:
 1 EXTEND PIPE ENCASEMENT MIN 3'-0" BEYOND
 OUTSIDE OF BLDG.

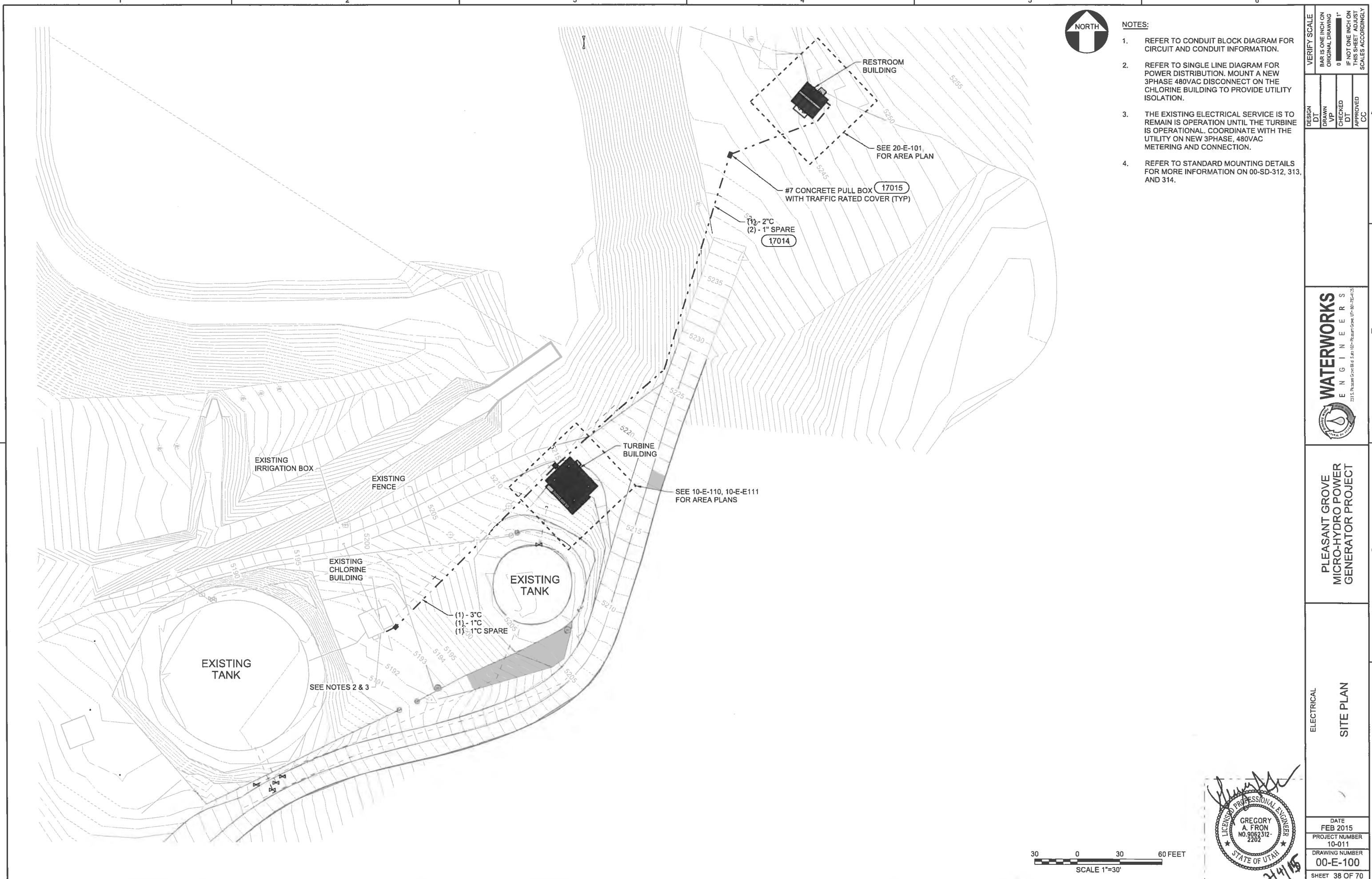

VERIFY SCALE
 BAR IS ONE INCH ON
 ORIGINAL DRAWING.
 0 ■ 1'
 IF NOT ONE INCH ON
 THIS SHEET, ADJUST
 SCALES ACCORDINGLY.

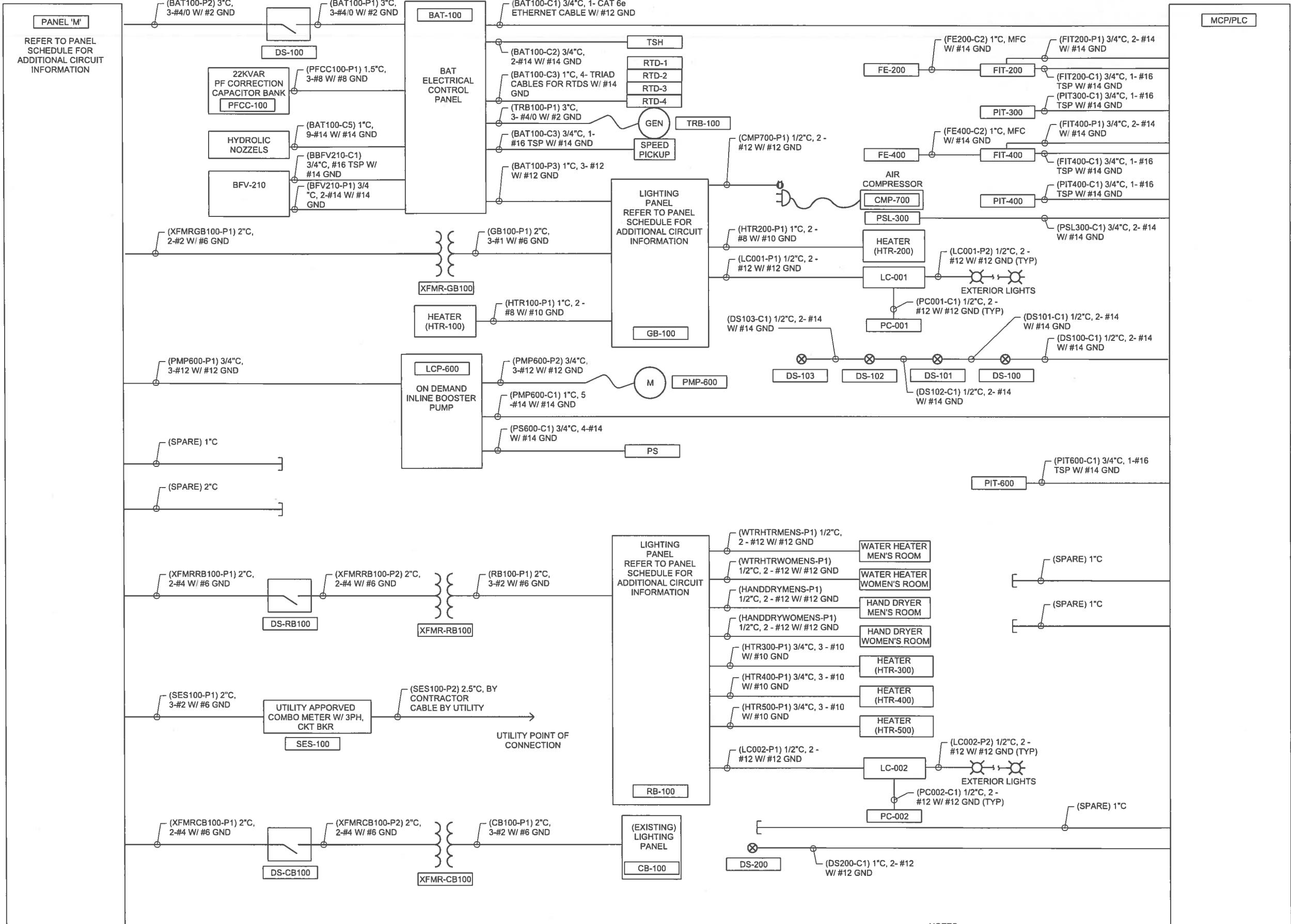

WATERWORKS
 ENGINEERS
 205 S Pleasant Grove Blvd, Suite 103 • Pleasant Grove, UT 84062



MECHANICAL
 TURBINE BUILDING
 SECTIONS


DATE
 FEB 2015
 PROJECT NUMBER
 10-011
 DRAWING NUMBER
 10-M-202
 SHEET 32 OF 70


FILENAME: S:\CAD\Projects\10-011 Pleasant Grove Microhydro\Drawings\Deliverables\10011D-00E003.dwg

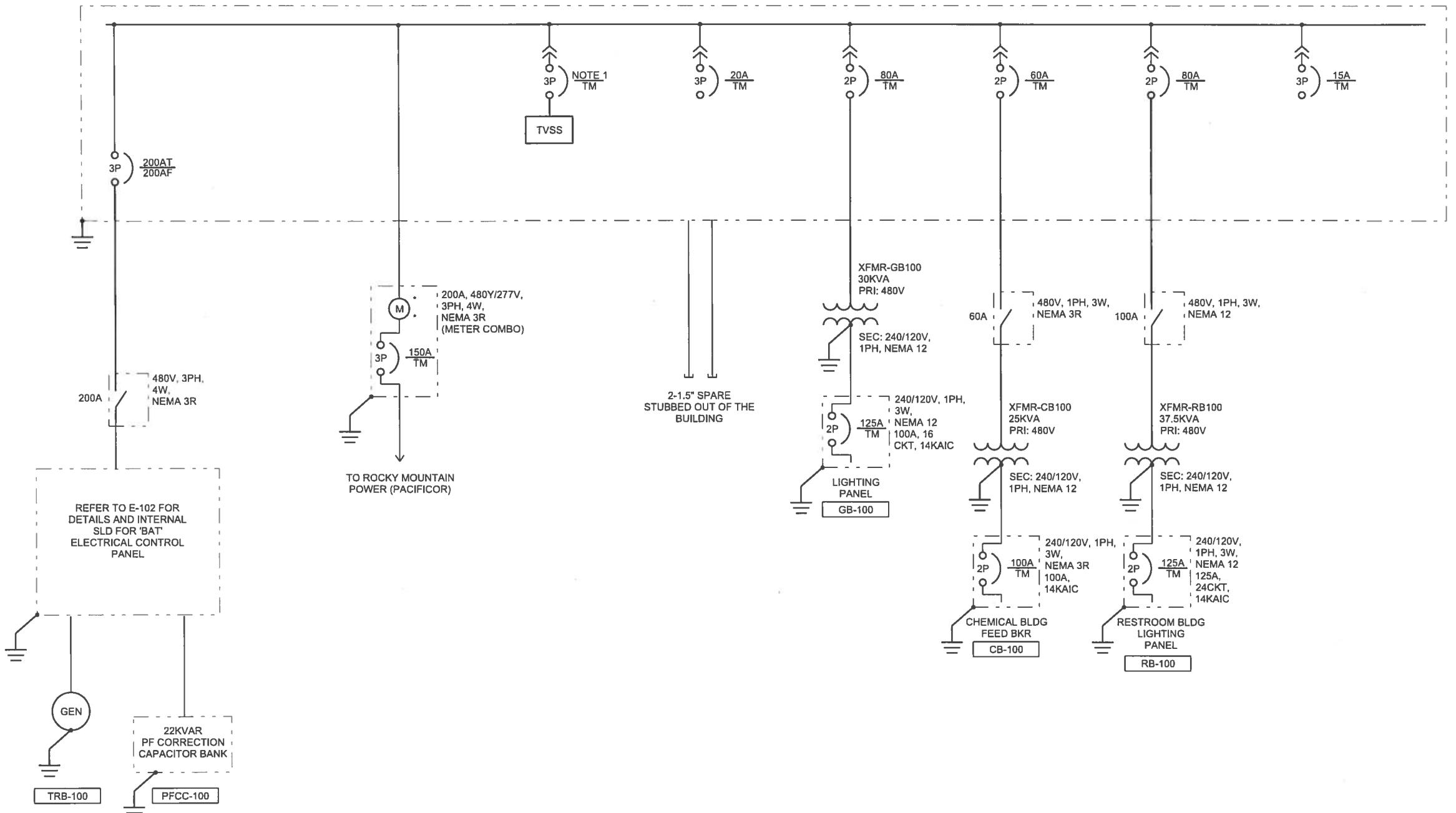

DATE: 2/4/2015

PILOT TIME: 8:57:13 AM

SCALE: 1:0 166667

SCALE: 1:0.100007

WATERWORKS
ENGINEERSPLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT


ELECTRICAL / CONDUIT BLOCK DIAGRAM

DATE: FEB 2015
PROJECT NUMBER: 10-011
DRAWING NUMBER: 00-E-200
SHEET: 39 OF 70

VERIFY SCALE
BARS ONE INCH ON
ORIGINAL DRAWING
0 IF NOT ONE INCH
ON THIS SHEET, ADJUST
SCALES ACCORDINGLY

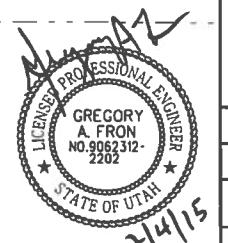
DESIGN
GAF
DRAWN
GAF
CHECKED
GAF
APPROVED
CC

200A, 3P, 4W, 24CKT,
32KAIC, NEMA 12
PANEL 'M'

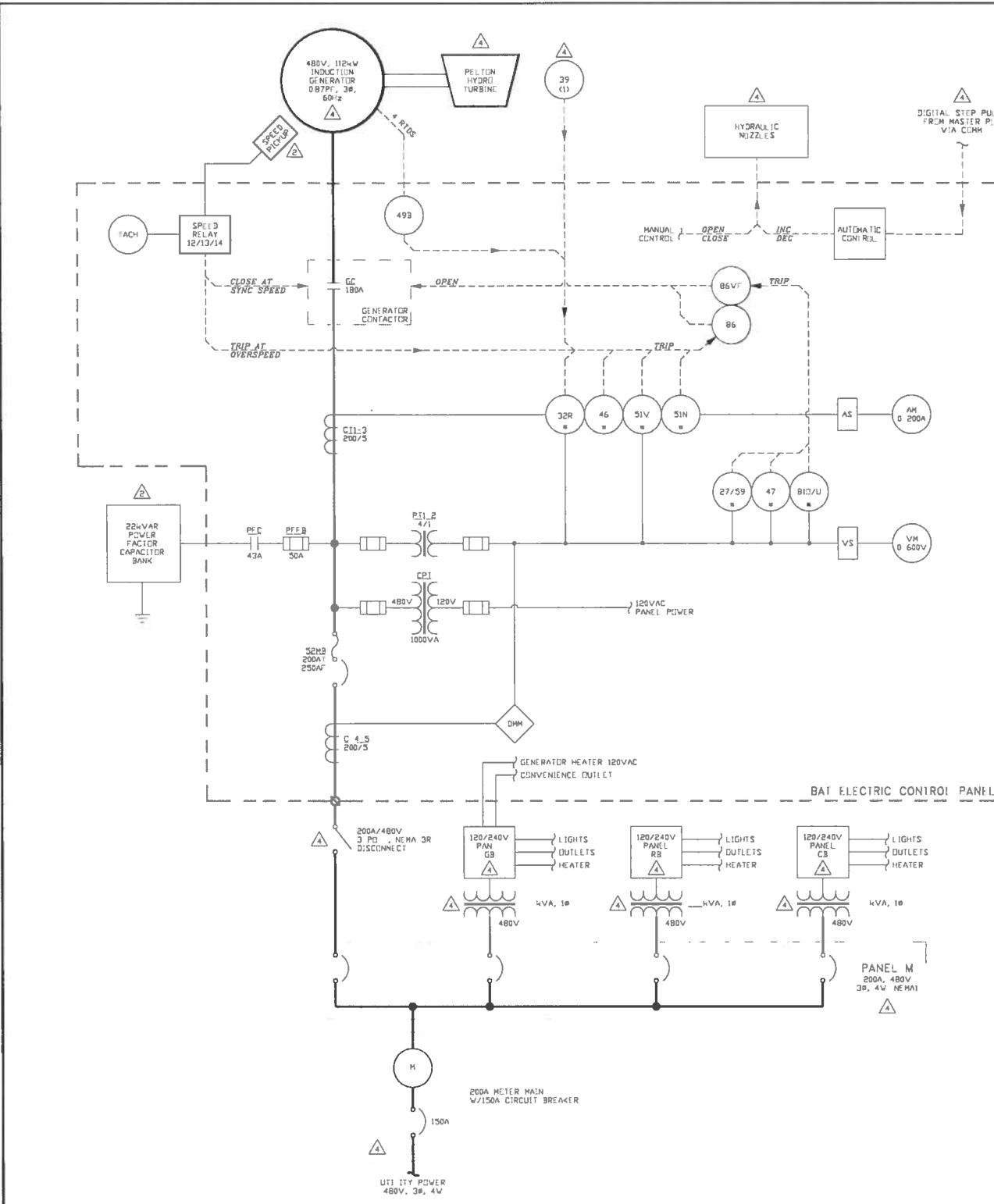
NOTES:

1. PROVIDE OVER CURRENT PROTECTION PER MANUFACTURER'S RECOMMENDATIONS.
2. REFER TO 00-E-103 FOR PANELS 'M', 'GB-100', 'RB-100', AND 'CB-100' SCHEDULES.

VERIFY SCALE
BAR IS ONE INCH ON ORIGINAL DRAWING.
0 IF NOT ONE INCH ON THIS SHEET; ADJUST SCALES ACCORDINGLY.


DESIGN
GAF
DRANN
GAF
CHECKED
GAF
APPROVED
CC

WATERWORKS
ENGINEERS
2351 Pleasant Grove Blvd. Salt Lake City, Utah 84115



PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

ELECTRICAL
POWER SINGLE LINE DIAGRAM
SHEET - 1

40 OF 70

ELECTRICAL RELAY AND EQUIPMENT LIST					
STYLE	FUNCTION	DESCRIPTION	SETTING	MFG.	PART No
12/13/14	SPEED RELAY	24VDC	12=OVER=120%=140RPM 13=SYNC=100%=1200RPM	RED LION	PAXR-0030
27/59	OVER/UNDER VOLTAGE	120VAC, 3Ø	27-1 88Z, 120CYCLES 27-2 50Z, 10CYCLES 59-1 110Z, 60CYCLES 59-2 120Z, 10CYCLES	BECKWITH	PART OF MFR
32R	REVERSE POWER	120VAC, 5A, 3Ø	2% REV PWR 10SEC DELAY	BECKWITH	PART OF MFR
39	OVER VIBRATION	2PDT, MECHANICAL	SET AS REQUIRED	METRIX	MODEL 5550
46	CURRENT BALANCE	5A, 3Ø	10%, 10SEC	BECKWITH	PART OF MFR
47	PHASE SEQUENCE	120VAC, 3Ø	10%, 10SEC	BECKWITH	PART OF MFR
49B	BEARING OVER TEMP	4 POINT 1000 PLT	ALARM 75°C TRIP 85°C	AUTOMATION DIRECT	F2-04RTD
SIN	NEUTRAL OVERCURRENT	5A	20A, 1SEC	BECKWITH	PART OF MFR
S1V	VOLT RESTRAINED OVERCURRENT	5A, 3Ø, 120V	180A, TD 10	BECKWITH	PART OF MFR
S2MB	MAIN BREAKER	480V, 3 POLE 35KAIC	200A TRIP 250A FRAME	GENERAL ELECTRIC	SRPF250A200 SFHA36A0250
B10/U	OVER/UNDER FREQUENCY	120VAC, 1Ø	81/U-1 60.5Hz, 10CYCLES 81/U-1 59.0Hz, 60CYCLES 81/U-2 57.0Hz, 10CYCLES	BECKWITH	PART OF MFR
86	LOCKOUT RELAY	24VDC, 2 DECK	NO SETTINGS	SHALCO	76023
86VF	VOLT/FREQ LOCKOUT RELAY	24VDC, 8 POLE	NO SETTINGS	ALLEN BRADLEY	7000C-PB00Z24
DMM	DIGITAL MULTI METER	24VDC AUX POWER	NO SETTING	MULTITEK	MB42-SB4-PE-03
GC	GENERATOR CONTACTOR	480V, 3Ø, 180A, 120V CONTROL	NO SETTING	SPRECHER & SCHUH	CA6-180-11-1209
PFC	POWER FACTOR CONTACTOR	480V, 3Ø, 43A, 120V CONTROL	NO SETTING	SPRECHER & SCHUH	CA7-43-10-120
MFR	MULTI FUNCTION RELAY	120VAC, 5A, 3Ø, 24VDC AUX POWER	SEE 27/32R/46/47/ SIN/S1V/59/810/BIU	BECKWITH	M3410A-1B1P10

BUILDING LEGEND

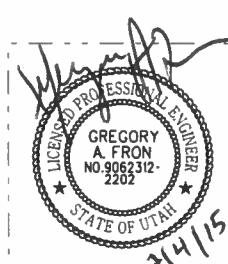
LINE LEGEND

— — —	CONTROL
— — —	HIGHER VOLTAGE
— — —	REGULAR WIRING
— — —	TRIP LINE

SYMBOLS

▲ SUPPLIED BY BAT ELECTRIC
INSTALLED BY OTHERS

▲ NOT BY BAT ELECTRIC


* PART OF MFR

DEVICE LEGEND	
AM	- AMMETER
AS	- AMMETER SWITCH
CPT	- CONTROL POWER TRANSFORMER
CT	- CURRENT TRANSFORMER
M	- METERING
PFFB	- POWER FACTOR FUSE BLOCK
PT	- POTENTIAL TRANSFORMER
TACH	- TACHOMETER
VM	- VOLTMETER
VS	- VOLTMETER SWITCH

REFER TO E-101 FOR
DETAILS AND
CONNECTIONS LD FOR
'BAT' ELECTRICAL
CONTROL PANEL

**PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT**

ELECTRICAL
SINGLE LINE DIAGRAM
SHEET - 2

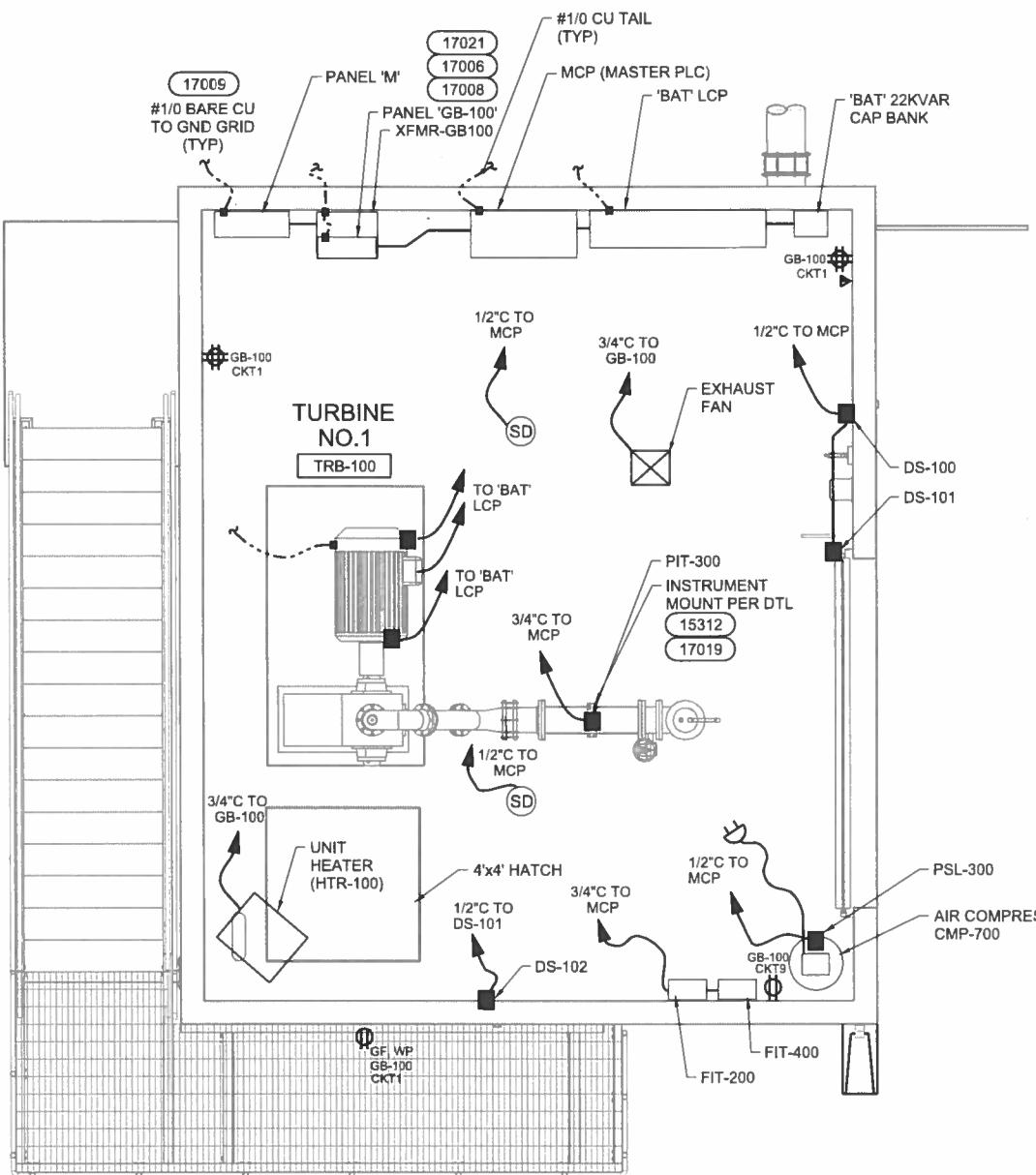
PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

ELECTRICAL
SHEET - 2

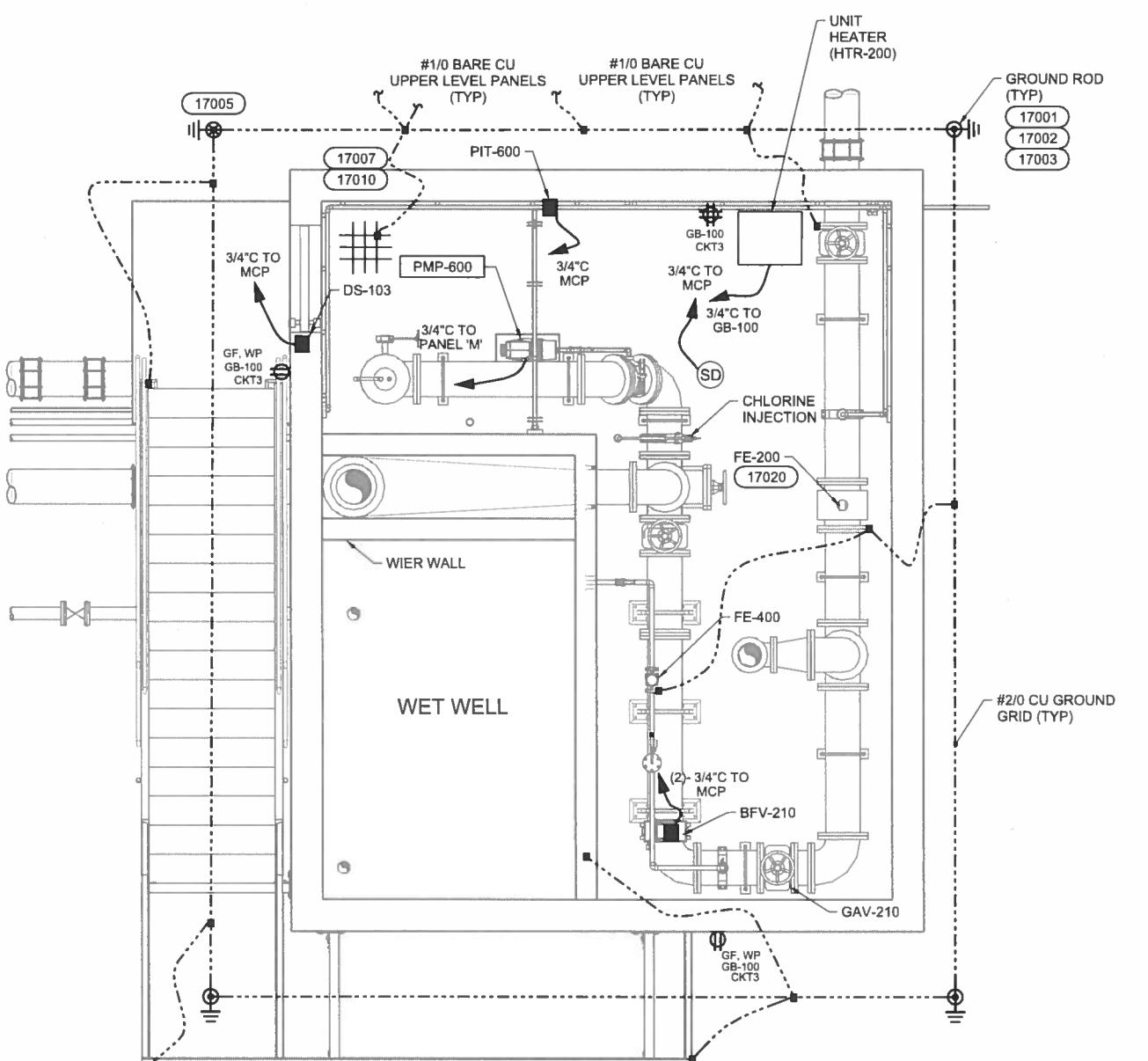
DATE
FEB 2015
PROJECT NUMBER
10-011
DRAWING NUMBER
10-E-102
SHEET 41 OF 7

PANEL TAG No. <u>PANEL 'M'</u>														
LOCATION <u>GENREATOR BUILDING</u>						NEMA TYPE/MOUNTING <u>12/SURFACE</u>								
MAIN DEVICE <u>MCB 200A</u>						AIC RATING <u>32KAIC</u>								
BUS AMPACITY <u>200</u>						FED FROM <u>TURBINE GENERATOR -100</u>								
VOLTS <u>480</u>						ACCESSORIES <u>TVSS, FEED THROUGH LUGS,</u>								
PHASE/WIRE CONFIG. <u>3-PHASE/4-WIRE</u>						REMARKS <u>100% NEUTRAL, ETC...</u>								
LOAD VA														
PHASE A	PHASE B	PHASE C	LOAD DESCRIPTION			WIRE SIZE	DEMAND	BKR	BKR. NO.	BKR	DEMAND			
11000			PANEL GB-100 (XFMR-GB100)			#6	1.25	60/2	1 2					
	11000					#6	1.25		3 4					
	0		SPARE			5	6	30/2						
0						7	8		15/3					
	12000		PANEL RB-100 (XFMR-RB100)			#2	1.25	80/2	9 10					
0		12000				#2	1.25		11 12	20/1				
	0		SPARE			13	14							
						15	16							
7500			CHEM BLDG (XFMR-CB100)			#4	1.25	60/2	17 18					
	7500					#4	1.25		19 20					
	0		SPARE			21	22							
18500	23000	19500	CONNECTED VA			0	0	0						
23125	28750	24375	DEMAND VA			0	0	0						
TOTAL PANEL CONNECTED LOAD						VA	AMPS							
61000						18500	23000	19500						
TOTAL PANEL DEMAND LOAD						76250	91.71	23125	28750	24375				
TOTAL DEMAND PHASE AMPS						83.4	103.7	88.0						
TOTAL DEMAND FACTOR						125%								

PANEL TAG No. <u>RB-100</u>														
LOCATION <u>RESTROOM BUILDING</u>						NEMA TYPE/MOUNTING <u>3R/SURFACE</u>								
MAIN DEVICE <u>125A MCB</u>						AIC RATING <u>14K</u>								
BUS AMPACITY <u>125</u>						FED FROM <u>XFMR-RB100, VIA PANEL 'M'</u>								
VOLTS, PHASE, WIRE <u>240 V/1-PHASE/3-WIRE</u>						ACCESSORIES <u>TVSS</u>								
LOAD VA														
PHASE A	PHASE B	PHASE	LOAD DESCRIPTION			WIRE SIZE	DEMAND	BKR	BKR. NO.	BKR	DEMAND			
750			RECEPTACLES			#12	1.25	20/1	1 2	20/1	1.25			
	1500		HEATER (MENS RM) HTR-300			#12	1.25	20/2	3 4	20/1	1.25			
1500						#12	1.25		5 6	30/2	1.00			
	2500		WATER HEATER (MENS RM)			#10	1.00	30/2	7 8		1.00			
2500						#10	1.00		9 10	20/1	1.00			
	1500		HEATER (WOMENS RM) HTR-400			#12	1.25	20/2	11 12	20/1	1.00			
1500						#12	1.25		13 14	20/2	1.25			
	0		HEATER (WOMENS RM) HTR-400			0			15 16		1.25			
0						0			17 18					
	0		CONNECTED VA			0			19 20					
6250	5500		DEMAND VA			0			21 22					
7188	6250		CONNECTED VA			0			23 24					
TOTAL CONNECTED VA - PER PHASE						VA	AMPS							
18500						23770	99.04							
TOTAL DEMAND VA - PER PHASE						26463	110.26							
TOTAL DEMAND PHASE AMPS						111%								


PANEL TAG No. <u>GB-100</u>											
LOCATION <u>GENERATOR BUILDING</u>						NEMA TYPE/MOUNTING <u>12/SURFACE</u>					
MAIN DEVICE <u>125A MCB</u>						AIC RATING <u>14K</u>					
BUS AMPACITY <u>125</u>						FED FROM <u>XFMR-GB100, VIA PANEL 'M'</u>					
VOLTS, PHASE, WIRE <u>240 V/1-PHASE/3-WIRE</u>						ACCESSORIES <u>TVSS</u>					
LOAD VA											
PHASE A	PHASE B	PHASE	LOAD DESCRIPTION			WIRE SIZE	DEMAND	BKR	BKR. NO.	BKR	DEMAND
1080			UPPER LEVEL RECPTS			#12	1.00	20/1	1 2	20/1	1.25
	720		LOWER LEVEL RECPTS			#12	1.00	20/1	3 4	20/1	1.25
3750			BLDG HEATER (UPPER LEVEL)			#8	1.25	40/2	5 6	20/1	1.25
	3750		HTR-100			#8	1.25		7 8	20/1	1.25
500			AIR COMPRESSOR			#12	1.00	20/1	9 10	15/1	1.25
	3750		BLDG HEATER (LOWER LEVEL)			#8	1.25	40/2	11 12	100	#12
3750		</									

NOTES:


1. REFER TO CONDUIT BLOCK DIAGRAM FOR CIRCUIT AND CONDUIT INFORMATION.
2. REFER TO 10-E-103 FOR PANELS 'M', 'GB-100' SCHEDULES.
3. REFER TO STANDARD MOUNTING DETAILS FOR MORE INFORMATION ON 00-SD-312, 313, AND 314.

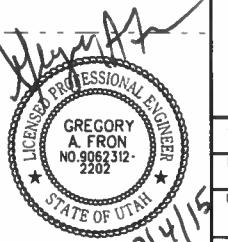
VERIFY SCALE	
BAR IS ONE INCH ON ORIGINAL DRAWING.	0
IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY.	1"
DESIGN	GAF
DRAWN	GAF
CHECKED	CC
APPROVED	CC

UPPER PLAN

3/8" = 1'- 0"

LOWER PLAN

3/8" = 1'-0"



SCALE 3/8"=1'-0"

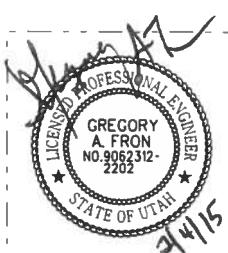
WATERWORKS
ENGINEERS
233 Pleasant Grove, Suite 107, Pleasant Grove, UT 84062

PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

ELECTRICAL
TURBINE BUILDING
POWER AND GROUNDING PLAN

10-E-110

SHEET 43 OF 70

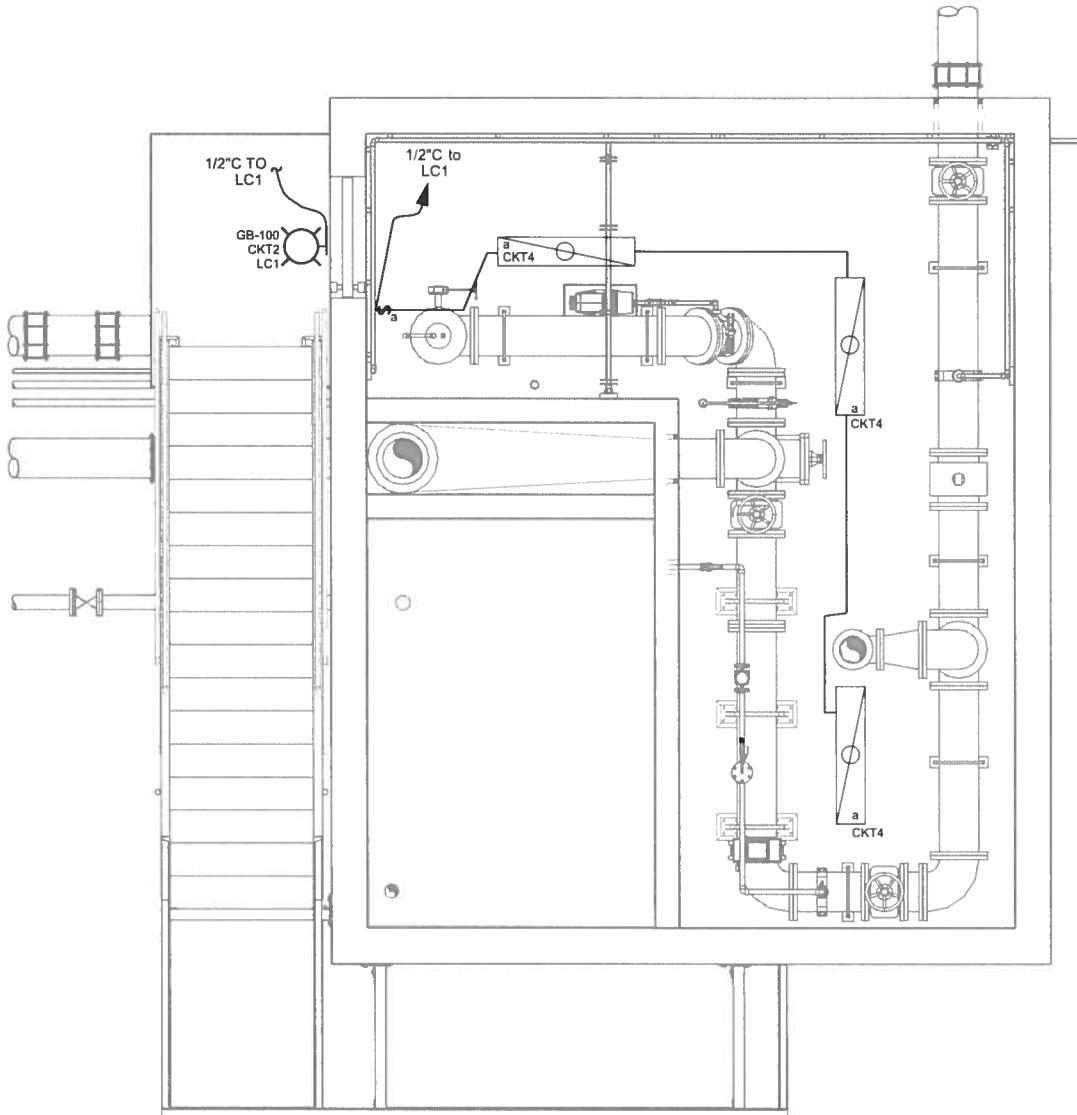

VERIFY SCALE
BAR IS ONE INCH ON
ORIGINAL DRAWING
0 IF NOT ONE INCH ON
THIS SHEET, ADJUST
SCALES ACCORDINGLY

DESIGN
GAF
DRAWN
GAF
CHECKED
CC
APPROVED
CC

WATERWORKS
ENGINEERS
2315 Pleasant Grove, Box 542-101, Pleasant Grove, UT 84062-5421


PLEASANT GROVE
MICRO-HYDRO POWER
GENERATOR PROJECT

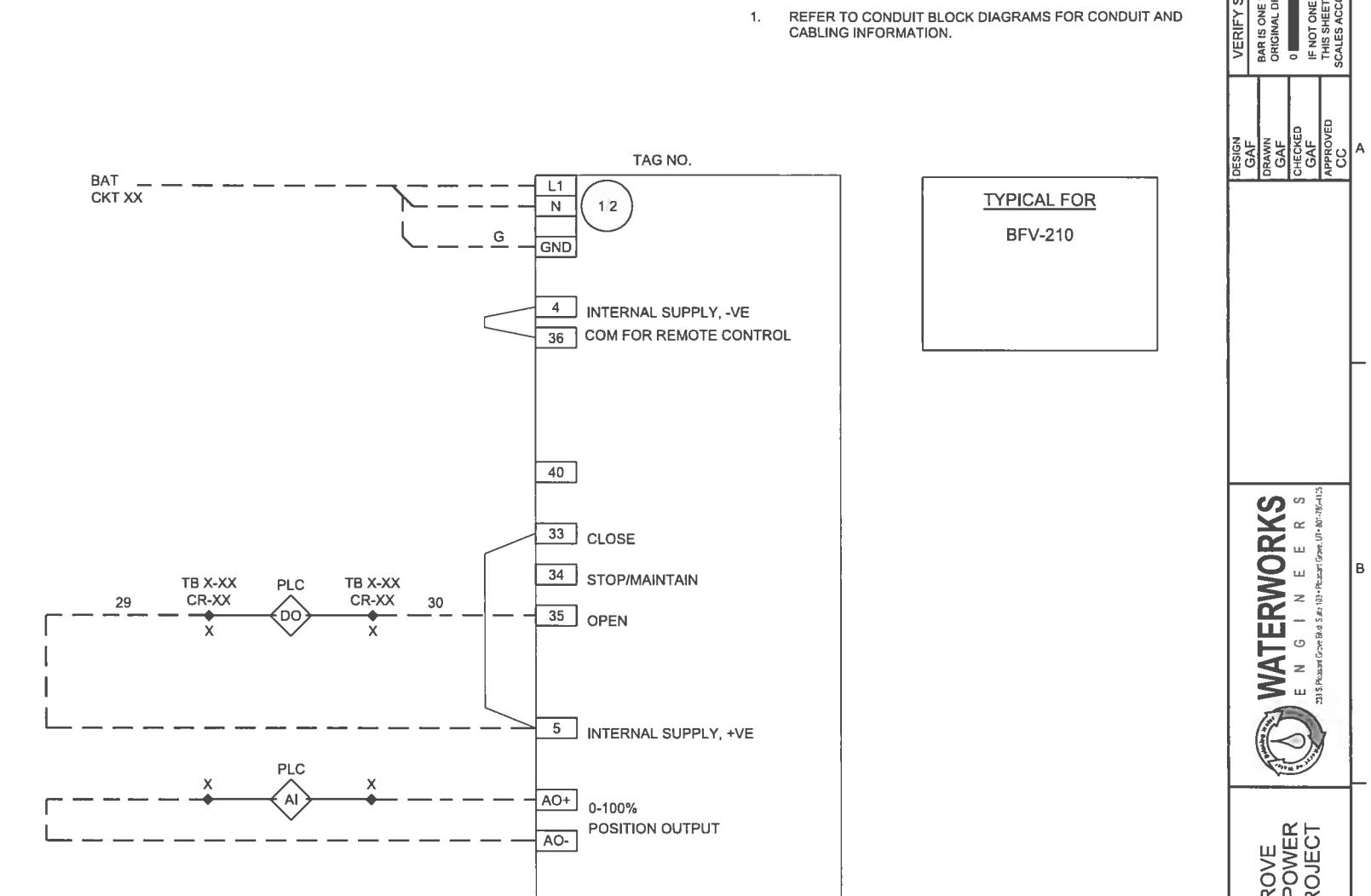
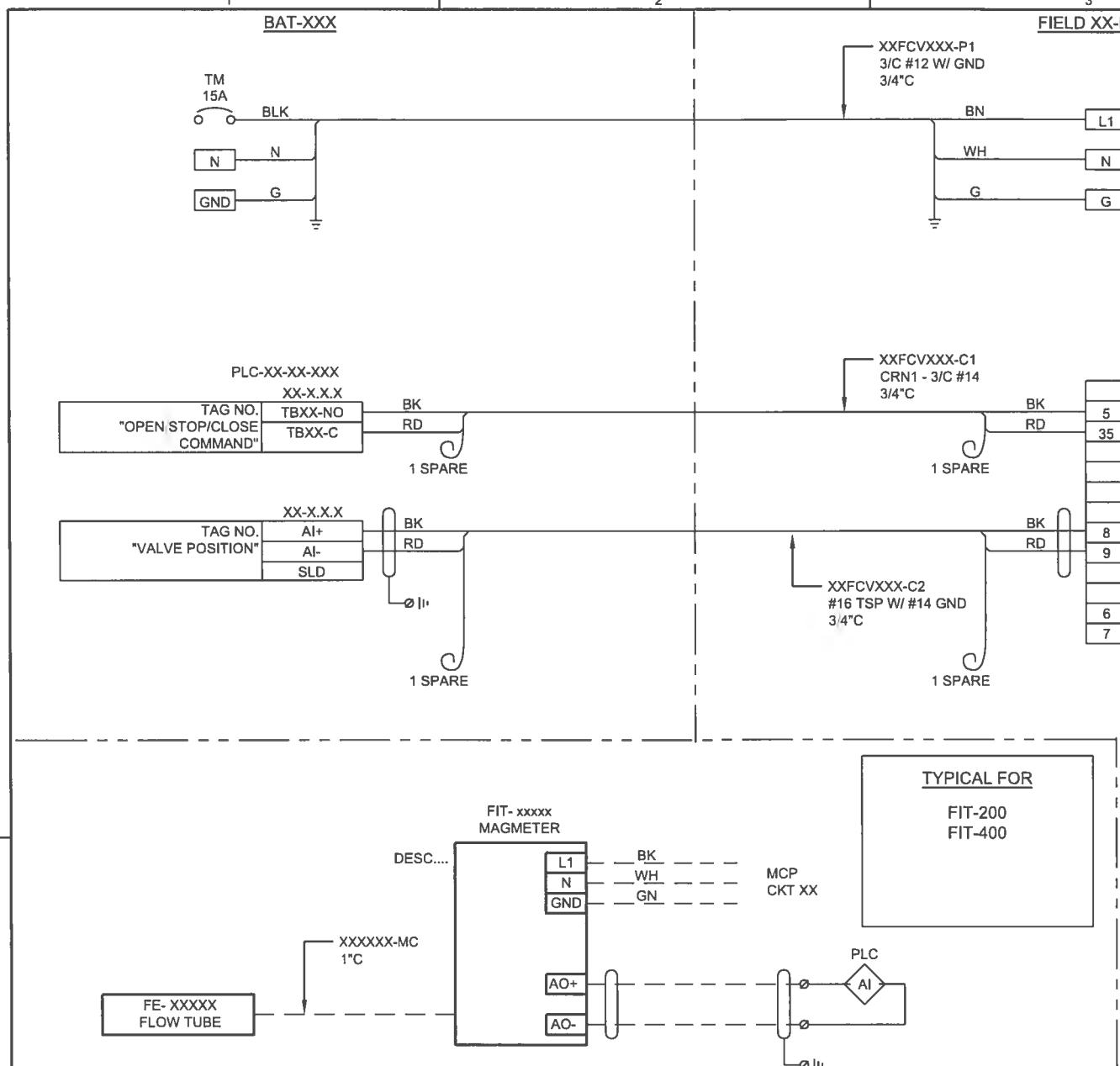
ELECTRICAL
TURBINE BUILDING
LIGHTING PLAN


2 0 2 4 FEET
SCALE 3/8"=1'-0"

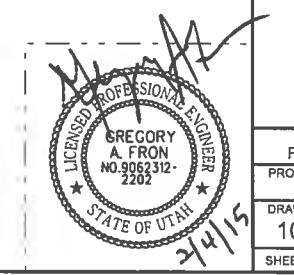
10-E-111
PLOT TIME: 9:04:20 AM
SCALE: 1:5.3333
SHEET 44 OF 70

UPPER PLAN

3/8" = 1'- 0"



LOWER PLAN

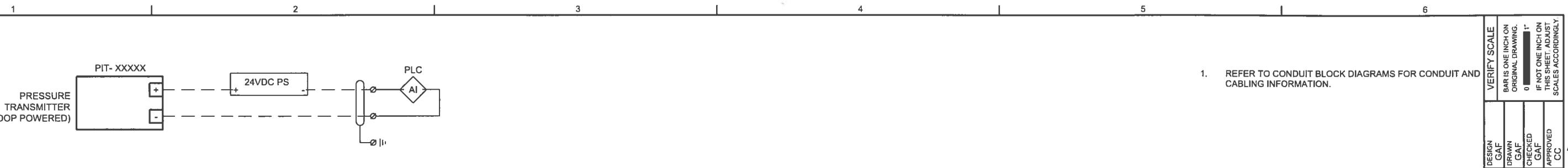
3/8" = 1'-0"


LUMINAIRE SCHEDULE

DOWNLIGHTING

ITEM	DESCRIPTION	MOUNTING	LAMP	LUMINAIRE SPECIFICATIONS				
		METHOD	QTY	TYPE	MANUFACTURER	CATALOG	VOLTS	VA
1	WP STRIP LIGHTS, 2 LAMPS, <10% THD, LISTED FOR DAMP LOCATIONS	CEILING	10	T8	LITHONIA	DMS 2 96T8 120 GEB101S	120	118
2	WALPAK LISTED FOR DAMP LOCATIONS	WALL	6	HPS	LITHONIA	TWA 70S 120 LPI	120	70

TYPICAL FLOW METER CONNECTION DIAGRAM



SCHEMATIC AND CONNECTION
DIAGRAMS SHEET - 1

ELECTRICAL

WATERWORKS
ENGINEERS
3315 Pleasant Grove Blvd, Suite 101, Pleasant Grove, UT 84062

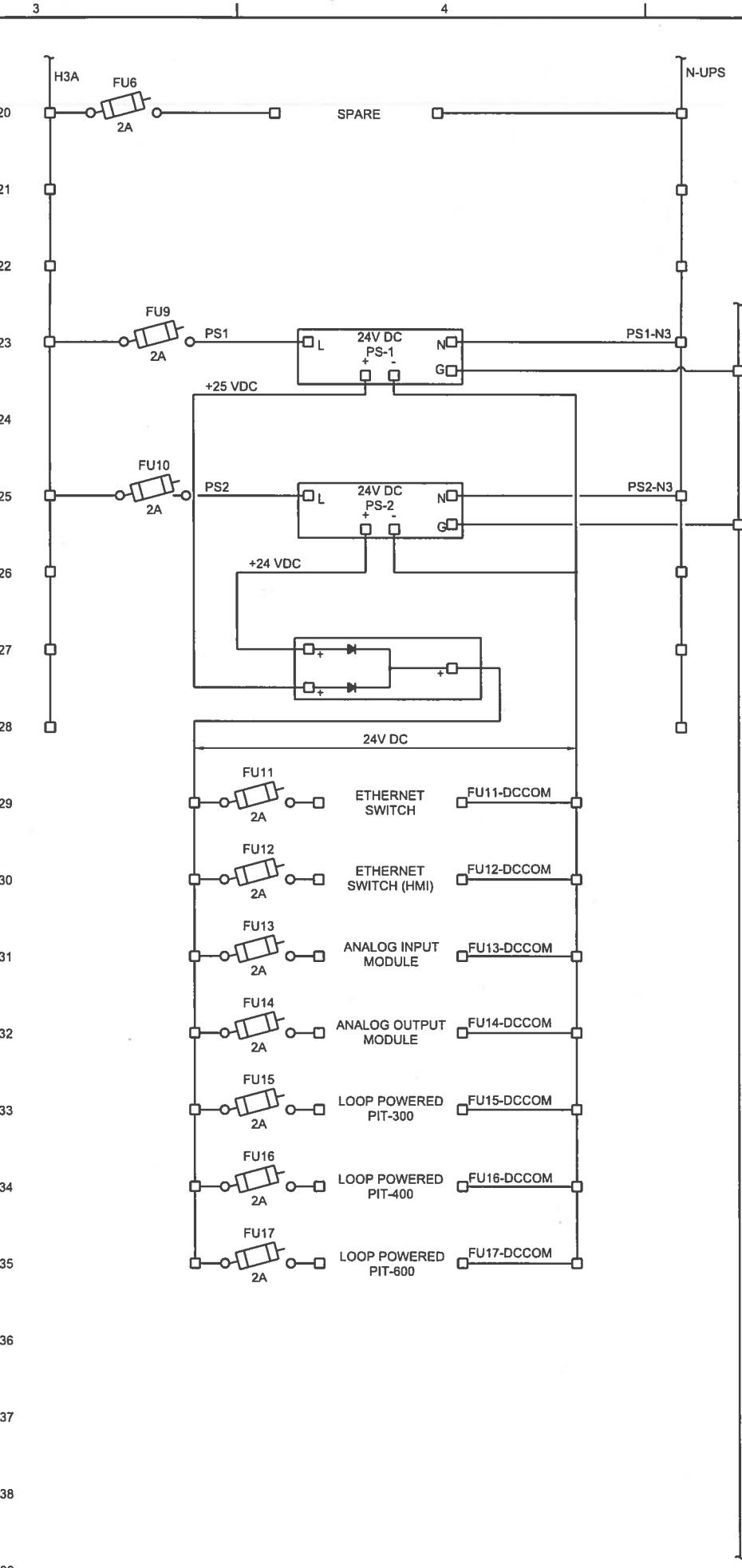
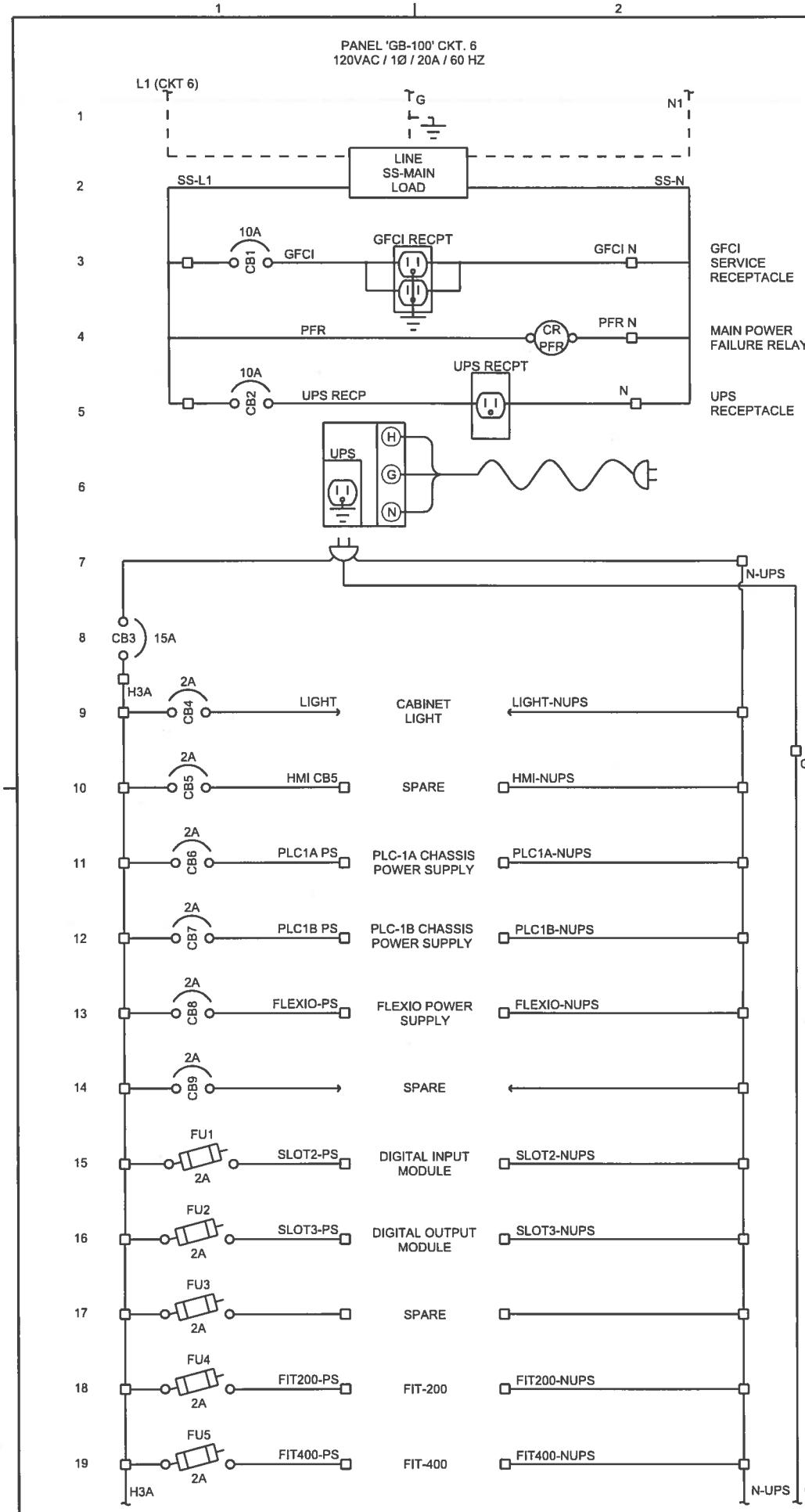
TYPICAL PRESSURE TRANSMITTER CONNECTION DIAGRAM

WATERWORKS
ENGINEERS

2314 Pleasant Grove Blvd. Salt Lake City, UT 84116-3743
800.882.3314 • 801.977.3314 • FAX 801.977.3315
E-mail: info@waterworkseng.com • Web: www.waterworkseng.com

ELECTRICAL
SCHEMATIC AND CONNECTION
DIAGRAMS SHEET - 2

LICENSED PROFESSIONAL ENGINEER
GREGORY A. FRON
NO. 9062312-2202
DATE FEB 2015
PROJECT NUMBER 10-011
DRAWING NUMBER 10-E-201
SHEET 46 OF 70
2/1/15

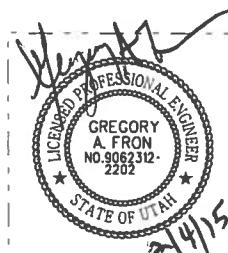


SCALE: 1:0.166667

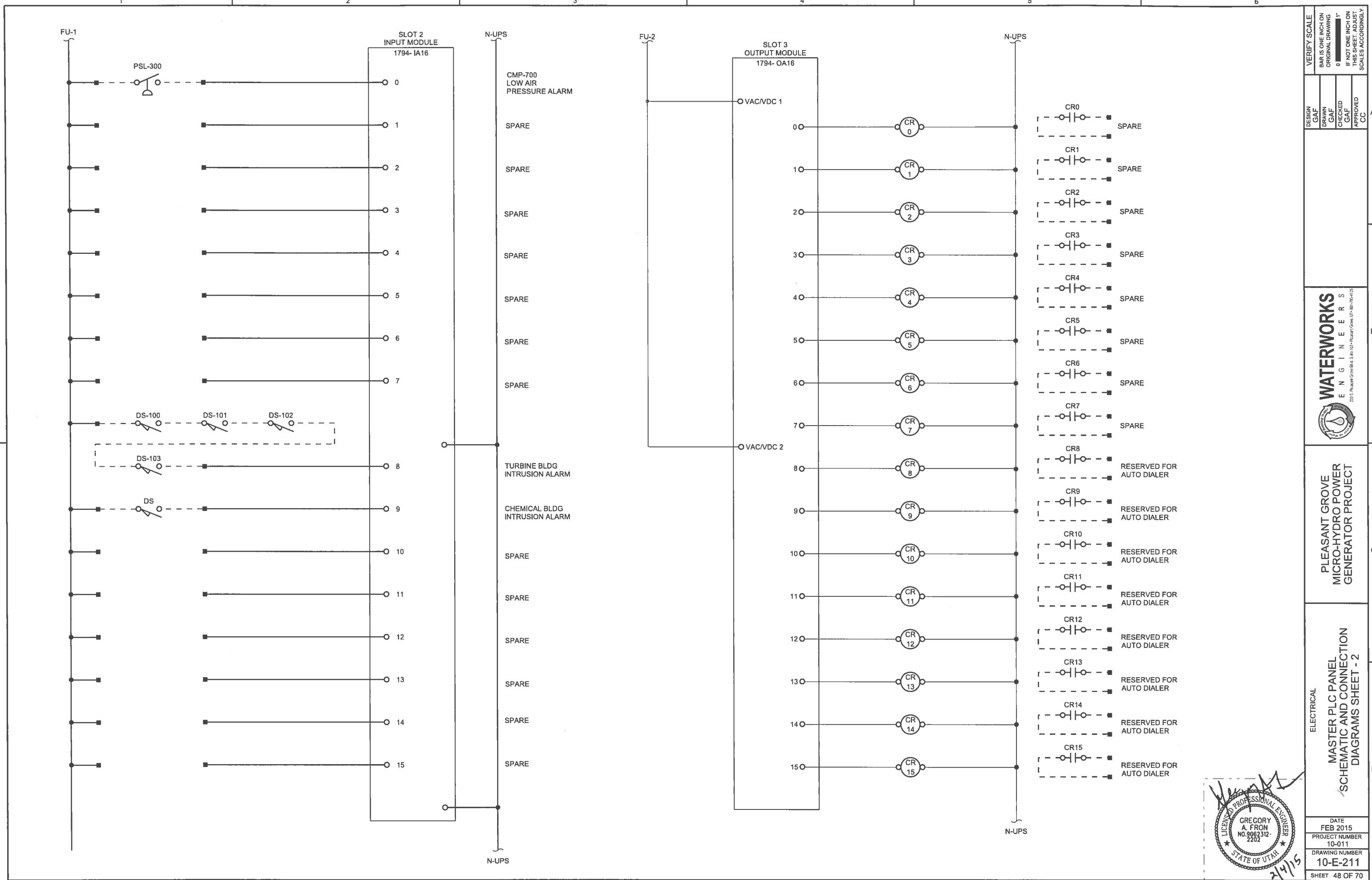
FILENAME: S:\CAD\Projects\10-011 Pleasant Grove Microhydro\Drawings\Deliverables\10011D-10E201.dgn

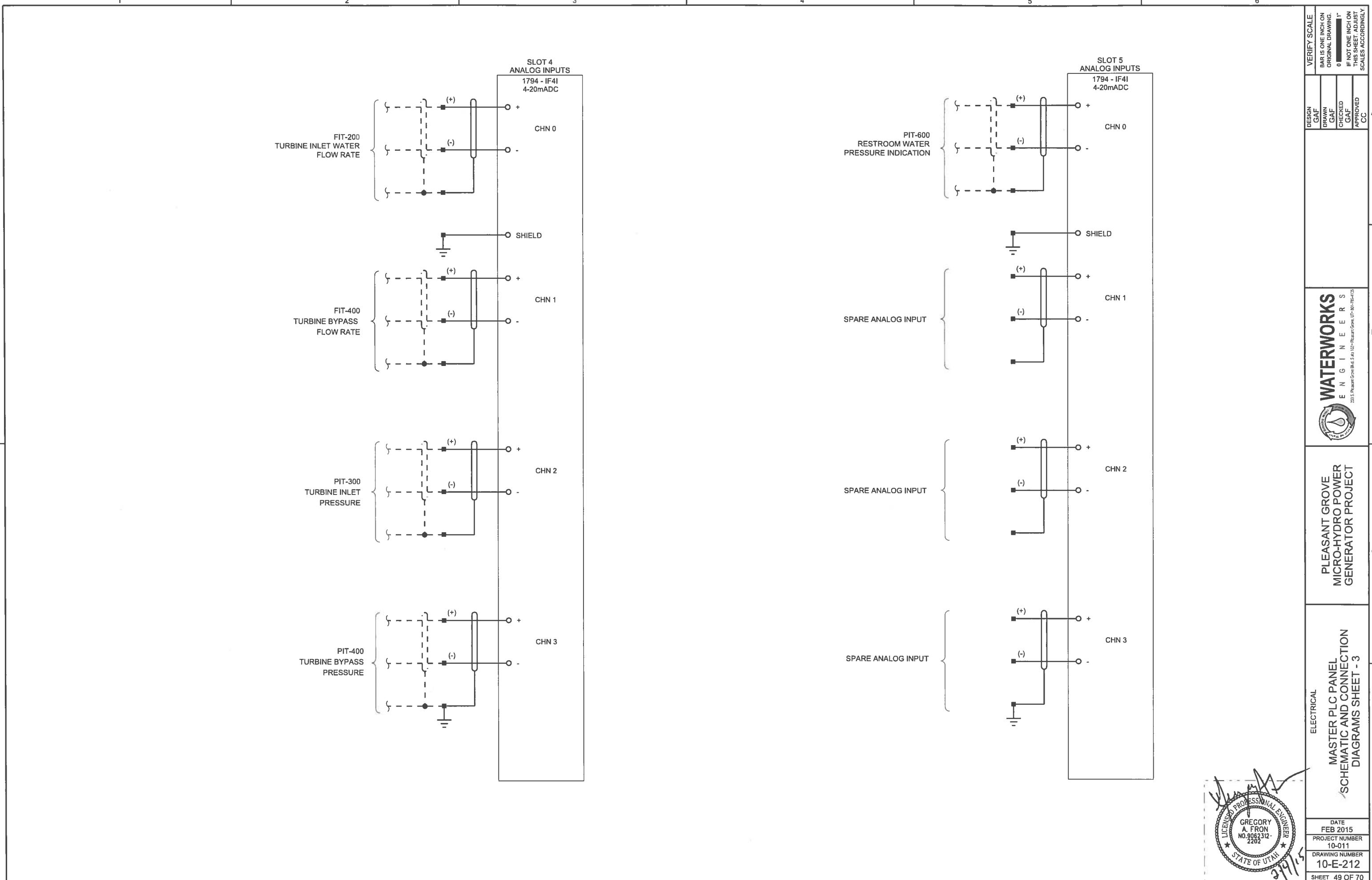
PLOT DATE: 2/4/2015

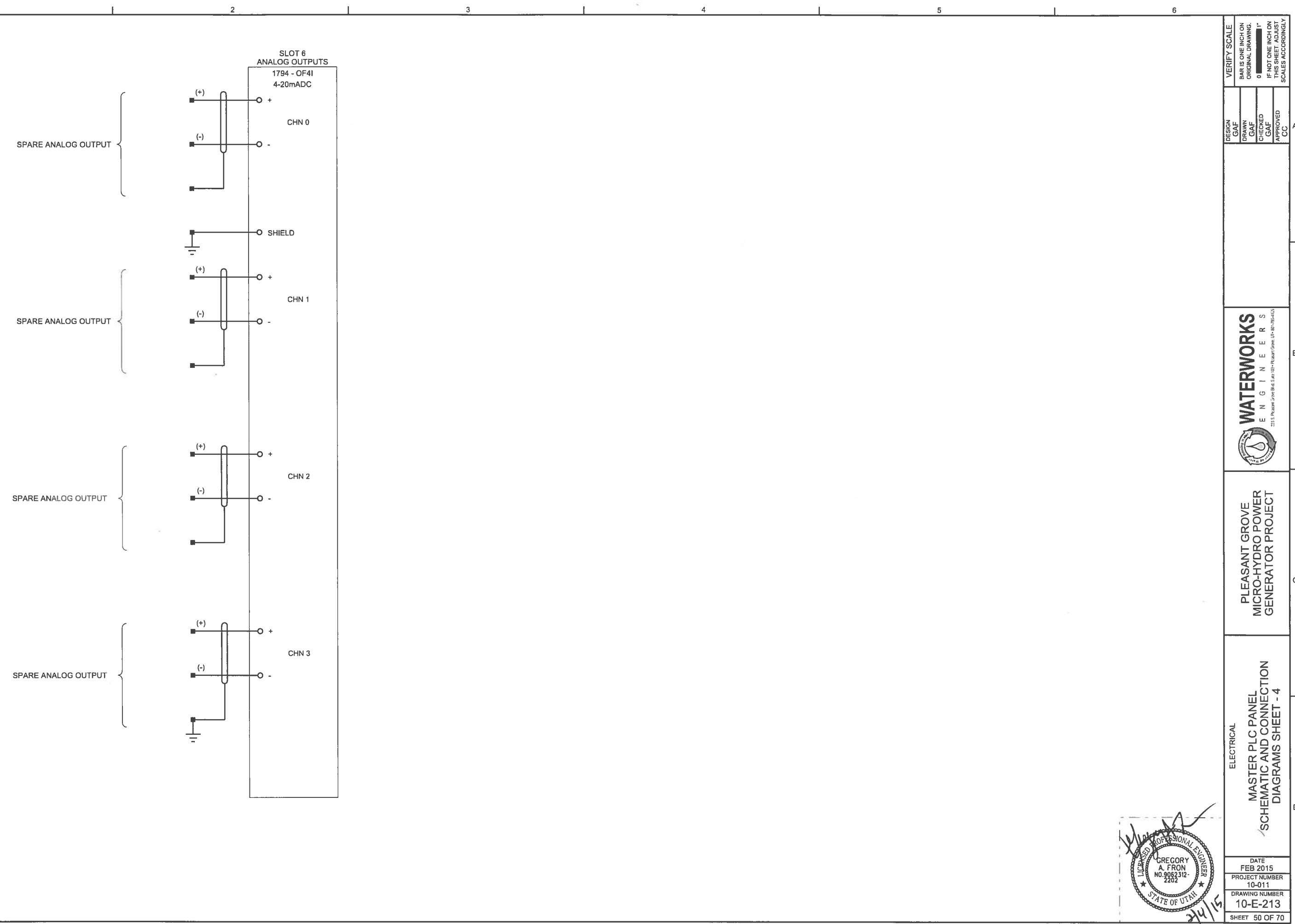
PLOT TIME: 9:06:49 AM

SCALE: 1:0.166667




1. REFER TO CONDUIT BLOCK DIAGRAMS FOR CONDUIT AND CABLING INFORMATION.


WATERWORKS
ENGINEERS


PLEASANT GROVE
MICRO-HYDRO POWER

MASTER PLC PANEL
SCHEMATIC AND CONNECTION
ELECTRICAL

INSTRUMENTATION VALVE SYMBOLS

▲	AIR RELIEF VALVE
▼	AIR VACUUM VALVE
↗	COMBINATION AIR RELIEF AIR VACUUM VALVE
↙	BALL CHECK VALVE (BCV)
~~~~~	BACKFLOW PREVENTER VALVE (BFP)
	BUTTERFLY VALVE (BFV) **
↖	BACK PRESSURE REDUCING VALVE
✗	BALL VALVE
□	CORPORATION STOP VALVE
↖	DUAL DISK SWING CHECK VALVE
✗	DIAPHRAGM VALVE
✗	GLOBE VALVE
✗	GATE VALVE
✗	MUD VALVE
✗	MULTIPORT VALVE (MPV)
✗	NEEDLE VALVE (NV)
✗	PINCH VALVE
✗	PLUG VALVE
✗	PLUG VALVE (ECCENTRIC)
✗	PRESSURE REGULATING VALVE
✗	PRESSURE RELIEF VALVE
✗	RUPTURE DISK (PRESSURE)
✗	RUPTURE DISK (VACUUM)
✗	SILENT CHECK VALVE
---	STOP LOG
---	SLIDE GATE
---	SWING CHECK VALVE
---	TELESCOPING VALVE
---	WEIR

## INSTRUMENTATION EQUIPMENT SYMBOLS

	CENTRIFICAL PUMP
	VERTICAL TURBINE PUMP
	METERING PUMP
	PERISTALTIC PUMP
	PROGRESSIVE CAVITY PUMP
	AXIAL FLOW PUMP
	CENTRIFICAL BLOWER
	BLOWER FAN
	MIXER
	AIR INTAKE FILTER
	FLOW METER
	AUTOMATIC STRAINER
	BASKET STRAINER
	FILTER
	STATIC MIXER
	MIXER
	SPRAY BAR OR DIFFUSER
	SIGHT GLASS
	CALIBRATION COLUMN
	TELESCOPING VALVE
	WEIR
	Y STRAINER
	FLOAT SWITCH
	PULSATION DAMPER
	GAUGE
	FLOW SWITCH
	ROTAMETER
	ROTAMETER WITH NEEDLE VALVE

## ABBREVIATIONS

A	AMPERE	OC	OPEN-CLOSE
ACK	ACKNOWLEDGE	OCA	OPEN-CLOSE-AUTO
AI	ANALOG INPUT	OCR	OPEN-CLOSE-REMOTE
AIC	AMPS INTERRUPTING CAPACITY	OIT	OPERATOR INTERFACE TERMINAL
ALT	ALTITUDE VALVE	OL	OVERLOAD
ANN	ANNUNCIATOR	OO	ON/OFF (MAINTAINED)
AO	ANALOG OUTPUT	OOA	ON-OFF-AUTO
ARV	AIR RELIEF VALVE	OOR	ON-OFF-REMOTE
AS	AIR SUPPLY	ORP	OXIDATION REDUCTION POTENTIAL
ATS	AUTOMATIC TRANSFER SWITCH	OSC	OPEN-STOP-CLOSE
AUTO	AUTOMATIC	P	PUMP
		PAH	PRESSURE ALARM HIGH
		PART	PARTICLE COUNTER
		PB	PUSHBUTTON
		PC	PNEUMATIC CONTROLLER
		PCV	PRESSURE CONTROL VALVE
		PD	PULSATION DAMPENER
		PDS	PRESSURE DIAPHRAGM SEAL
		PER	PERMISSIVE
		pH	HYDROGEN ION CONCENTRATION
		PLC	PROGRAMMABLE LOGIC CONTROLLER
		PLV	PLUG VALVE
		PNL	PANEL
		PMP	PUMP
		PO	PULSE OUTPUT
		POS	POSITIONER OR POSITION
		POT	POTENTIOMETER
		PPG	POUNDS PER GALLON
		PPH	POUNDS PER HOUR
		PPM	PARTS PER MILLION
		PAIR	PAIR
		PRES	PRESSURE
		PRV	PRESSURE REDUCING/REGULATING/RELIEF VALVE
		PS	PRESSURE SWITCH
		PSI	POUNDS PER SQUARE INCH
		RAS	RETURN ACTIVATED SLUDGE
		RAW	RAW WATER
		RD	RUPTURE DISK
		REM	REMOTE
		RF	RADIO FREQUENCY
		RIO	REMOTE INPUT OUTPUT
		RS	RAW SEWAGE
		RSP	RAW SEWAGE PUMP
		RST	RESET
		RTD	RESISTANCE TEMPERATURE DEVICE
		RTU	REMOTE TERMINAL UNIT
		S	SUMP
		SB	SLUDGE BLANKET
		SBS	SODIUM BISULFITE
		SEL	SELECTOR
		SEQ	SERVICE ENTRANCE EQUIPMENT
		SES	SERVICE ENTRANCE SECTION
		SFTN	SOFTENED WATER
		SHC	SODIUM HYPOCHLORITE
		SLC	SINGLE LOOP CONTROLLER
		SLOS	START-LOCK-OFF-STOP
		SOL	SOLENOID VALVE
		SP	SET POINT
		SPD	SPEED
		SPR	SPARE
		SS	START/STOP (MAINTAINED)
		SSS	SOLID STATE STARTER (SOFT START)
		STR	STRAINER
		T	TANK
		TAH	TEMPERATURE ALARM HIGH
		TCL2	TOTAL CHLORINE
		T/M	TEMPERATURE AND/OR MOISTURE
		TEMP	TEMPERATURE
		TRV	TERMAL RELIEF VALVE
		TS	TEMPERATURE SWITCH
		TSS	TOTAL SUSPENDED SOLIDS
		TURB	TURBIDITY
		UG	UNDERGROUND
		V	VOLT
		VFD	VARIABLE FREQUENCY DRIVE
		W	WATER
		WAS	WASTE ACTIVATED SLUDGE
		WW	WASTEWATER
		XMTR	TRANSMITTER
		ZS	POSITION (i.e. LIMIT) SWITCH



PLEASANT GROVE  
MICRO-HYDRO POWER  
GENERATOR PROJECT

INSTRUMENTATION

LEGEND AND ABBREVIATIONS 2

31475

00-N-002

53 OF 70

SCALE: 1:0.166667

PLOT DATE: 2/4/2015

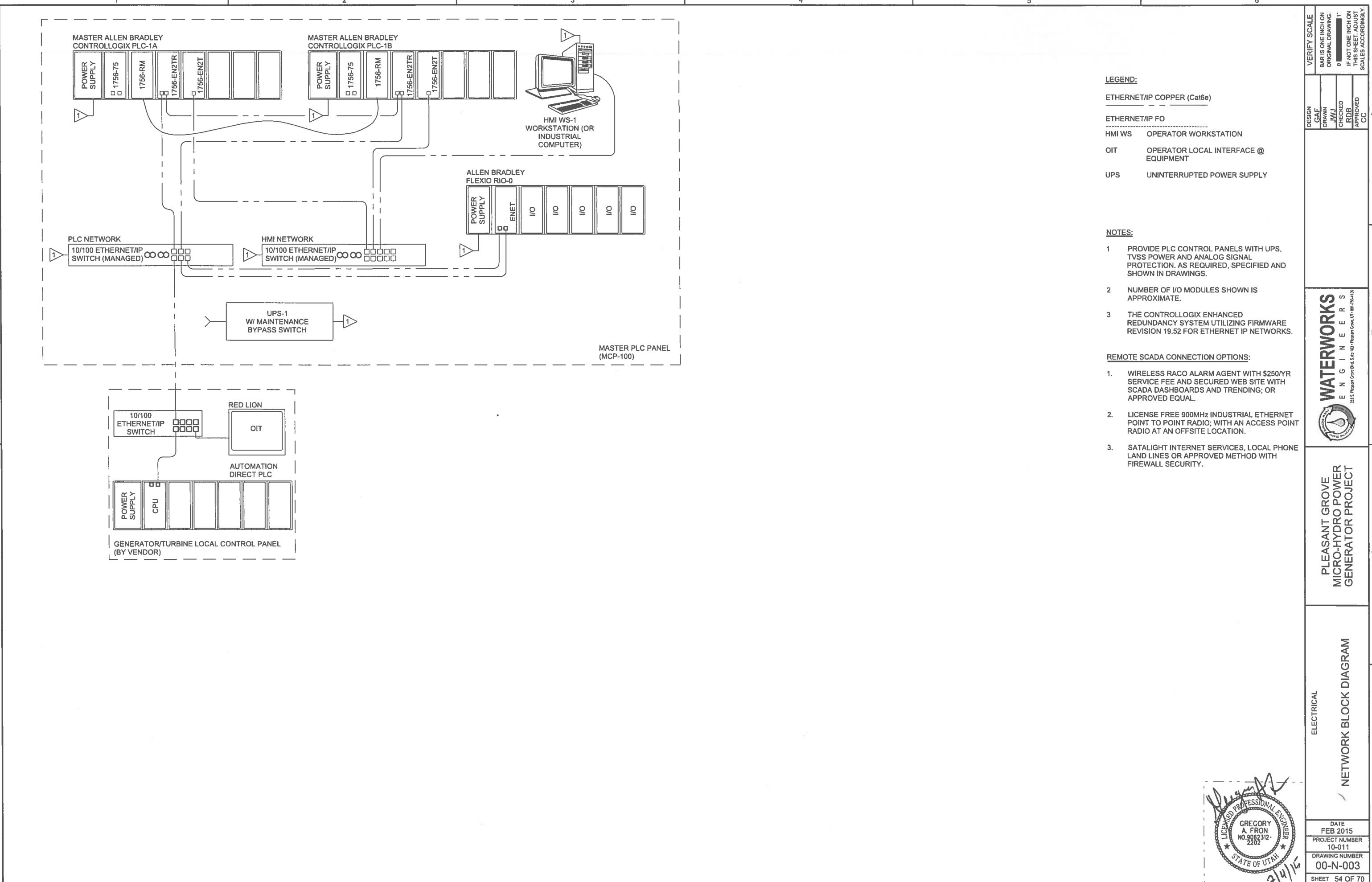
PLOT TIME: 8:55:25 AM

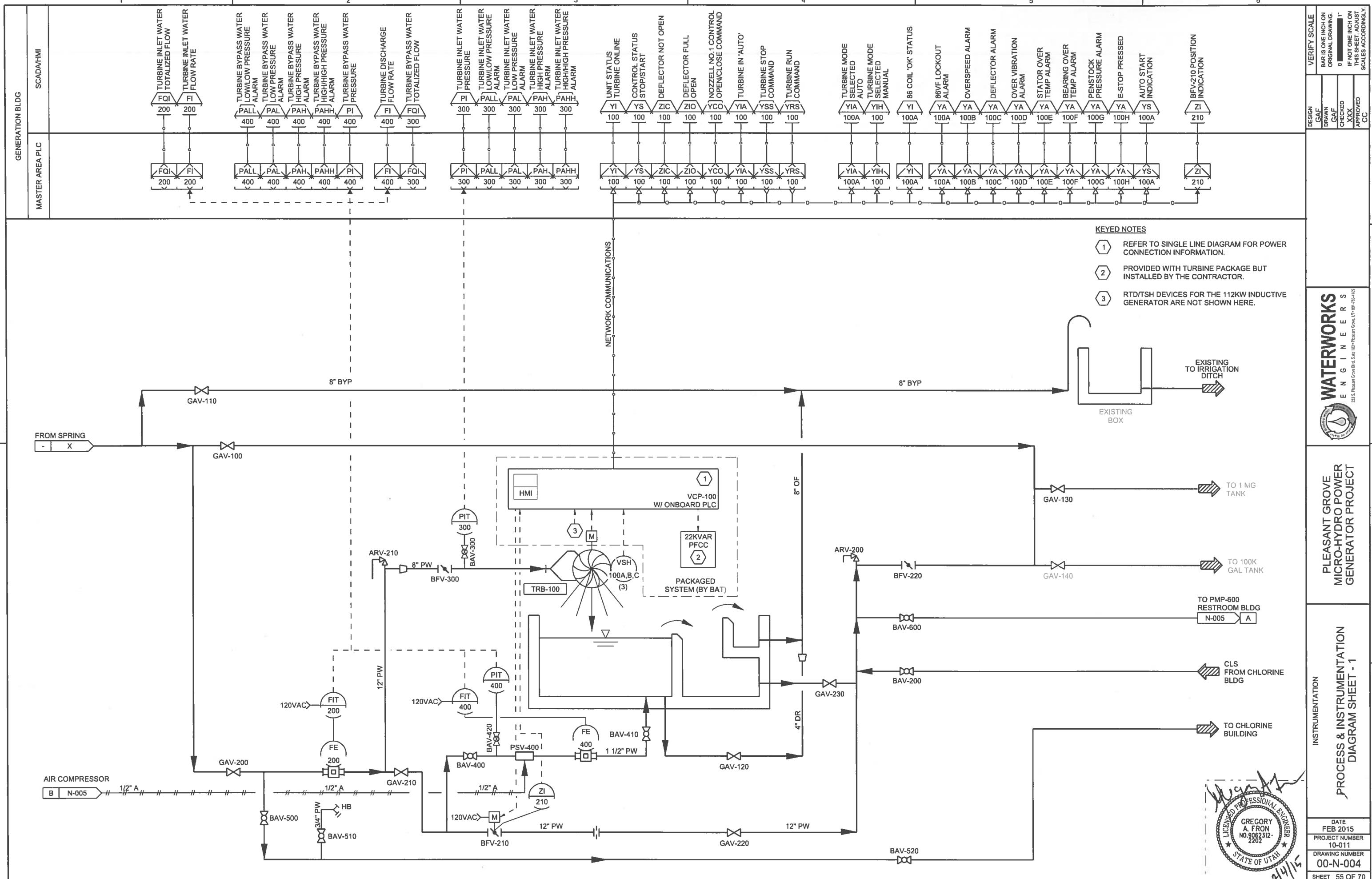
FILENAME: S:\CAD\Projects\10-011 Pleasant Grove Microhydro\Drawings\Deliverables\10011D-00N002.dgn

10-011

DRAWING NUMBER

DATE FEB 2015


PROJECT NUMBER 10-011

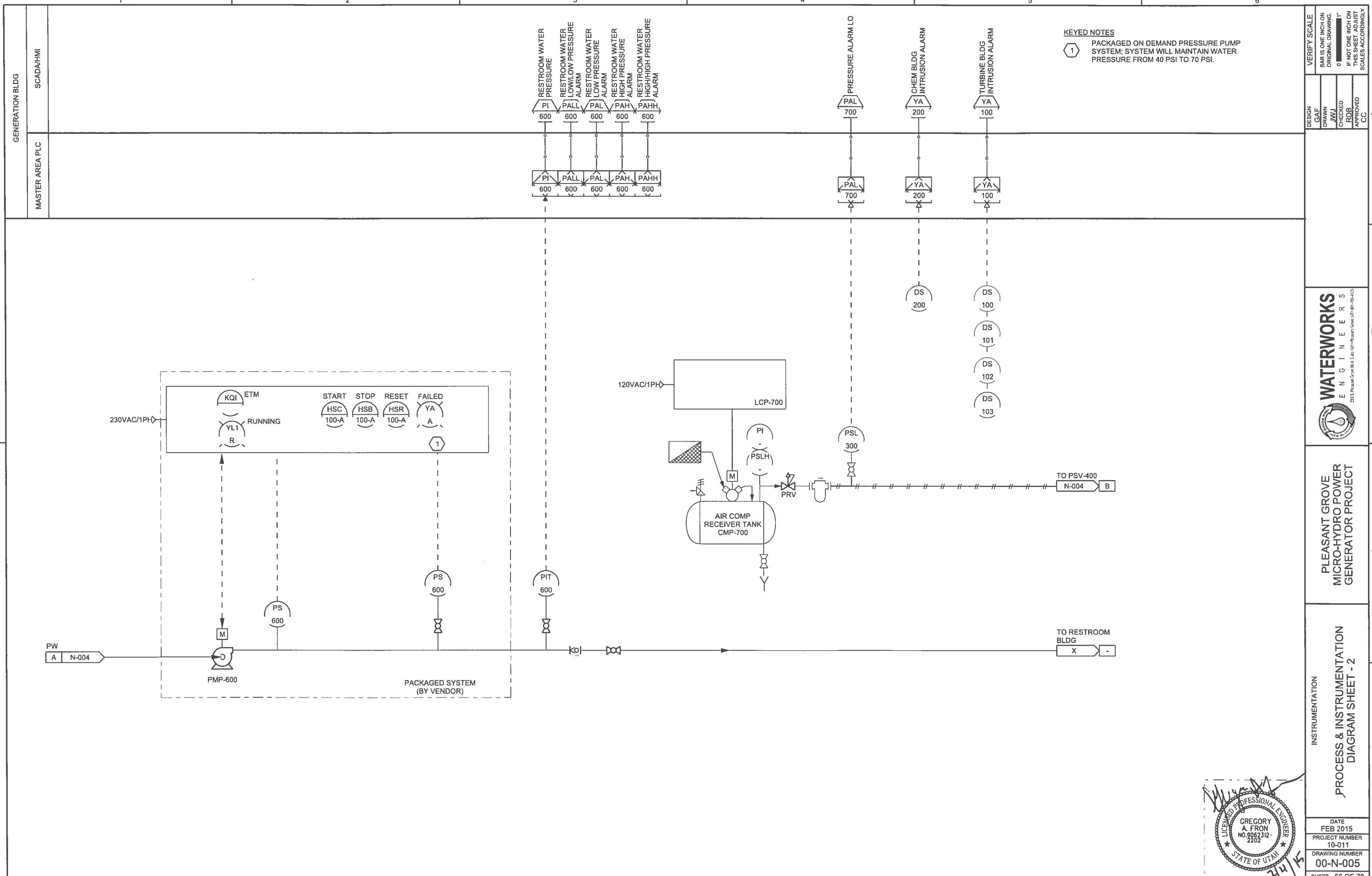

LICENSED PROFESSIONAL ENGINEER GREGORY A. FRON NO. 9062312-2202 STATE OF UTAH

VERIFY SCALE

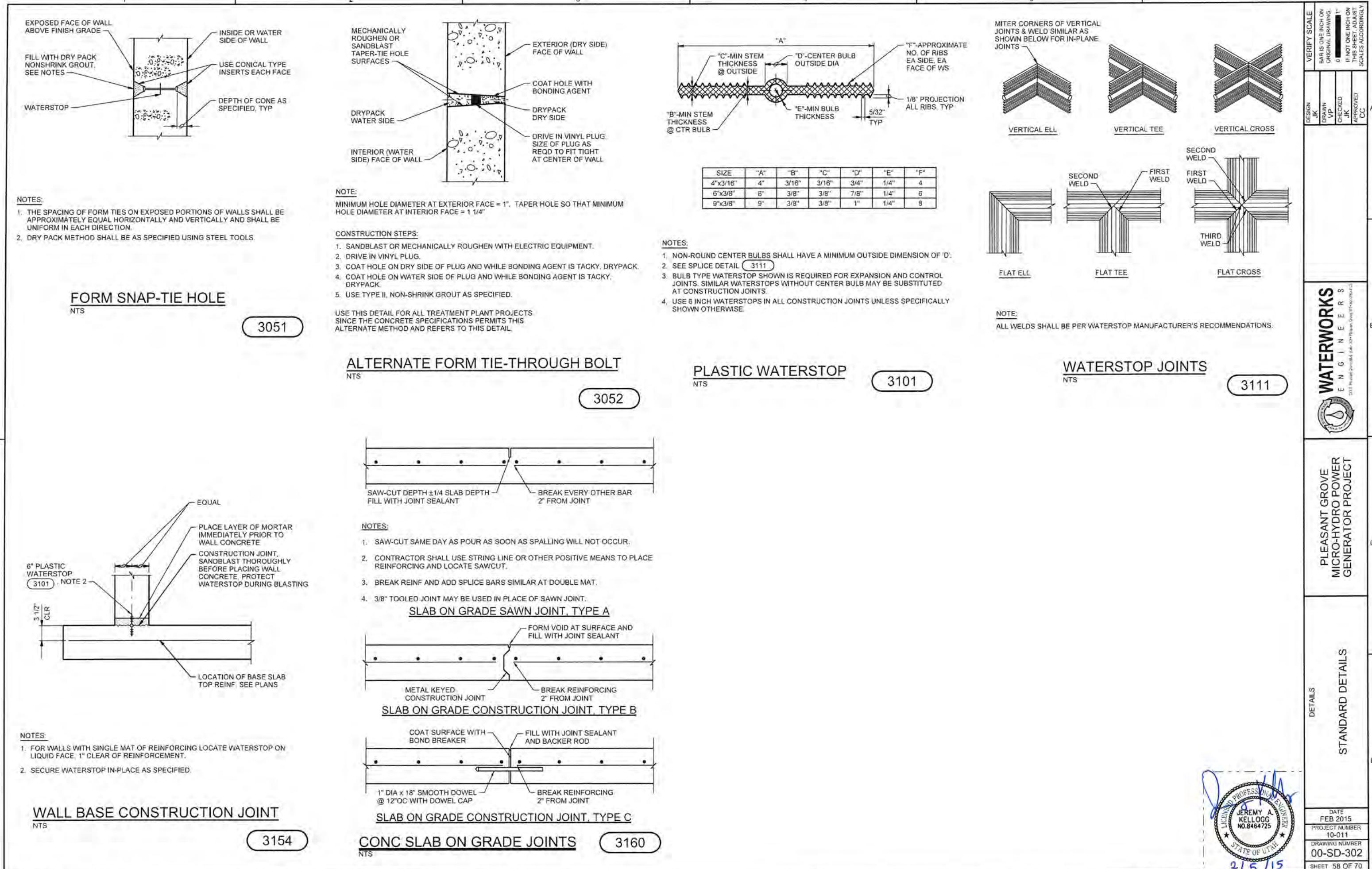
BAR IS ONE INCH ON  
ORIGINAL DRAWING.0 IF NOT ONE INCH ON  
THIS SHEET, ADJUST  
SCALES ACCORDINGLY.

DESIGN GAF DRANN JMJ CHECKED RDB APPROVED CC

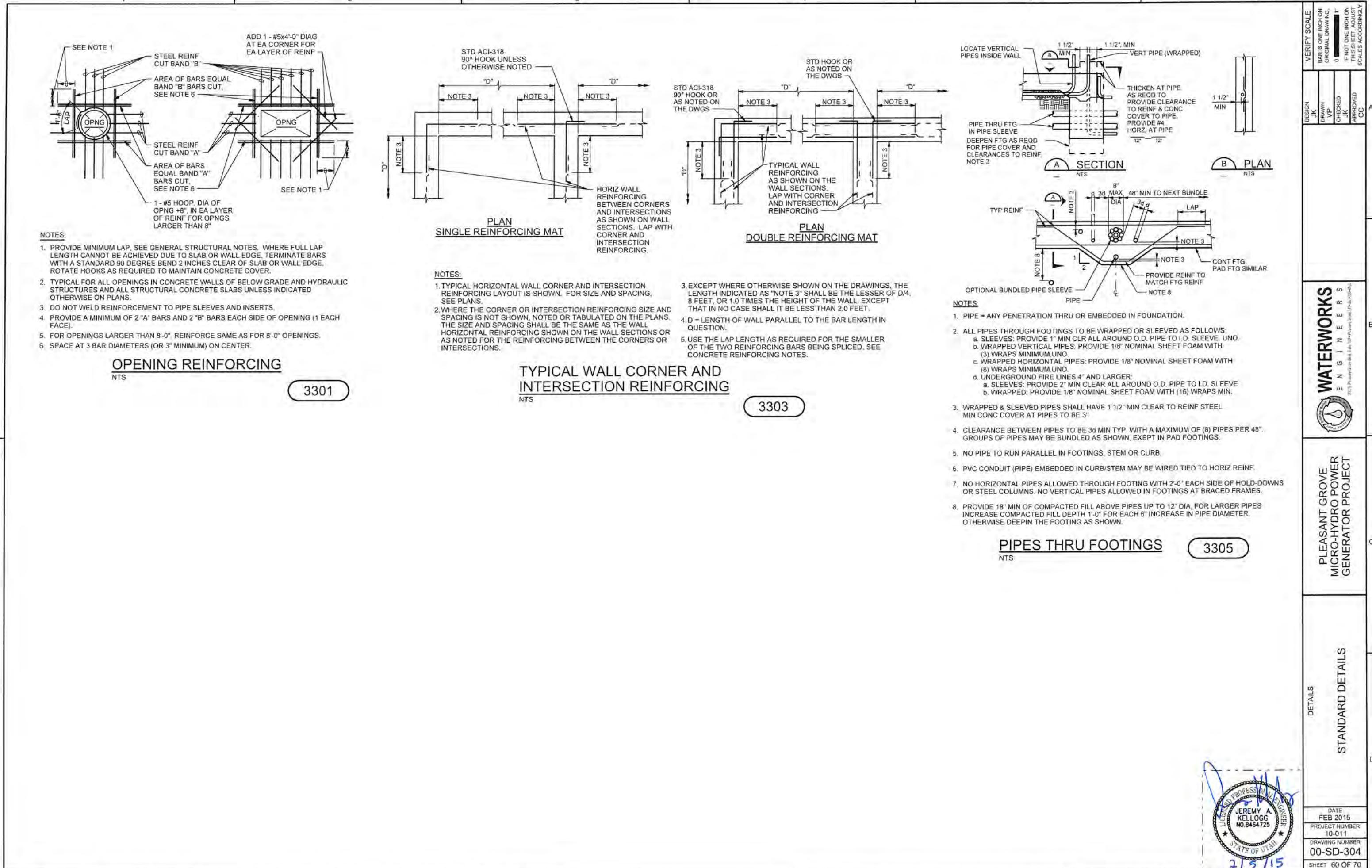


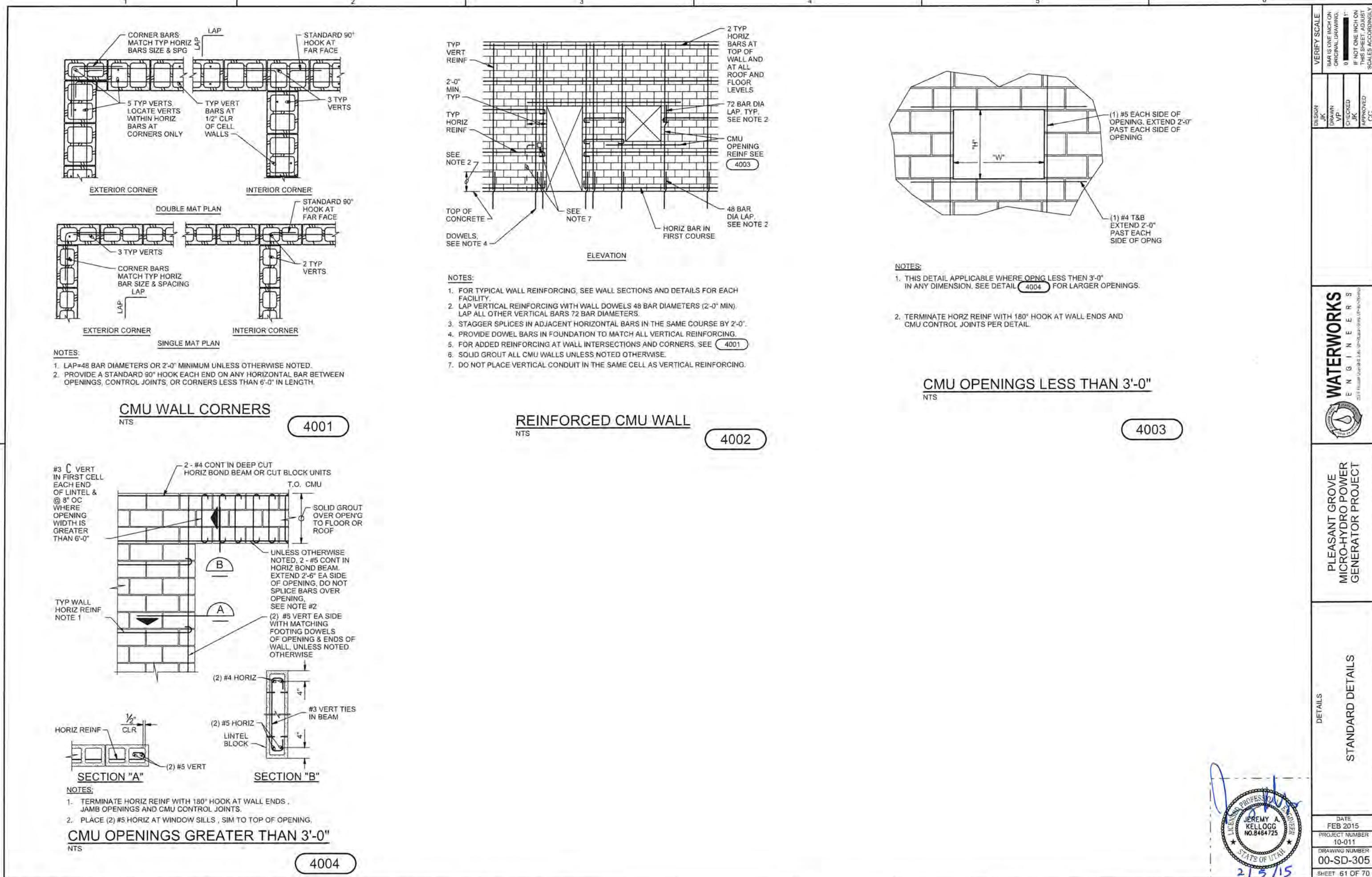



FILENAME: S:\CAD\Projects\10-011 Pleasant Grove Microhydro\Drawings\Deliverables\10011D-00N004.dgn

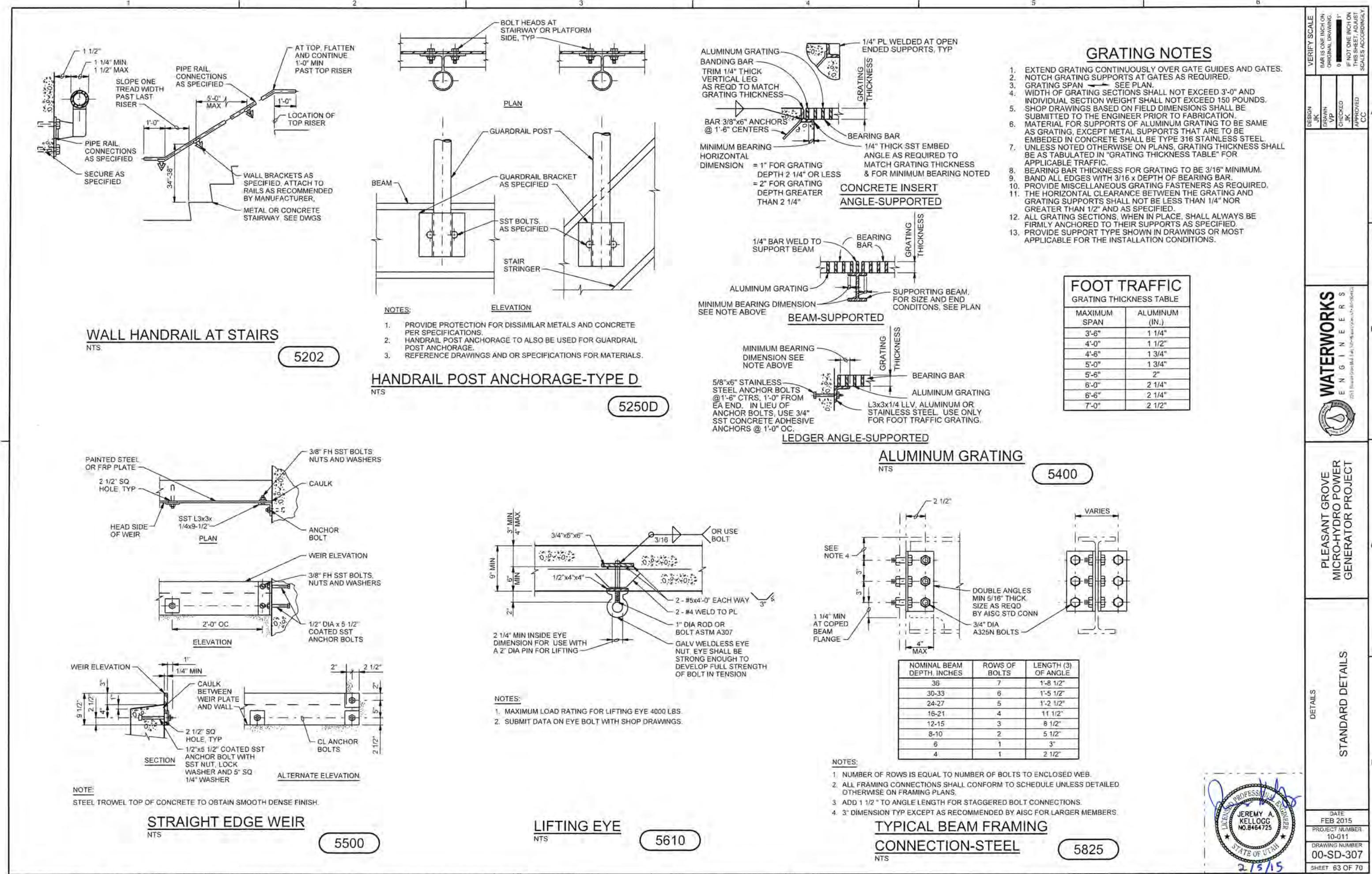

DATE: 2/4/2015

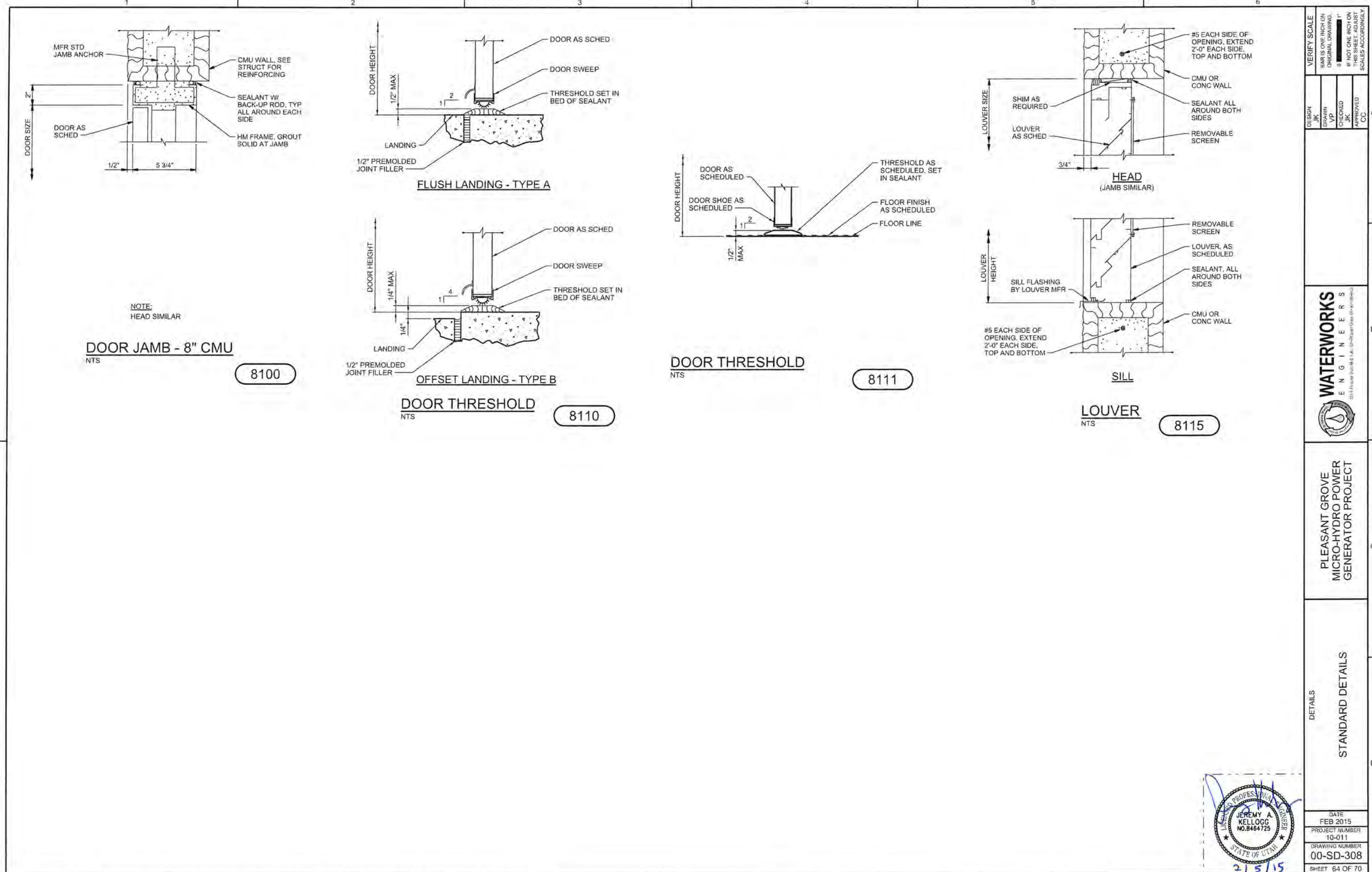
PLOT TIME: 8:53:00 AM

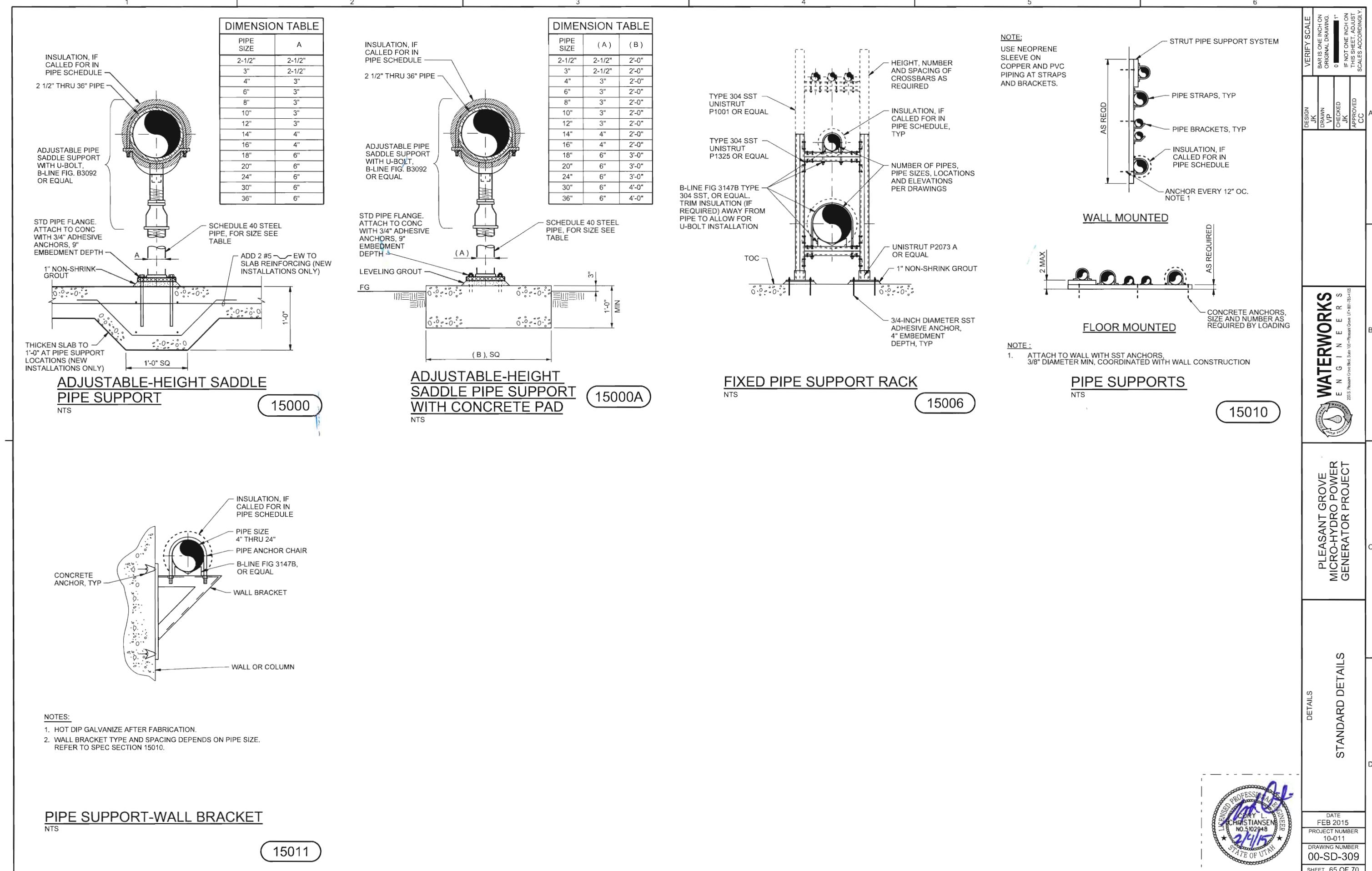

SCALE: 1:0.166667

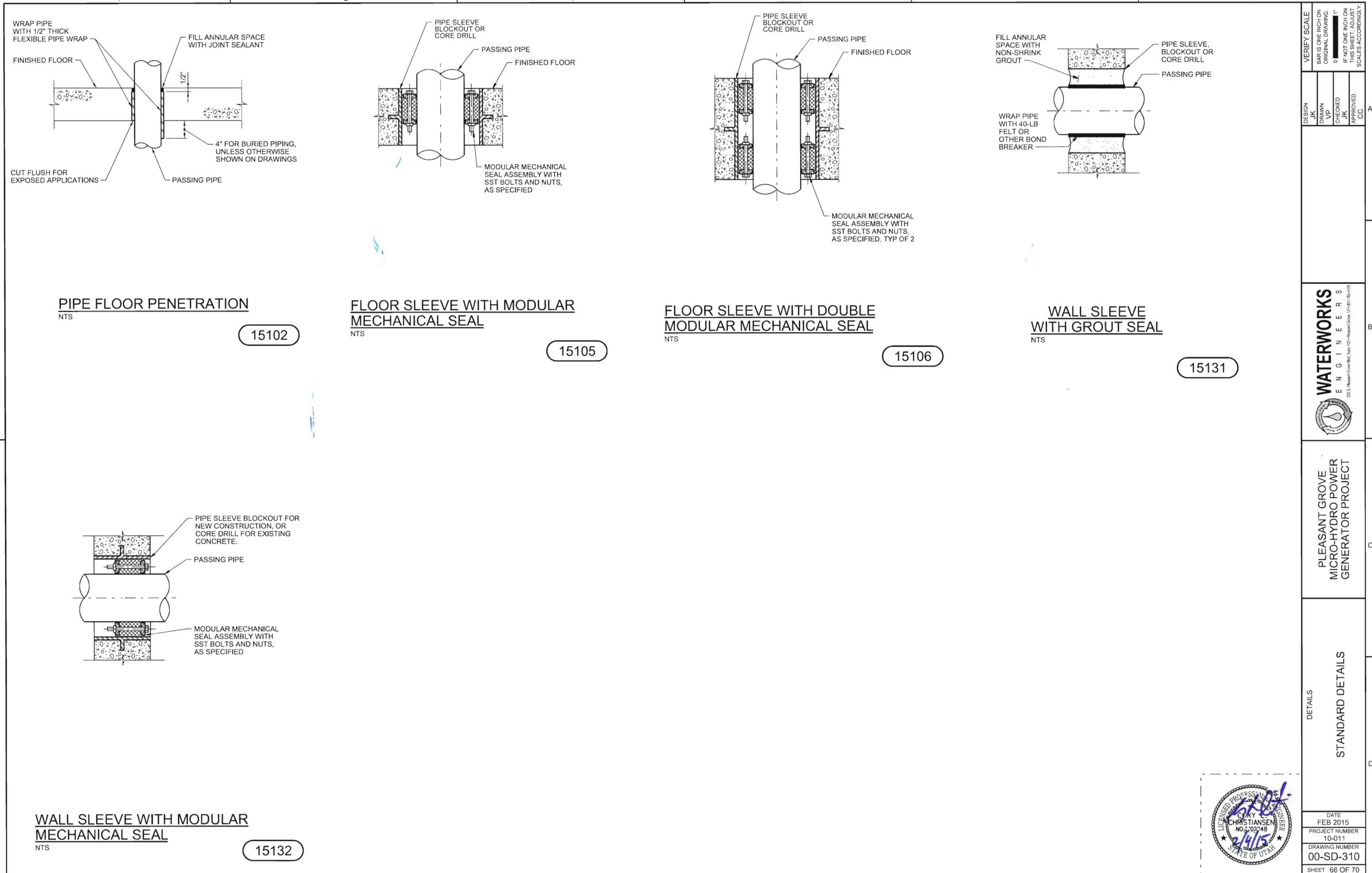


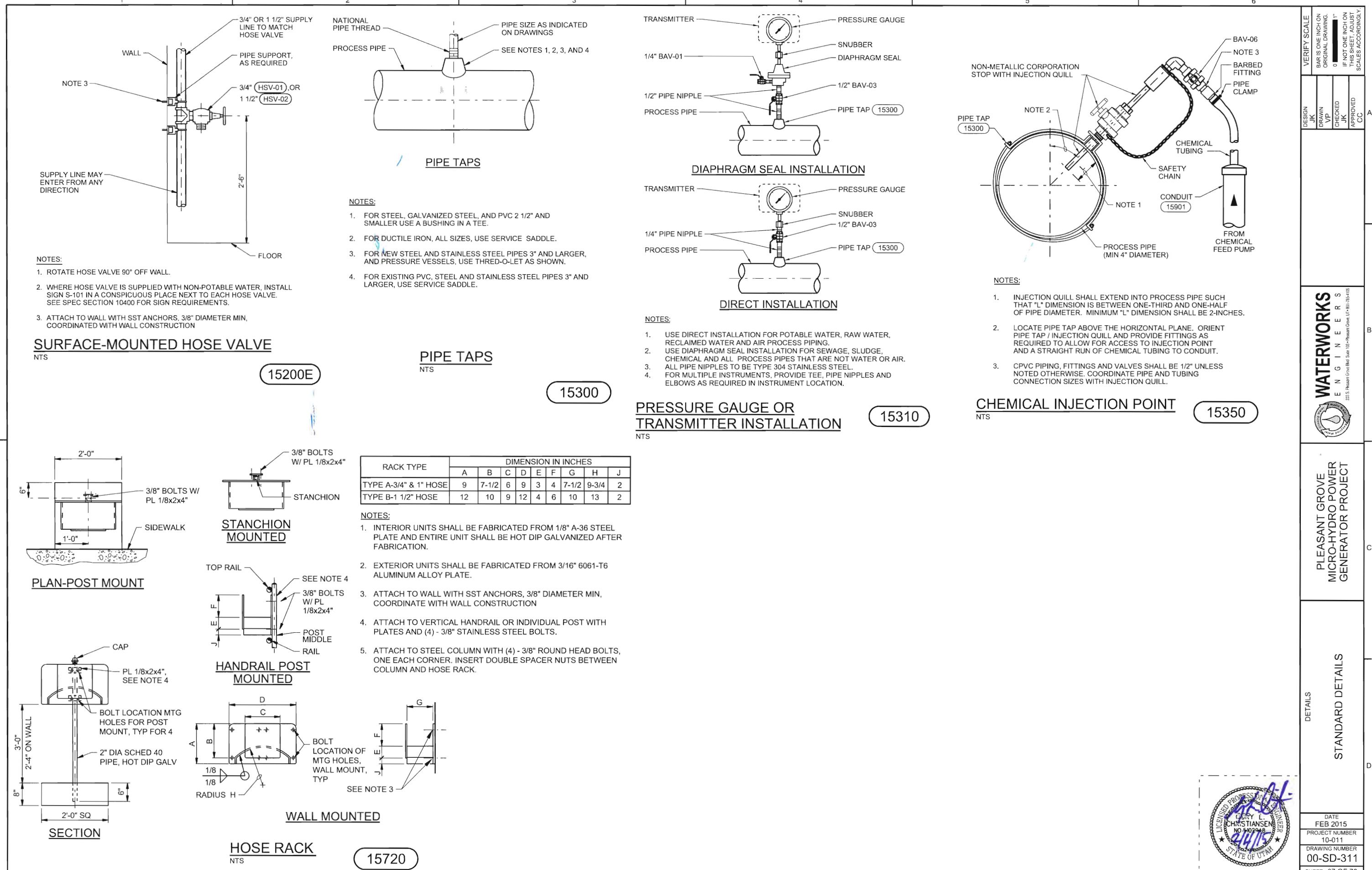


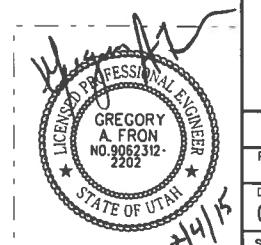
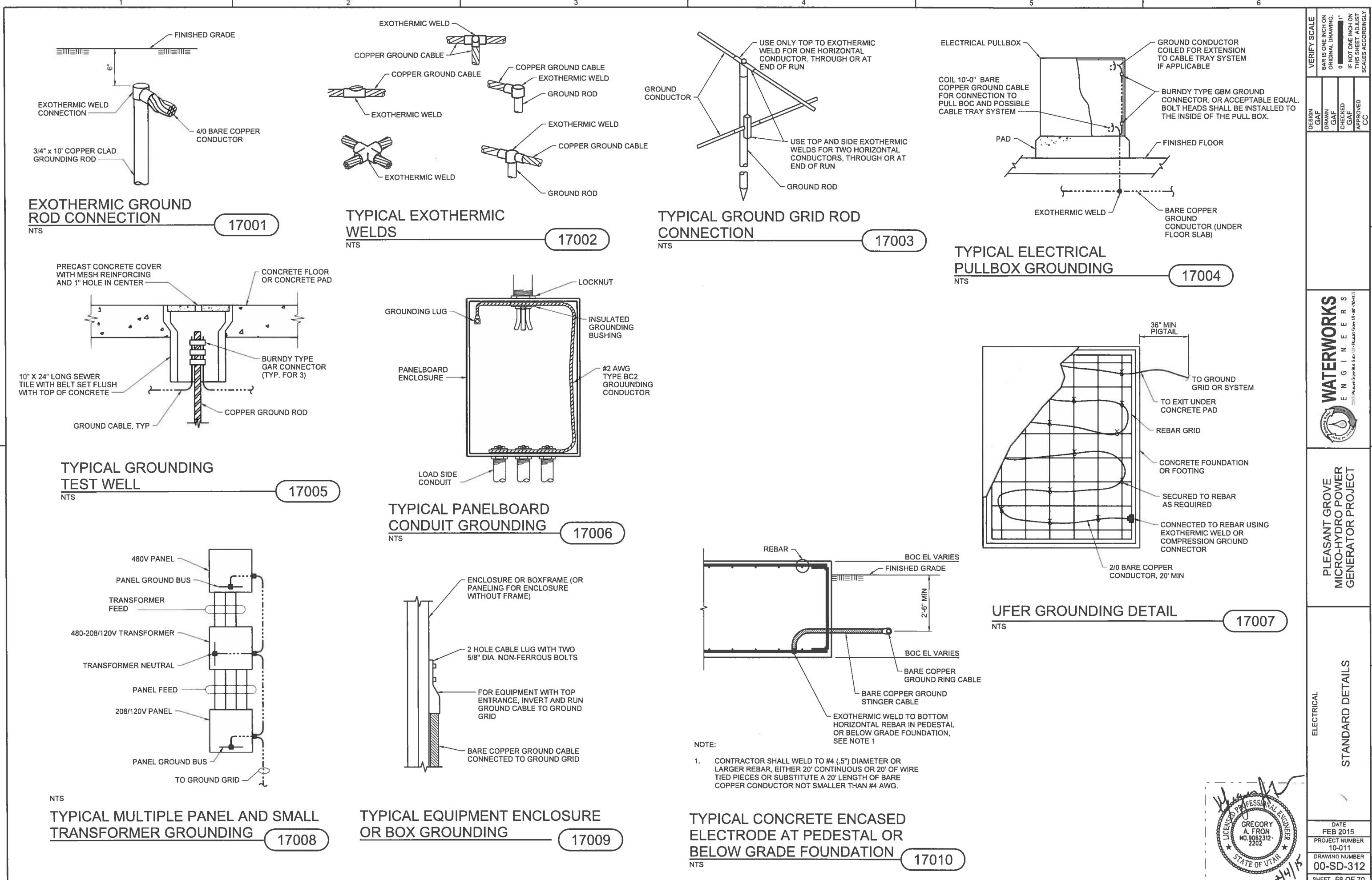



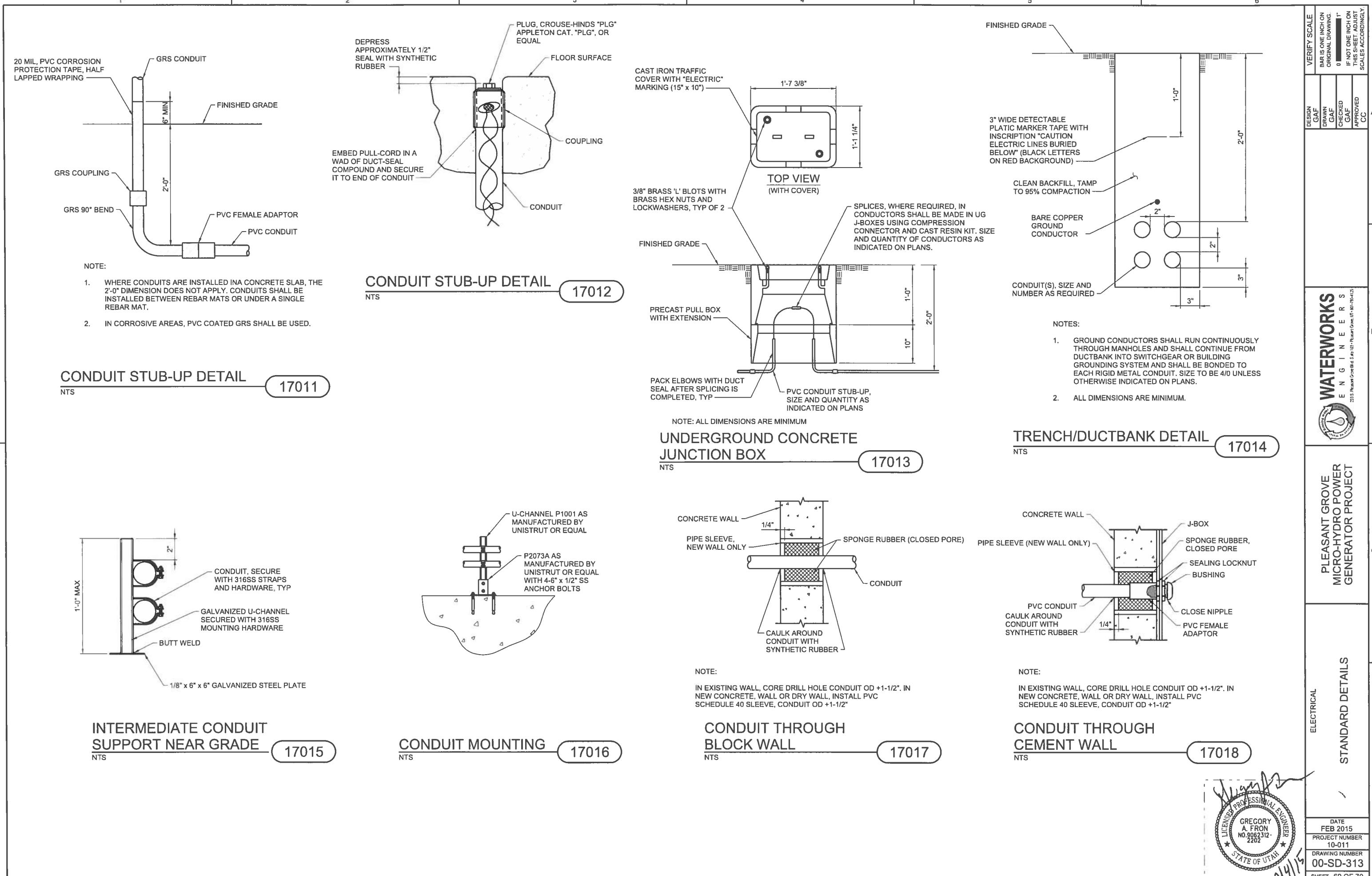



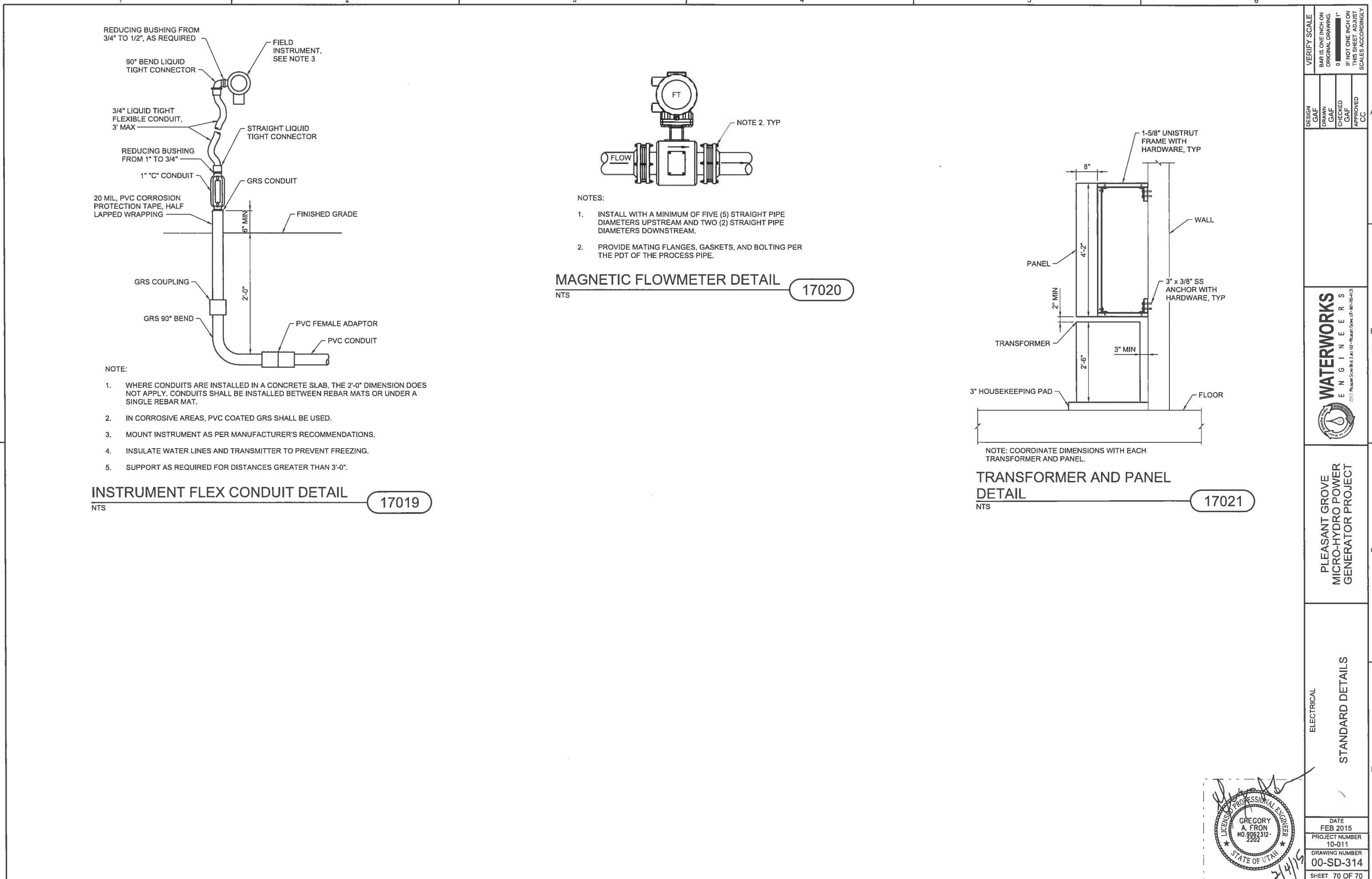














**City of Pleasant Grove**  
**Battle Creek Microhydro Power Generation Project**  
**Technical Report**

**APPENDIX E Battle Creek Power Generation Estimate  
Worksheet**

## BATTLE CREEK

Historical Flow Data															Total		Average		
hours		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	MG	acre-ft	gpm	cfs	
		44640	40320	44640	43200	44640	43200	44640	43200	43200	44640	43200	44640	524160					
2012	Total Production	MG	20.183	8.735	4.509	5.072	4.508	20.679	33.602	34.000	25.240	10.716	4.363	4.509	176.116	176.1	540.5		
	Average Flow	gpm	452.1	216.6	101.0	117.4	101.0	478.7	752.7	787.0	584.3	240.1	101.0	101.0	336.0			336.1	0.75
2011	Total Production	MG	5.000	4.500	5.000	4.850	18.343	62.140	89.271	74.955	52.169	33.252	40.824	33.487	423.791	423.8	1300.7		
	Average Flow	gpm	112.0	111.6	112.0	112.3	410.9	1,438.4	1,999.8	1,735.1	1,207.6	744.9	945.0	750.2	808.5			806.6	1.80
2010	Total Production	MG	16.138	4.735	5.580	5.400	5.580	30.351	49.392	58.668	50.041	36.903	24.989	11.903	299.680	299.7	919.7		
	Average Flow	gpm	361.5	117.4	125.0	125.0	125.0	702.6	1,106.5	1,358.1	1,158.4	826.7	578.4	266.6	571.7			570.9	1.27
2009	Total Production	MG	5.000	5.000	5.000	5.000	29.966	62.240	75.024	52.579	59.766	49.204	35.182	27.522	411.483	411.5	1262.9		
	Average Flow	gpm	112.0	124.0	112.0	115.7	671.3	1,440.7	1,680.6	1,217.1	1,383.5	1,102.2	814.4	616.5	785.0			761.9	1.70
2008	Total Production	MG	5.000	5.000	5.000	5.000	5.000	13.500	31.829	51.582	44.145	33.257	20.186	6.586	226.085	226.1	693.9		
	Average Flow	gpm	112.0	124.0	112.0	115.7	112.0	312.5	713.0	1,194.0	1,021.9	745.0	467.3	147.5	431.3			431.4	0.96
2007	Total Production	MG	7.500	5.000	5.000	5.000	5.000	11.300	31.300	33.500	26.500	5.000	5.000	5.000	145.100	145.1	445.3		
	Average Flow	gpm	168.0	124.0	112.0	115.7	112.0	261.6	701.2	775.5	613.4	112.0	115.7	112.0	276.8			276.9	0.62
2006	Total Production	MG	23.600	6.020	0.500	0.604	46.000	66.000	81.000	76.458	59.508	46.483	34.387	25.043	465.603	465.6	1429.0		
	Average Flow	gpm	528.7	149.3	11.2	14.0	1,030.5	1,527.8	1,814.5	1,769.9	1,377.5	1,041.3	796.0	561.0	888.3			885.1	1.97
2005	Total Production	MG	3.128	1.113	0.901	2.300	47.000	84.000	100.000	90.000	71.000	64.480	48.000	35.000	546.922	546.9	1678.6		
	Average Flow	gpm	70.1	27.6	20.2	53.2	1,052.9	1,944.4	2,240.1	2,083.3	1,643.5	1,444.4	1,111.1	784.1	1,043.4			1039.6	2.32

### Estimated Power Production

Available Head		Estimated Power Cost 2008		Turbine Efficiency	
psi	ft	\$	0.0880	/kW Hr	
200	462.0				
Avoided Cost 2009					
\$	0.0515	/kW Hr			

Nested if-then statement to take account for avoided cost. No avoided seen used.

Price Increase/Percent	2008	8.80	2.56%
	2007	8.58	

**Estimated Capital Cost (2009 dollars)**

Engineering and Admin	\$55,000	
Mobilization	\$25,000	
Building	\$75,000	
Piping Modifications	\$85,000	
Turbine	\$50,000	
Electrical Equipment	\$250,000	
Contingency	Subtotal 20%	\$540,000 \$108,000
		Total Estimated Cost \$648,000

Invstmt Sensitivity Analysis	Years	NPV	IRR
	20	\$48,877	6%
	15	(\$42,454)	3%
	10	(\$159,386)	-4%

Cash Flows						
Year	Power Inflow	Tax Benefit	Inflation Cost	Maintenance	Total	
0					-\$648,000	-\$648,000
1	\$40,461	\$194,400	\$2,177	\$1,500	\$231,184	-\$416,816
2	\$41,498	0	\$2,232	\$1,500	\$37,766	-\$379,050
3	\$42,563	0	\$2,290	\$1,500	\$38,773	-\$340,277
4	\$43,654	0	\$2,348	\$1,500	\$39,806	-\$300,471
5	\$44,773	0	\$2,409	\$10,000	\$32,365	-\$268,106
6	\$45,921	0	\$2,470	\$2,000	\$41,451	-\$226,656
7	\$47,099	0	\$2,534	\$2,000	\$42,565	-\$184,090
8	\$48,306	0	\$2,599	\$2,000	\$43,708	-\$140,383
9	\$49,545	0	\$2,665	\$2,000	\$44,880	-\$95,503
10	\$50,815	0	\$2,734	\$40,000	\$8,082	-\$87,421
11	\$52,118	0	\$2,804	\$2,500	\$46,815	-\$40,607
12	\$53,455	0	\$2,876	\$2,500	\$48,079	\$7,473
13	\$54,825	0	\$2,949	\$2,500	\$49,376	\$56,849
14	\$56,231	0	\$3,025	\$2,500	\$50,706	\$107,555
15	\$57,673	0	\$3,102	\$10,000	\$44,570	\$152,125
16	\$59,152	0	\$3,182	\$3,000	\$52,970	\$205,095
17	\$60,668	0	\$3,264	\$3,000	\$54,405	\$259,500
18	\$62,224	0	\$3,347	\$3,000	\$55,877	\$315,376
19	\$63,820	0	\$3,433	\$3,000	\$57,386	\$372,763
20	\$65,456	0	\$3,521	\$3,000	\$58,935	\$431,698