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Sandia performs scientific research in support of national ) i,
o o o o Laboratories
policy and decision making

Energy: Reduce U.S. reliance on foreign
energy, reduce carbon footprint

Climate change: Understand, mitigate, and
adapt to the effects of global warming

National Nuclear Security: Maintain a safe,
secure, and reliable nuclear stockpile

Cyber: Shore up our nation’s cyber defenses,
provide more fundamental understanding of
cyber environment




Interdisciplinary teams use extreme-scale experiments, -

ndia
modeling, and simulation to reason about complex L f
phenomena

Science Domain Expertise

Mathematics/Statistics Computer Science
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Interdisciplinary teams use extreme-scale experiments, -
ndia
modeling, and simulation to reason about complex L f

phenomena

Science Domain Expertise

What problem are we
trying to solve and
how do we model it?

How are we going to
solve this at scale?
How will our approach
change with evolving
compute platforms?

How do we quantify
the uncertainty in
our results?

How do we characterize features of interest?
How do we compress the data to make it manageable?

Mathematics/Statistics Computer Science
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Data science spans the different areas of expertise on ) i,
these interdisciplinary projects

Laboratories

Science Domain Expertise

Data Science

Mathematics/Statistics Computer Science
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A number of lessons learned can be gleaned from a
retrospective look at a data science project

Sandia
r.h National

Laboratories

= Project details
= Three year project
= Relatively small team

= Focused on enabling scientific simulations

= General lessons learned and math takeaways (MT)
= Building the team

= Scoping the work

= Doing the work




Acquiring funding: Data science calls for proposals often ) i,
highlight the interdisciplinary nature of the work

Laboratories

“advance the underlying math and computer
science to enable the routine use of rigorous
predictive simulation ... more effectively use next
generation computers”
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Successful data science projects often develop new -
theory and can demonstrate its applicability to mission at L f
scale

Science Domain Expertise

Mathematics/Statistics Computer Science
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MTO: Target a customer and compute platform for your
research

Sandia
|I1 National

Laboratories

Science Domain Expertise

Are they doing

= Exploratory science?

= Answering a yes/no question?
= Design optimization?

= How do | express my algorithm?
= How does the architecture affect
an idealized mathematical model?

Mathematics/Statistics

Computer Science
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Proposed work: Sublinear algorithms for in-situ and in- ) i,
transit data analysis at extreme scale

Laboratories

Science Domain Expertise

Target customers: General
exploratory science
(combustion use case)

Sublinear algorithms:

= Determine properties of input
with only a tiny fraction

= Quantifiable time-error
tradeoffs

TQ/ > CoF=RANY"

Target compute platform:
Leadership-class high
performance computing (HPC)

THE SUPERCOMPUTER COMPANY

Mathematics/Statistics Computer Science
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Our target customers perform simulations that generate ) i,
large complex data sets using HPC platforms

Laboratories

= Case study: Direct Numerical Simulations & turbulent combustion

= Data size
= QO(Billions) of grid points per time step
= O(100K) time steps

= Data complexity

= Multivariate
= 0(100) chemical species
= Vector data
= Particle data

= Turbulence is a complex phenomenon Image courtesy of Jacqueline Chen
= Length scales: microns to centimeters

= Temporal scales: nanoseconds to milliseconds
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There is a widening gap between 1/0 and compute ) i,
oo, e Laboratories
capabilities on our target compute platforms

Scientific Grand Challenges

CROSSCUTTING TECHNOLOGIES FOR
COMPUTING AT THE EXASCALE

Factor Change

System Parameter

February 2-4, 2010 - Washington, D.C.

System Peak 2 Pf/s 1 Ef/s 500
Power 6 MW <20 MW 3
System Memory 0.3PB 32-64 PB 100-200
Total Concurrency 225K 1 BX10 1B X100
Node Performance 125 GF 1TF 10 TF 8-80

oIS o] e 1000 10000 SEReely Scientific Discover;\“;y -

at the Exascale:

Network Bandwidth  1.5GB/s 100 GB/s 1000 GB/s 66-660 e

System Size (nodes) 18700 1000000 100000 50-500

I/O Capacity 15 PB 30-100 PB 20-67

I/0 Bandwidth 0.2 TB/s 20-60 TB/s 10-30




The widening gap in compute and 1/O is causing changes ) e,
Laboratories
in the scientific workflows

B simulation | Check-pointing [ Analysis
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Laboratories
in the scientific workflows

B simulation | Check-pointing [ Analysis

post
process

Discrepancy in 1/0 rate improvements means data will be stored to disk less frequently

post
process
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The widening gap in compute and 1/O is causing changes ) e,
Laboratories
in the scientific workflows

B simulation | Check-pointing [ Analysis

Some analyses are moving in-situ to capture physics insights
post

process

Discrepancy in I/O rate improvements means data will be stored to disk less frequently

post
process

>

Traditional
Workflow

Wall clock time
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The change in scientific workflows introduces a number of (g i,
data science challenges

Laboratories

B Simulation [ Check-pointing | Analysis

Wall clock time

= At what frequency should I/0O or analysis be done?

= Can we make this decision in an adaptive, data-driven fashion at
runtime?

= Avoid missing interesting science
= Avoid costly I/0 when simulation state is evolving slowly
= How can we make these decisions quickly and efficiently?

= How do we design efficient analysis algorithms given in situ constraints?
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Our project aimed to apply sublinear analysis to address ) i,
in situ workflow challenges

Laboratories

Sublinear analysis is a relatively new theoretical subfield asking:
how to determine properties of input by seeing tiny fraction

in situ analysis

sublinear algorithms

challenges
e Small samples of data * Too much data to move
e Quantifiable time-error e Constrained time
tradeoffs budgets
e Limited primitives for e Simulation dictates data
access structures

There is strong alignment between theory and challenges
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Building a team with the right mix of domain, computer [ s,
science and mathematics expertise is critically important

Laboratories

Science Domain Expertise

Mathematics/Statistics Computer Science
19




Effective communication between team members is as ) e,
important as their individual expertise

Laboratories

Science Domain Expertise

Mathematics/Statistics Computer Science
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MT1: As the breadth of project scope increases so does ) i,
the social complexity — effective communication is key

Laboratories

Science Domain Expertise

Mathematics/Statistics Computer Science
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Our initial plan aimed to make in-situ analysis algorithms () s,
o o o o Laboratories
more efficient using sampling

= Merge tree algorithm for encoding level-set behavior of a function
defined on a mesh

= Once computed, provides a compact representation of domain
segmentation

= Enables efficient queries of feature-based quantities of interest

e e e




Merge trees enable a variety of feature-based ) e,
exploratory techniques as a post-process

Laboratories
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Identify features, characterize their
shapes and analyze the behavior of other
variables within these features

Data snapshot Segmentation Tracking graph

Tracking features in space and time




Our strategy was to use sampling on each processing ) e,
. . Laboratories
element and merge results into a final tree

Approximate full merge tree

NARUE

Merge tree for global Sampled histogram for local
connectivity on-node data




Our finding: a sampling-based approach doesn’t provide a A i,
Computational Win Laboratories

= Mesh and associated data are distributed across processing
elements (PE)

= Data decomposition is optimized for the simulation
= Communication costs end up dominating run time

= You can compute the full tree on a PE in approximately the
same amount of time as the sampled histogram!

= Better to focus on a fully distributed implementation, rather
than use sampling




Our finding: a sampling-based approach doesn’t provide a () s,
Laboratories
computational win h

= Mesh and associated data are distributed across processing
elements (PE)

= Data decomposition is optimized for the simulation
= Communication costs end up dominating run time

= You can compute the full tree on a PE in approximately the
same amount of time as the sampled histogram!

= Better to focus on a fully distributed implementation, rather
than use sampling

MT2: Algorithms can look beautiful in theory, but may not be
worth deploying in practice due to constraints of your target user

and architecture
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MT3: Question your underlying algorithmic assumptions () g,
to mitigate technical constraints

Laboratories

= What is performantin serial may not work well in a
distributed fashion
= All to all communication is expensive!

= |n-situ data layouts will likely not be optimal for your algorithms

= Are you exposing the maximum amount of parallelism?
= Data parallelism: same or different tasks operating on different data
= Task parallelism: different tasks operating on the same data

= Pipeline parallelism: Overlapping communication and computation

= How asynchronous is your approach?




We had better success applying the sampling based ) i,
technique to visualization labortoes

= Mapping function values to colors is key to
visualization

= Many tools map linearly by default
= User interaction to refine the map

= Developed fast, efficient algorithm to build »
color-maps using cumulative density

function-based sketches

Linear color map

=  Qur distribution-based sketch enables
better feature identification

= Available open source as a ParaView plugin
= Published in IEEE Symposium on Large-

Scale Data Analysis & Visualization 2013 ‘

CDF-based color map




Our most impactful results stemmed from prolonged i) e
discussions with domain scientists regarding workflows

National _
Laboratories

At what frequency should 1/O or analysis be done?

Can we make this decision in an adaptive, data-driven fashion at
runtime?

= Avoid missing interesting science

= Avoid costly I/O when simulation state is evolving slowly
How can we make these decisions quickly and efficiently?

T

g>
7 HCCl: Homogenous Compression Charge Ignition

Lots of little heat kernels slowly develop until
ignition occurs



Their goal was to optimize 1/0 frequency and mesh ) i,
° . ° Laboratories
resolution in a data driven manner based on heat release

Want to identify
1010 this trigger range

Coarse grid Refined grid
Less frequent I[/O More frequent I/O
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Domain expert hypothesis: Chemical Explosive Mode ) i,
Analysis (CEMA) is a good predictor but too expensive

Laboratories

16000
Poor .. 01
14000 | —  Poa oo
. . Ppor ... 10
Compression in range
12000 | . .
of higher percentiles
followed by an
10000 |- )
) expansion
£ 8000
g 6000 '{::_5,.,_‘_':‘-;-_. Z '\__“\“ .
& !;_’_:’_-:5;-';""’:’-.
4000 ~ :
2000 =
0
22000 | | | | | | | |
0 100 200 300 400 500 600 700 800

Time Step

= Point-wise Jacobian of chemical species

= Cost is prohibitively expensive — up to 60 times the cost of a

simulation timestep
31




We defined a simple noise-resistant indicator function to () s,
. . Laboratories
characterize the spread of CEMA percentiles

(t) (1’;) Avoid use of minimum and
p — D . ,
Pa,ﬂ,fy(t) = @ 8 maximum percentiles as

pa(t) — D~ (¢) ~ these are outliers

CEMA Percentiles

1500 | | 1 1 | | | | i
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Time Step
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We found that the “ideal” trigger range corresponded to ) i,
the indicator function passing a threshold from above

Laboratories
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We developed a simple strategy for sampling percentiles (g sa,
Laboratories
that scales nicely

1. Sample k independent, uniform indices r1,7r2,...,7¢ in {1,2,..., N}.
Denote by A the sorted array [A(r1), A(r2), ..., A(rg)].
2. Output the a-percentile of A as the estimate, p,.

= Number of samples depends only on the required accuracy
= Provide theoretical bounds on error
= Provide empirical results showing error in practice
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Our approach is being deployed now in-situ to enable ) e,
dynamic workflows

Laboratories
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MT4: Work with domain experts to understand social ) i,
constraints that impede adoption of your techniques

Laboratories

= QOperating in-situ means you are deploying on production runs

= Scientists are often risk-averse to deploy new technologies in
these settings

= Month-long simulation runs using codes that have evolved over decades

= Sampling was a win in some use cases, not others
= Final quantities of interest: we encountered hesitance
= |n situ visualization for debugging: positive feedback
= Control flow decisions: positive feedback

= Proofs and empirical tests together provided the confidence
levels the scientists needed to deploy in-situ

= Neither was sufficient on its own
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National

Sandia
Math takeaways for large interdisciplinary research ) e

= MTO: Target a customer and compute platform for your
research

= MT1: As the breadth of scope of a project increases so does
the social complexity — effective communication is key!

= MT2: Algorithms can look beautiful in theory, but may not be
worth deploying in practice due to constraints of your target
user and architecture

= MT3: Question your underlying algorithmic assumptions to
mitigate technical constraints

= MT4: Work with domain experts to understand social
constraints that would impede adoption (often unanticipated)

= MTS5: Seeing your theory deployed in practice on real
problems at scale is incredibly rewarding and makes MTO-MT4
worth it! 38




