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Sandia performs scientific research in support of national 
policy and decision making

Energy: Reduce U.S. reliance on foreign 
energy, reduce carbon footprint

Climate change: Understand, mitigate, and 
adapt to the effects of global warming

National Nuclear Security: Maintain a safe, 
secure, and reliable nuclear stockpile

Cyber: Shore up our nation’s cyber defenses, 
provide more fundamental understanding of 
cyber environment
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Interdisciplinary teams use extreme-scale experiments, 
modeling, and simulation to reason about complex 
phenomena
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How do we quantify 
the uncertainty in 
our results?

What problem are we 
trying to solve and 
how do we model it?

How are we going to 
solve this at scale? 
How will our approach 
change with evolving 
compute platforms?

How do we characterize features of interest?
How do we compress the data to make it manageable?



Data science spans the different areas of expertise on 
these interdisciplinary projects 
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A number of lessons learned can be gleaned from a 
retrospective look at a data science project 

 Project details
 Three year project

 Relatively small team

 Focused on enabling scientific simulations 

 General lessons learned and math takeaways (MT)
 Building the team

 Scoping the work

 Doing the work
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Acquiring funding: Data science calls for proposals often 
highlight the interdisciplinary nature of the work
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“advance the underlying math and computer 
science to enable the routine use of rigorous 
predictive simulation … more effectively use next 
generation computers”
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Acquiring funding: Data science calls for proposals often 
highlight the interdisciplinary nature of the work
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Successful data science projects often develop new 
theory and can demonstrate its applicability to mission at 
scale
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MT0: Target a customer and compute platform for your 
research
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Takeaway for mathematicians: know your customer, know your tools
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Are they doing 
 Exploratory science?
 Answering a yes/no question?
 Design optimization?

 How do I express my algorithm?
 How does the architecture affect 

an idealized mathematical model?



Proposed work: Sublinear algorithms for in-situ and in-
transit data analysis at extreme scale
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Takeaway for mathematicians: know your customer, know your tools
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Target customers: General 
exploratory science
(combustion use case)

Target compute platform: 
Leadership-class high 
performance computing (HPC)

Sublinear algorithms:
 Determine properties of input 

with only a tiny fraction
 Quantifiable time-error 

tradeoffs



Our target customers perform simulations that generate 
large complex data sets using HPC platforms
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 Case study: Direct Numerical Simulations & turbulent combustion 

 Data size
 O(Billions) of grid points per time step

 O(100K) time steps

 Data complexity
 Multivariate 

 O(100) chemical species 

 Vector data

 Particle data

 Turbulence is a complex phenomenon

 Length scales: microns to centimeters

 Temporal scales: nanoseconds to milliseconds

Image courtesy of Jacqueline Chen
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System Parameter 2011 2018 Factor Change

System Peak 2 Pf/s 1 Ef/s 500

Power 6 MW ≤20 MW 3

System Memory 0.3 PB 32-64 PB 100-200

Total Concurrency 225K 1 BX10 1B X100 40000-400000

Node Performance 125 GF 1 TF 10 TF 8-80

Node Concurrency 12 1000 10000 83-830

Network Bandwidth 1.5 GB/s 100 GB/s 1000 GB/s 66-660

System Size (nodes) 18700 1000000 100000 50-500

I/O Capacity 15 PB 30-100 PB 20-67

I/O Bandwidth 0.2 TB/s 20-60 TB/s 10-30

There is a widening gap between I/O and compute
capabilities on our target compute platforms



The widening gap in compute and I/O is causing changes 
in the scientific workflows
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The widening gap in compute and I/O is causing changes 
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The widening gap in compute and I/O is causing changes 
in the scientific workflows
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The change in scientific workflows introduces a number of 
data science challenges
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Wall clock time

Simulation Check-pointing Analysis

…

 At what frequency should I/O or analysis be done?

 Can we make this decision in an adaptive, data-driven fashion at 
runtime?

 Avoid missing interesting science

 Avoid costly I/O when simulation state is evolving slowly

 How can we make these decisions quickly and efficiently?

 How do we design efficient analysis algorithms given in situ constraints?



Our project aimed to apply sublinear analysis to address 
in situ workflow challenges 
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sublinear algorithms

• Small samples of data

• Quantifiable time-error 
tradeoffs

• Limited primitives for 
access

in situ analysis 
challenges

• Too much data to move

• Constrained time 
budgets 

• Simulation dictates data 
structures

There is strong alignment between theory and challenges

Sublinear analysis is a relatively new theoretical subfield asking: 
how to determine properties of input by seeing tiny fraction



Building a team with the right mix of domain, computer 
science and mathematics expertise is critically important
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Effective communication between team members is as 
important as their individual expertise
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MT1: As the breadth of project scope increases so does 
the social complexity – effective communication is key
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Our initial plan aimed to make in-situ analysis algorithms 
more efficient using sampling

 Merge tree algorithm for encoding level-set behavior of a function 
defined on a mesh

 Once computed, provides a compact representation of domain 
segmentation

 Enables efficient queries of feature-based quantities of interest
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Merge trees enable a variety of feature-based 
exploratory techniques as a post-process

SegmentationData snapshot Tracking graph

Tracking features in space and time

Identify features, characterize their
shapes and analyze the behavior of other
variables within these features



Our strategy was to use sampling on each processing 
element and merge results into a final tree
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Sampled histogram for local 
on-node data

Merge tree for global 
connectivity

Approximate full merge tree



Our finding: a sampling-based approach doesn’t provide a 
computational win

 Mesh and associated data are distributed across processing 
elements (PE)

 Data decomposition is optimized for the simulation

 Communication costs end up dominating run time

 You can compute the full tree on a PE in approximately the 
same amount of time as the sampled histogram!

 Better to focus on a fully distributed implementation, rather 
than use sampling
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Our finding: a sampling-based approach doesn’t provide a 
computational win

26

MT2: Algorithms can look beautiful in theory, but may not be 
worth deploying in practice due to constraints of your target user 
and architecture

 Mesh and associated data are distributed across processing 
elements (PE)

 Data decomposition is optimized for the simulation

 Communication costs end up dominating run time

 You can compute the full tree on a PE in approximately the 
same amount of time as the sampled histogram!

 Better to focus on a fully distributed implementation, rather 
than use sampling



MT3: Question your underlying algorithmic assumptions 
to mitigate technical constraints

 What is performant in serial may not work well in a 
distributed fashion
 All to all communication is expensive!

 In-situ data layouts will likely not be optimal for your algorithms 

 Are you exposing the maximum amount of parallelism?
 Data parallelism: same or different tasks operating on different data

 Task parallelism: different tasks operating on the same data

 Pipeline parallelism: Overlapping communication and computation

 How asynchronous is your approach?
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We had better success applying the sampling based 
technique to visualization

 Mapping function values to colors is key to 
visualization

 Many tools map linearly by default

 User interaction to refine the map

 Developed fast, efficient algorithm to build 
color-maps using cumulative density 
function-based sketches

 Our distribution-based sketch enables 
better feature identification

 Available open source as a ParaView plugin

 Published in IEEE Symposium on Large-
Scale Data Analysis & Visualization 2013
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Linear color map

CDF-based color map
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Our most impactful results stemmed from prolonged 
discussions with domain scientists regarding workflows

 At what frequency should I/O or analysis be done?

 Can we make this decision in an adaptive, data-driven fashion at 
runtime?

 Avoid missing interesting science

 Avoid costly I/O when simulation state is evolving slowly

 How can we make these decisions quickly and efficiently?

HCCI: Homogenous Compression Charge Ignition

Lots of little heat kernels slowly develop until 
ignition occurs



Their goal was to optimize I/O frequency and mesh 
resolution in a data driven manner based on heat release 
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Want to identify 
this trigger range



Domain expert hypothesis: Chemical Explosive Mode 
Analysis (CEMA) is a good predictor but too expensive

 Point-wise Jacobian of chemical species

 Cost is prohibitively expensive – up to 60 times the cost of a 
simulation timestep
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Compression in range 
of higher percentiles 
followed by an 
expansion



We defined a simple noise-resistant indicator function to 
characterize the spread of CEMA percentiles
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Avoid use of minimum and 
maximum percentiles as 
these are outliers



We defined a simple noise-resistant indicator function to 
characterize the spread of CEMA percentiles
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Avoid use of minimum and 
maximum percentiles as 
these are outliers



We found that the “ideal” trigger range corresponded to 

the indicator function passing a threshold from above
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We developed a simple strategy for sampling percentiles 
that scales nicely

 Number of samples depends only on the required accuracy

 Provide theoretical bounds on error

 Provide empirical results showing error in practice 

35Error in indicator functionError in percentiles



Our approach is being deployed now in-situ to enable 
dynamic workflows 
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MT4: Work with domain experts to understand social 
constraints that impede adoption of your techniques

 Operating in-situ means you are deploying on production runs

 Scientists are often risk-averse to deploy new technologies in 
these settings
 Month-long simulation runs using codes that have evolved over decades

 Sampling was a win in some use cases, not others
 Final quantities of interest:  we encountered hesitance

 In situ visualization for debugging: positive feedback

 Control flow decisions: positive feedback 

 Proofs and empirical tests together provided the confidence 
levels the scientists needed to deploy in-situ
 Neither was sufficient on its own
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Math takeaways for large interdisciplinary research 

 MT0: Target a customer and compute platform for your 
research

 MT1: As the breadth of scope of a project increases so does 
the social complexity – effective communication is key!

 MT2: Algorithms can look beautiful in theory, but may not be 
worth deploying in practice due to constraints of your target 
user and architecture

 MT3: Question your underlying algorithmic assumptions to 
mitigate technical constraints

 MT4: Work with domain experts to understand social 
constraints that would impede adoption (often unanticipated)

 MT5: Seeing your theory deployed in practice on real 
problems at scale is incredibly rewarding and makes MT0-MT4 
worth it! 38


