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Experimental Impact Mechanics Lab. (EIML) 

2 

• Location: B860/122B 
 

• Lead/Principal Investigator: Bo Song (1558) 
 

• Facilities: 
• 1”-diameter split Hopkinson compression bar (Kolsky compression bar) 
• 1”-diameter split Hopkinson tension bar (Kolsky tension bar) 
• 1”-diameter “dropkinson” bar for intermediate-rate tensile testing 
• 3”-diameter split Hopkinson compression bar (Kolsky compression bar) 

 

• Instrument/Equipment 
• Teledyne LeCroy 4-channel high-speed digital oscilloscope 
• Teledyne LeCroy 8-channel high-speed digital oscilloscope 
• Keyence VHX-5000 digital microscope (20X-5000X) 
• Vishay 4-channel signal conditioner 
• Custom made laser displacement measurement system 
• 1200oC electrical furnace 
• MTI 15kW induction heater 
• Instron environmental chamber (-100 - 350oC) 
• Buehler diamond saw 
• Thermocouple welder 
• Kirana ultra-high speed digital camera (coming soon) 
• NI acquisition and control system (coming soon) 

 

• Partnership with: 
• Terminal Ballistic Hopkinson Bar Lab 
• Structure Mechanics Lab (MTS)  
• Shock Mechanics Lab (Drop tables) 
• Area III – Mechanical Shock Facility (Gas gun, horizontal actuator) 
• Area III – Terminal Ballistic Lab 



EIML Capabilities (What Can We Do?) 
 Dynamic Characterization of Materials 

 Dynamic stress-strain response of materials in compression or 
tension (shear coming soon) 

 Dynamic failure and fracture of materials 
 Strain-rate Range: ~100 – 10,000 s-1 

 Temperature Range: -100 – 1200oC 
 Stress state: uniaxial stress; triaxial stress (in compression only) 
 Materials covered: ceramics, alloys, composites, glasses, polymers, 

foams, biological tissues, concretes, sands, soil, etc 
 

 Dynamic Characterization of Component/Small Structures  
 Dynamic structural testing with preload capability (compression or 

tension) 
 Wave Propagation/Interaction 
 Shock Mitigation 
 Dynamic Interface Problem 
 Component/Device Functionality/Survivability in Abnormal 

Mechanical Environments 
 High-g, high-frequency impact and vibration 

 Impact Sensor characterization 

 Rate-dependent Model Validation 
 High rate, high frequency, etc 
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Bo Song, Ph.D. 
Phone:  (505) 844-4285 (office) 
 (505) 377-9550 (cell) 
Fax:  (505) 284-9394 
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Dynamic Material Characterization Examples 
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Dynamic Material Characterization Examples 
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Characteristics and Applications of 
Foam Materials 

Light weight (low density) 
Good for transportation 

Excellent vibration damper 
Comfort 
Protection (sensitive devices) 

Excellent shock/impact energy 
absorber 

Protection (human, sensitive devices, 
hazard materials, etc) 

Application-orientated materials 
design 

Material properties, particularly under 
impact loading 
Structural response in abnormal 
(shock/impact) mechanical 
environments 
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Size/geometry independent 

Size/geometry dependent 



Shock Mitigation Characterization of 
Polymeric Foams 

Time- and Frequency-Based Shock Mitigation Analyses 
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Time-Based Shock Mitigation Analysis 

August 6, 2015 2015 Joint DOE-NNSA Packaging & Transportation Technical Exchange 8 

( ) ( )∫=
t

ii dttECAtE
0

2
000 ε

( ) ( )∫=
t

rr dttECAtE
0

2
000 ε

( ) ( )∫=
t

tt dttECAtE
0

2
000 ε

INCIDENT PULSE 

TRANSMITTED PULSE 

REFLECTED PULSE 

εr εi 
εt 

V1 V2 Incident Energy 

Reflected Energy 

Transmitted Energy 

Input Energy 

( ) ( ) ( ) ( ) ( )[ ]∫ −=−=
t

ririinput dtttECAtEtEtE
0

22
000 εε

Output Energy ( ) ( ) ( )∫==
t

ttoutput dttECAtEtE
0

2
000 ε

Energy Dissipation (Absorbed Energy) ( ) ( ) ( )

( ) ( ) ( )[ ]∫ −−=

−=∆
t

tri

outputinput

dttttECA

tEtEtE

0

222
000 εεε

Energy Dissipation Ratio 
( ) ( )

( )tE
tEt

input

∆
=δ



Frequency-Based Shock Mitigation 
Analysis 
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Frequency-Based Shock Mitigation 
Analysis on 20-PCF PMDI Foam 

August 5, 2015 2015 Joint DOE-NNSA Packaging & Transportation Technical Exchange 10 

Sample 
No.  

Diameter 
(mm) 

Thicknes
s 

(mm) 

Density 
(x103 

kg/m3) 

Impact 
Speed 
(m/s) 

B-4 15.3 7.6 0.31 16 
B6-1 15.4 7.6 0.31 38 
A-3 15.2 15.3 0.34 16 
B-5 15.4 15.3 0.31 16 
A-6 15.3 30.5 0.32 16 



Frequency-Based Shock Mitigation 
Analysis on 20-PCF PMDI Foam 
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V = 16 m/s 



Frequency-Based Shock Mitigation 
Analysis on 20-PCF PMDI Foam 
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Frequency-Based Shock Mitigation 
Analysis on 20-PCF PMDI Foam 
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Frequency-Based Shock Mitigation 
Analysis on 35-PCF Tuf-Foam 
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V = 16 m/s 



Frequency-Based Shock Mitigation 
Analysis on 35-PCF Tuf-Foam 
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Shock Mitigation Comparison between 
20-PCF PMDI and 35-PCF Tuf-Foam 
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Summary 

• Frequency-based analysis on shock mitigation characteristics of foam 
materials 

• Extended to several other shock mitigation/isolation materials and 
structures 

This Presentation 

Our Mission 
• Develop advanced experimental and diagnostic techniques for 

scientific discovery 
• Provide high-fidelity experimental data on dynamic response of 

materials and structures for rate-dependent material model 
development and validation 

  We are highly motivated and looking forward to any 
kind of internal and/or external collaboration/partnership, 
particularly with universities, on fundamental research and 
applications  
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