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A multifluid model extended for strong temperature nonequilibrium

C. H. Chang
Los Alamos National Laboratory

We present a multifluid model in which the material temperature is strongly affected by the degree
of segregation of each material. In order to track temperatures of segregated form and mixed form
of the same material, they are defined as different materials with their own energy. This extension
makes it necessary to extend multifluid models to the case in which each form is defined as a
separate material. Statistical variations associated with the morphology of the mixture have to
be simplified. Simplifications introduced include combining all molecularly mixed species into a
single composite material, which is treated as another segregated material. Relative motion within
the composite material, diffusion, is represented by material velocity of each component in the
composite material. Compression work, momentum and energy exchange, virtual mass forces, and
dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in
temperature nonequilibrium. The present model can be further simplified by combining all mixed
forms of materials into a composite material. Molecular diffusion in this case is modeled by the
Stefan-Maxwell equations.

I. INTRODUCTION

Imagine mixing of materials A and B. The material A absorbs radiative energy very well (optically
thick), while the material B is virtually transparent (optically thin). When radiative heating is present,
material A would be selectively heated. Consequently, material A would have much higher temperature
when it is pure segregated form than when it is mixed at the molecular level with the material B. When
mixed, a large fraction of energy is used for heating the material B, and the mixture temperature will
be lower than pure material A. In order to model this situation, it is necessary to represent temperature
dependency on the mixture morphology.

Multifluid models [1–3] provide natural framework to include material strength effects, demixing,
and inertial effects required in modeling complex fluid instabilities and mixing. They can be categorized
as “multicomponent” models in which mixtures are assumed to be mixed at the molecular level [2], and
“multiphase” models where mixtures are segregated in small scales [1]. In these models, the pressure force
depends on the mixture morphology [4]. When mixture evolves from segregated form to molecular form,
it is possible to make a transition of the pressure force in mathematical form [4].

When the mixture temperature depends strongly on the mixture morphology, however, making this
transition as in Ref. [3] does not correctly track the energetics of the mixture. In Refs. [1–3], a material
temperature is defined as a quantity that does not depend on the morphology. That is, the temperature
of material A is the same regardless whether the material is segregated or not, and the temperature
dependency on the mixture morphology will not be represented. The natural way to have the necessary
features would be defining the mixed material A as a new form of A. That is, material A is subdivided
into two materials, pure and mixed parts, with their own energies (temperatures). This way, instead of
having one temperature, two temperatures are assigned to the material A. Of course, material B can also
be subdivided into two materials.

A question arises. Mixed A and mixed B have the identical temperatures. Therefore, would it be
better to represent mixed material as one material instead of two different material? In view of energetics,
it would make sense. However, adopting this approach would prohibit further diffusion within the mixed
material. That is, homogenization of mixed material by inter-molecular diffusion will not occur. Unless
the time scale of the problem of interest is very small, further diffusion should be modeled, and the natural
way to include the diffusion in mixture is to represent mixed A and B as separate materials. That is, it
is possible to represent the energy and temperatures of mixed material as combined quantities. But their
concentration needs to be individually tracked with diffusion.

In this report, we present a multifluid model extended by further dividing mixing materials into
pure and mixed forms. This approach eliminates the necessity of using the transition in the pressure force
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FIG. 1: Simplified mixture morphology.

introduced in Ref. [3]. Appropriate forms of pressure force terms still need to be used depending on the
material morphology. Energy conservation of both pure and mixed materials are also presented. We then
present a simplified version of the model by combining momentum and energy equations of the mixed forms
into the composite momentum and energy equations. Material densities of mixed forms still need to be
separately tracked, and diffusion of mixed components is modelled by the Stefan-Maxwell equations.

II. SIMPLIFIED MIXTURE MORPHOLOGY

Mixture morphology usually is very complex, and a complete description would require various sta-
tistical information such as distributions of chunk size, velocity, etc. The description of molecular mixtures
also requires a variety of additional information, including distributions of compositions and concentra-
tions. It is thus clear that a complete description of such a mixture would be hopelessly complicated and
intractable for practical purposes. One is therefore led to seek a simplified description that captures the
essential or the most important information in terms of a manageable reduced set of basic variables while
neglecting finer details of lesser importance.

We shall conceptually combine all chunks of each pure species into a single region for that species,
and all the contents of molecularly mixed regions of all types into a single molecularly mixed region M, as
illustrated in Fig. 1 suggested in Ref. [4]. In Fig. 1, there are three materials, A, B, and C. The molecularly
mixed portions area denoted as A’, B’ and C’, which are parts of the composite mixture material M. The
volume fraction of all segregated pure (chunks) species i (i.e., the volume of chunks of pure species i per
unit total volume) will be denoted by αci . Similarly, the volume fraction of the molecularly mixed portion
is denoted by αmi . (Superscripts c and m respectively represent pure and molecular mixture forms.) Note
that αi = αci + αmi . The volume fraction of the composite material (i.e., the volume of the molecular
mixture per unit total volume) is denoted by αM =

∑
i α

m
i . Since the pure and the composite material fill

the total volume,
∑
i α

c
i + αM = 1.

It is also necessary to evaluate the volume effectively occupied by species i within the molecular
mixture M. As mentioned above, the volume fraction of species i in an ideal gas mixture (i.e., volume of
species i per unit mixture volume) can be identified with the pressure ratio zi ≡ pi/p of species i within the
mixture [5]. (This interpretation remains valid even in multitemperature mixtures, in which the different
species may have different temperatures. When all the species temperatures are equal with the same
common value T, zi reduces to the mole fraction xi of species i, the interpretation of which as a volume
fraction is familiar from Amagat’s law.) It follows that αmi is simply αMz

m
i , where zmi = pmi /pM , pmi is
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the partial pressure of species i within the composite material M, and pM =
∑
i p
m
i . Thus the total volume

fraction of species i (i.e., the volume of all species i present per unit total volume, including both chunks
of pure species i and the Amagat’s law volume occupied by species i within M) is simply

αi ≡ αci + αmi = αci + αMz
m
i (1)

and we see that
∑
i αi = 1 as it should. These relations are valid in the mixture in which each material has

its own pressures (pressure nonequilibrium). In this situation, p̃ci represents the pressure of pure material i,
not the partial pressure. The average pressure p is then p =

∑
i α

c
i p̃
c
i +

∑
i α

m
i p̃

m
i , the composite material

pressure is given by αMpM =
∑
i α

m
i p̃

m
i , and zmi = αmi p̃

m
i /(αMpM ).

Note that there are two material pressures, p̃ci and p̃mi . Since we now distinguish the temperatures of
pure and mixed components, pressure should also be separately determined for pure and mixed components.
Densities, ρci and ρmi , and energies, eci and emi , are all separately tracked in the present model. Therefore,
the system is closed and application of equations of state (EOS) to each component should be possible. In
order to reduce computational resources used, EOS can be simplified by combining eci and emi as well as
ρci and ρmi , producing the averaged p̃i = p̃ci = p̃mi . But this simplification should be used with care.

III. MASS CONSERVATION AND VOLUME FRACTION EVOLUTION

The continuity equations are given by

∂ (αci ρ̃
c
i )

∂t
+∇ · (αci ρ̃ciuci ) = Ṁ c

i (2)

∂ (αmi ρ̃
m
i )

∂t
+∇ · (αmi ρ̃mi umi ) = Ṁm

i (3)

where ρ̃ci is the mass density of pure species i, and uci and umi respectively are the mean velocities of
species i in pure and molecular mixture forms. Ṁ c

i = −Ṁm
i is the mass conversion rate from the pure

component to mixed component of material i. (M c
i = αci ρ̃

c
i and Mm

i = αmi ρ̃
m
i .)

As discussed previously [4], the development of an accurate model for the time evolution of the
mixture morphology presents a difficult problem which is out of this report’s scope. In this report, this
evolution model for Ṁ c

i is presumed to be available.
When pressure nonequilibrium is employed, it is required to have an additional set of governing

equations to close the system. Otherwise, the system is indeterminate. These additional equations usually
take the form of volume fraction evolution [6]. The volume fraction evolution is generalized as

∂αci
∂t

+∇ · (αciuci ) = αci∇ · uv + αci∆E
c
i + α̇ci (4)

∂αM
∂t

+∇ · (αMuM ) = αM∇ · uv + αM∆EM +
∑
i

α̇mi (5)

where α̇ci = −α̇mi is the volume fraction change associated with Ṁ c
i , ∆Eci is the rate of expansion of phase i

relative to the overall rate of expansion of the whole mixture, and uv is the volume-averaged velocity of
the mixture given by

uv =
∑
i

αciu
c
i + αMuM (6)

The mixture average velocity uM is given by

uM =
∑
i α

m
i ρ̃

m
i umi∑

i α
m
i ρ̃

m
i

(7)

αmi can be determined by equilibrating p̃mi .
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We emphasize that Eqs. (4) and (5) are rigorous, since no approximations have been made in their
derivations. Simple ∆E models take the form given by [6]

∆Eci =
Ac

Lp
αci (p̃ci − p) (8)

∆EM =
Ac

Lp
αM (pM − p) (9)

where A is a positive dimensionless constant of order unity, L is the length scale representing the mean
size of the phase fragments, and c is the mixture speed of sound given by

c2 =
∑
i Y

c
i γ

c
i c
c
vi + YMγMcvM

ρ2(
∑
i Y

c
i c

c
vi + YMcvM )

(∑
i

Y ci γ
c
i

ρc2i c
c2
i

+
YMγM
ρ2
Mc

2
M

)
(10)

where Yi = αiρ̃i/ρ is the mass fraction, and cvi ≡ (∂ei/∂Ti)ρi
, γi and ci respectively are the specific heat

at constant volume, the specific heat ratio, and speed of sound of material i. Suggested values of L and A
can be found in Refs. [3, 6].

Equation (5) and equilibration of p̃mi can be replaced by a set of evolution equations for αmi given
by

∂αmi
∂t

+∇ · (αmi umi ) = αmi ∇ · uv + αmi ∆Emi + α̇mi (11)

where ∆Emi is given by

∆Emi =
Ac

Lp
αmi (p̃mi − p) (12)

Note that the material pressures p̃mi in the composite material are not equilibrated, and thus adequate
modeling is highly desirable for ∆Emi that provides the equilibration tendency.

IV. DYNAMICS OF HETEROGENEOUS MIXTURES IN PRESSURE NONEQUILIBRIUM

IV.1. Pressure forces

In single-pressure multiphase flow models, the pressure gradient term takes the form Gi = −αi∇p,
where Gi is the stress (force), αi is the volume fraction of the material i, and p is the total pressure. This
form arises as the net result of the terms −∇(αip) + p∇αi, which respectively represent the intraphase
pressure force of phase i on itself and the interphase pressure force at the interface exerted on phase i by
the other phases [3, 4, 7, 8]. In multicomponent models, the pressure force term is Gi = −∇pi, where
pi is the partial pressure of species i. The partial pressure can be interpreted as αip, where αi = pi/p
is the effective volume fraction of species i in the mixture in the sense of Amagat’s law. As a mixture
evolves from segregated to molecular mixing, the pressure gradient terms should also make a smooth
mathematical transition between the forms αi∇p and ∇pi appropriate to those two limiting cases. A
formulation showing such a transition has recently been suggested [4]. However, when segregated and mixed
components are treated as separate materials, it is unnecessary to employ the pressure force transition.
But it is required to use appropriate pressure force for each component. That is, αi∇p should be used for
segregated components, while ∇pi is used for mixed components.

When pressure nonequilibrium is employed, it becomes necessary to model the pressure at material
interfaces [9–13]. Depending on the selection, it becomes necessary to model subzonal internal motion such
as the motion of the interface [10, 11]. One obvious way to eliminate the modeling need of the internal
motion is to set the interface pressure as the local average pressure p as in Ref. [3]. We adopt this approach
in the present model.
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The species momentum equations are given by

∂ (αci ρ̃
c
iu
c
i )

∂t
+∇ · (αci ρ̃ciuciuci ) = −∇ [αci (p̃ci − p)]− αci∇p+∇ · (αci τ̃ i) + Ṁ c

i u
c
i + Vc

i + Fci (13)

∂ (αmi ρ̃
m
i umi )

∂t
+∇ · (αmi ρ̃mi umi umi ) = −∇ [αmi (p̃mi − p)]− αM∇

αmi
αM

p− Ṁ c
i u

c
i + Vm

i + Fmi (14)

where V is the virtual mass force, F is the momentum exchange (friction) force, and τ̃ i is the deviatoric
stress of pure material i. Note that material strength is presumed to disappear in the composite material.

The sum of pressure forces in Eq. (14) becomes ∇αMpM + p∇αM , which is the correct pressure
force for the whole mixture (M) material. When this term is added to the sum of the pressure forces in
Eq. (13), we obtain ∇p, the correct pressure force for the entire mixture. That is, the sum of pressure
forces in Eqs. (13) and (14) is ∇p.

It is important to recognize that Eq. (13) provides the framework for handling fluid instabilities,
since they retain the inertial differences between materials. Fluid instabilities result from the fact that
materials with different density (inertia) responds differently to the acceleration in a mixture. Therefore,
retaining the inertial difference is essential in modeling of fluid instabilities. Observe that many mixing
models cannot arrive at the correct steady state in which heavy fluid is at the bottom and light fluid at
the top with gravity pointing downwards. They usually end up producing uniform mixture due to their
inability of simulating demixing.

At the limit of large friction (large momentum exchange coefficients), the inertial difference can
be ignored. When it is ignored, Eqs. (14) reduce to the Stefan-Maxwell equations [14] (derivation shown
in Sec. VI.2), which are the fundamental equations describing diffusion. That is, Eq. (14) is applicable to
the wide range including diffusion, regardless of the magnitude of the frictional forces. Thermal diffusion
effects are not included in Eqs. (13) and (14). They can be included in a similar manner as in Ref. [14].

IV.2. Virtual mass forces

Upon inspecting the development in Ref. [3], virtual mass forces are obtained as

Vc
i =

∑
j

CVijα
c
iα
c
j

(
Dc
ju

c
j

Dt
− Dc

iu
c
i

Dt

)
+
∑
j

CVijα
c
iα
m
j

(
Dm
j umj
Dt

− Dc
iu

c
i

Dt

)
(15)

Vm
i =

∑
j

CVijα
m
i α

c
j

(
Dc
ju

c
j

Dt
− Dm

i umi
Dt

)
(16)

The material derivatives are defined as Dc
i /Dt = ∂/∂t+ uci · ∇ and Dm

i /Dt = ∂/∂t+ umi · ∇. The virtual
mass coefficient CVij is given by

CVij =
(ρ̃i + ρ̃j)

2πµ(1 + r)
λ

|hCij |
− ρ̃iρ̃j

ρ
(17)

where the average material density ρ̃i is given by

ρ̃i =
αci ρ̃

c
i + αmi ρ̃

m
i

αci + αmi
(18)

µ = 0.5 is a model coefficient, λ is the perturbation wave length, and r is the density ratio given by [15]

r = min

[(
max(ρ̃i, ρ̃j)
min(ρ̃i, ρ̃j)

)1/3

,
1

2 ∗ 0.06

]
(19)

The perturbation amplitude hcij is given by

hcij =

∣∣Lcij∣∣
µ(1 + r)

(20)
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where Lcij is the mixing length scale given by

DvLcij
Dt

= ucj − uci (21)

The material derivative Dv/Dt = ∂/∂t+ uv · ∇ is based on the volume-averaged velocity uv =
∑
i(α

c
iu
c
i +

αmi umi ).
The virtual mass coefficient CVij presented above involves simplifying approximations [3]. Note also

that by separating pure and mixed components, we no longer need the model parameter n defined in Ref. [3]
for controlling the speed of the transition from segregated to molecular mixtures. The presented virtual
mass force vanishes appropriately as the segregated mixture evolves to molecular mixture as it should. The
virtual mass force also vanishes on a material when it becomes completely mixed at the molecular level.

IV.3. Momentum exchange

The friction forces are given by [2, 3]

Fci =
∑
j

Bcijα
c
iα
c
j

(
ucj − uci

)
+
∑
j

Bcijα
c
iα
m
j

(
umj − uci

)
(22)

Fmi =
∑
j

Bcijα
m
i α

c
j

(
ucj − umi

)
+
∑
j

Bmij α
m
i α

m
j

(
umj − umi

)
(23)

Bcij and Bmij are the coefficients given by

Bcij = C (ρ̃i + ρ̃j)

∣∣ucj − uci
∣∣

µ(1 + r)
∣∣Lcij∣∣ (24)

Bmij =
ρ̃iρ̃j
ρ

Cs

λc + αij
∣∣Lmij ∣∣ (25)

where Cs is the adiabatic speed of the sound of the mixture, λc is the mean free path of the mixture, αij
is the model constant, and Lmij and Lcij are the length scales obtained by

DvLmij
Dt

= umj − umi (26)

DvLcij
Dt

= ucj − uci (27)

Note that Bcij and Bmij have been simplified using ρ̃i in a similar manner as CVij . The coefficient C is given
by [15]

C =
2− 3θ

4α(2− θ)
(28)

where α is the dimensionless coefficient used in the late-time scaling of Rayleigh-Taylor instability, h =
αAat2 (α here should not be confused with the volume fraction which has a subscript representing material),
A is the Atwood number, a is the acceleration, and θ is the exponent that appears in the Richtmyer-Meshkov
scaling law, h ∼ tθ. Note again that the model coefficient n [3] for controlling the speed of the transition
from segregated to molecular mixtures is no longer necessary.

IV.4. Total momentum conservation

It may be intuitively obvious to many that the summation of momentum equations over all species
should reduce to the momentum equation of the whole mixture (the single fluid momentum equation) given
by

∂ (ρu)
∂t

+∇ · (ρuu) = −∇p (29)
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where ρ =
∑
i(α

c
i ρ̃
c
i + αmi ρ̃

m
i ) is the total mass density, u = (1/ρ)

∑
i(α

c
i ρ̃
c
iu
c
i + αmi ρ̃

m
i umi ) is the mass-

averaged mixture velocity. However, the summation reduces to

∂ (ρu)
∂t

+∇ · (ρuu) = −∇p+
∑
i

[∇(αci ρ̃
c
iw

c
iw

c
i ) +∇(αmi ρ̃

m
i wm

i wm
i )] (30)

where wi = ui − u is the drift velocity of the material i. The term involving w represents the advection
of the drift momentum, which can become large when the mixture is virtually stationary but with strong
mixing motion. Since this term is not negligible, a question arises: which one is correct?

We need to recognize that the total momentum of many bodies moving at their own velocities is
the sum of the individual momentum. That is, the total momentum does not serve as a constraint. It
just is a derived quantity that represents the sum of each material momentum in the system. Therefore,
Eq. (30), not Eq. (29), should be solved if the total momentum equation needs to be solved.

V. ENERGETICS IN HETEROGENEOUS MIXTURES

The material internal energy equations are given by

∂ (αci ρ̃
c
ie
c
i )

∂t
+∇ · (αci ρ̃cieciuci ) = ∇ · αcikci∇T ci + Ṁ c

i e
c
i +W c

i +QV ci +QFci +QTci (31)

∂ (αmi ρ̃
m
i e

m
i )

∂t
+∇ · (αmi ρ̃mi emi umi ) = ∇ · αmi kmi ∇Tmi − Ṁ c

i e
c
i +Wm

i +QVmi +QFmi +QTmi (32)

where ei and Ti respectively are the specific energy and temperature of material i. Thermal conductivities
kci and kmi are evaluated at the temperatures of pure and mixture phases, respectively. Terms represented
by W and Q are discussed below. Note that enthalpy diffusion, or diffusion-thermo effect (Dufour effect),
has been included in Eqs. (31) and (32) [5].

V.1. Compression work and energy dissipation due to stress

The compression work Wi is given by

W c
i = αci τ̃ i : ∇uci − p

[
∂αci
∂t

+∇ · (αciuci )
]

(33)

Wm
i = −α

m
i

αM
p

[
∂αM
∂t

+∇ · (αMumi )
]

(34)

Dissipation by the deviatoric stress τ̃ i has been included in Eq. (33). Observe that the present Wi terms
reduce to the proper compression work in the limiting cases of multiphase and multicomponent mixtures.

V.2. Dissipation of unresolved kinetic energy

Virtual mass effects induce secondary flows. These secondary flows and the associated kinetic
energy are not usually resolved in macroscopic hydrodynamic simulations. (We adopt the term “unresolved
kinetic energy” (UKE) suggested in Ref. [16].) UKE is similar to turbulent kinetic energy, as both represent
kinetic energy of unresolved fluid motion, not thermal energy. They eventually dissipate into thermal
energy via viscous dissipation. Since the dissipation of UKE is not instantaneous, it is strongly desirable
to have additional model equation(s) similar to the turbulent kinetic energy equation to properly model
generation, advection, and dissipation of UKE. When turbulent kinetic energy equation is a part of the
system of equations solved, it could include UKE.
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In the absence of an appropriate model, instantaneous dissipation of UKE may be assumed. The
thermal energy sources QVi due to dissipation of UKE are given by

QV ci =
∑
j

ζccijQ
V cc
ij +

∑
j

ζcmij Q
V cm
ij (35)

QVmi =
∑
j

ζmcij Q
Vmc
ij (36)

QV ccij = CVijα
c
iα
c
j

(
Dc
ju

c
j

Dt
− Dc

iu
c
i

Dt

)
·
(
ucj − uci

)
(37)

QV cmij = CVijα
c
iα
m
j

(
Dm
j umj
Dt

− Dc
iu

c
i

Dt

)
·
(
umj − uci

)
(38)

QVmcij = CVijα
m
i α

c
j

(
Dc
ju

c
j

Dt
− Dm

i umi
Dt

)
·
(
ucj − umi

)
(39)

The dissipation between the (i,j) material pair, QV ccij , QV cmij , and QVmcij , need to be divided
between species i and j. By assuming that the temperature changes of the thin layers (film) at the contact
surfaces due to UKE dissipation are identical for both materials, the fraction of dissipation energy into
species i, ζij , is given by

ζccij =
Ccvi

Ccvi + Ccvj
(40)

ζcmij =
Ccvi

Ccvi + Cmvj
(41)

ζmcij =
Cmvi

Cmvi + Ccvj
(42)

ζmmij =
Cmvi

Cmvi + Cmvj
(43)

where Cpi and Cvi respectively are the constant-pressure and constant-volume specific heats of species i.

V.3. Frictional dissipation

QFi is the dissipation caused by the frictional forces, given by

QFci =
∑
j

ζccijB
c
ijα

c
iα
c
j

(
ucj − uci

)
·
(
ucj − uci

)
+
∑
j

ζcmij B
c
ijα

c
iα
m
j

(
umj − uci

)
·
(
umj − uci

)
(44)

QFmi =
∑
j

ζmcij B
c
ijα

m
i α

c
j

(
ucj − umi

)
·
(
ucj − umi

)
+
∑
j

ζmmij Bmij α
m
i α

m
j

(
umj − umi

)
·
(
umj − umi

)
(45)

The distribution factors ζij are given by Eqs.(40)–(43).

V.4. Energy exchange due to temperature difference

The subzonal scale inter-material energy exchange in heterogeneous mixture is composed of the en-
ergy exchange via molecular collisions in composite material and spatial heat transport between segregated
components. This can be represented in a simple manner as [17]

QTci =
∑
j

αciα
c
jE

c
ij

(
T cj − T ci

)
+
∑
j

αciα
m
j E

c
ij

(
Tmj − T ci

)
(46)

QTmi =
∑
j

αmi α
c
jE

c
ij

(
T cj − Tmi

)
+
∑
j

αmi α
m
j R

m
ij

(
Tmj − Tmi

)
(47)
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where Eij is the energy exchange coefficient constructed by modeling subzonal heat conduction, and Rij is
the energy exchange coefficients via molecular collision processes. Generalized from the recent development
presented in Ref. [17], they are given by

Ecij = max
(
Sijk

c
ij

`i + `j
,

3kB
mi +mj

Bcij
Prcij

)
(48)

Rmij =
16kB

(mi +mj)2
ρ̃mi ρ̃

m
j Ω(1)

ij (1, Tmij ) (49)

where mi is the molecular mass of the species i, and kB is the Boltzmann’s constant. The effective pair
temperature Tmij in the composite material is given by [18]

Tmij =
miT

m
j +mjT

m
i

mi +mj
(50)

Ω(1)
ij (n, T ) is the integral defined as [19]

Ω(1)
ij (n, T ) =

1
2
√
π

(
µij

2kBT

)(2n+3)/2 ∫ ∞
0

exp
(
− µijv

2

2kBT

)
v2n+3Q

(1)
ij (v) dv (51)

where µij = mimj/(mi+mj) is the reduced mass of the particle pair i and j, T is the dummy temperature
variable, and Q

(1)
ij (v) is the cross-section for relative speed v, which is an integral involving the angle of

deflection χ over all impact parameters b given by [19]

Q
(1)
ij (v) = 2π

∫ ∞
0

(1− cosχ)b db (52)

Sij is the characteristic contact surface area between materials i and j, and `i is the characteristic
length scale of material i. The inter-material diffusivity krij between segregated pure materials pair (i,j)
can be modeled as

`i + `j
kcij

=
`i
kci

+
`j
kcj

(53)

when `i are given. In the absence of that information, we can use the simple harmonic mean given by

2
kcij

=
1
kci

+
1
kcj

(54)

Prcij is the Prandtl number at the segregated material interface. When this value is not available, we can
use the value of order unity, e.g., 0.7.

Note that Bcij and Ecij are not subdivided into Bccij , Bcmij , Bmcij , etc. That is, momentum and
energy exchange between the segregated material and the composite mixture material has been modeled
as momentum and energy exchange between segregated materials throughout this report. Inaccuracies
resulting from this simplification is expected to be minor.

The energy exchange rate Rij usually is very large, resulting in the much shorter time scale than
the time scale of interest. With an appropriate numerical scheme (time implicit scheme), equilibrium
results should automatically be produced in the composite material. For plasma-photon mixtures, it is
necessary to generalize the energy equations and all the related terms. This generalization can follow the
generalization presented in [3, 17], and thus is not presented here. When radiation transport is involved,
the fast energy exchange and resulting temperature equilibrium in the composite mixture material can be
achieved by solving for the composite material energy when the radiation transport is solved. Details of
this approach is summarized in Ref. [20].

Determining the contact surface area Sij and the length scales `i usually require models for them.
The development of those models are outside the scope of this report, and thus is not discussed here. A
model for monodisperse spherical particles has been presented in Ref. [21].
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VI. COMBINED MOMENTUM AND ENERGY OF MIXED PHASE

Although solving momentum and energy equations for each species in the mixed phase (solving
Eqs. (14) and (32)) is a valid approach, this is not necessary in practice. In molecular mixture, the time
scale of velocity equilibration would usually be much smaller than the time scale of interest. Therefore, it is
possible to combine species momentum and energy equations into the momentum and energy conservation
equations for the composit mixture material. In this section, we present this approach.

Note that species conservation, Eq. (3), still needs to be solved. Therefore, it is necessary to deter-
mine umi , and they are obtained by the Stefan-Maxwell equations. The solved volume fraction evolution is
given by Eq. (5), not Eq. (11). The volume fractions of species in the composite mixture, αmi , is obtained
by the equilibration of p̃mi .

VI.1. Composite momentum equation

In the composite material, friction coefficients Bmij are large [22]. Due to large friction, large
differences in species velocities do not develop, and it becomes a good approximation to ignore inertial
differences in the species. That is Dm

i umi /Dt ≡ ∂umi /∂t+umi ·∇umi is replaced by DMuM/Dt ≡ ∂uM/∂t+
uM · ∇uM . The resulting momentum equation for the composite material is then given by

∂ (αM ρ̃MuM )
∂t

+∇ · (αM ρ̃MuMuM ) = −∇ [αM (pM − p)]− αM∇p−
∑
i

Ṁ c
i u

c
i + VM + FM (55)

where ˜ρM =
∑
i α

m
i ρ̃

m
i /αM is the composite material density. Virtual mass forces and friction forces now

take the form

Vc
i =

∑
j

CVijα
c
iα
c
j

(
Dc
ju

c
j

Dt
− Dc

iu
c
i

Dt

)
+ CViMα

c
iαM

(
DMuM
Dt

− Dc
iu

c
i

Dt

)
(56)

VM =
∑
j

CVMjαMα
c
j

(
Dc
ju

c
j

Dt
− DMuM

Dt

)
(57)

Fci =
∑
j

Bcijα
c
iα
c
j

(
ucj − uci

)
+BciMα

c
iαM (uM − uci ) (58)

FM =
∑
j

BcMjαMα
c
j

(
ucj − uM

)
(59)

VI.2. Diffusion in composite material

When Eqs. (14) are combined to constitute the composite material momentum conservation, it is
implied that the virtual mass and friction forces between the composite material and pure material are
distributed to each species in the composite material by the mass ratio αmi ρ̃

m
i /αM ρ̃M . That is, these

forces act like the body force for each species in the composite material, and these forces do not directly
contribute in the diffusion of species within the composite material. (They indirectly contribute. They
affect the momentum balance and pressure gradient, which will result in stratification of density and
concentration.) Also, it should be noted that the material pressures p̃mi in the composite material are in
fact in equilibrium. That is p̃mi = pM . Eqs. (14) and (55) then becomes

αmi ρ̃
m
i

Dm
i umi
Dt

= −∇ [αmi (pM − p)]− αM∇
αmi
αM

p+
∑
j

Bmij α
m
i α

m
j

(
umj − umi

)
+ Gm

i (60)

αM ρ̃M
DMuM
Dt

= −∇ [αM (pM − p)]− αM∇p+ GM (61)

where G represents the combined virtual mass and friction forces. Gm
i = (αmi ρ̃

m
i /αM ρ̃M )GM as discussed

above,
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Replacing Dm
i umi /Dt with DMuM/Dt, and using Eq. (61), Eq. (60) becomes∑

j

Bmij
αmi α

m
j

αM

(
umj − umi

)
= p∇zmi + (zmi − ymi )∇pM + (pM − p)(1− ymi )

∇αM
αM

(62)

where the pressure fraction zmi ≡ αmi p̃
m
i /(αMpM ) is αmi /αM , since p̃mi = pM here, and ymi ≡

αmi ρ̃
m
i /(αM ρ̃M ) is the mass fraction. Equation (62) is the generalized Stefan-Maxwell equations for het-

erogeneous mixture in pressure nonequilibrium. The term involving ∇zmi represents the ordinary diffusion
due to concentration gradient, while the term involving (zmi −ymi ) represents the pressure diffusion driving
the concentration stratification. (This stratification is in fact caused by the same driving force as the
Rayleigh-Taylor instabilities. However, since the inertial difference is ignored, this does not correctly rep-
resent the transient Rayleigh-Taylor instabilities. Only the steady-state would be represented.) Note that
thermal diffusion is not included in the development of Eq. (62). It can be included in a similar manner
as Ref. [14]. When p = pM , Eq. (62) reduces to∑

j

Bmij
αmi α

m
j

αM

(
umj − umi

)
= p∇zmi + (zmi − ymi )∇pM (63)

Observe that Eqs. (62) are not linearly independent, as their sum over species reduces to an identity.
Only N − 1 of them are linearly independent, where N is the number of species in the composite material.
The contraint imposed by Eq. (7) provide the additional equation needed. That is, N − 1 Eqs. (62) and
Eq. (7) provide N equations in the N unknowns umi .

When materials are in plasma state, it is necessary to include the ambipolar diffusion effect. In
plasmas, free electrons have high mobility, and thus electrons would diffuse away faster than heavy ions.
However, electric field would develop, pulling back electrons. As a result, electrons and ions diffuse as pair
in the absence of external electric field. (When electric field is exerted, it will cause the electrons to diffuse
at a different speed from ions, resulting in electrical current.) The ambipolar effect can be included by
adding the electric force term as presented in [14]. Equation (62) becomes∑

j

Bmij
αmi α

m
j

αM

(
umj − umi

)
= p∇zmi + (zmi − ymi )∇pM + (pM − p)(1− ymi )

∇αM
αM

− ρ̃mi qIiE (64)

where qIi is the electrical charge of the single ion of species i, and E is the electrical field. When the electron
mass is ignored (this leads to zero electrical resistance, resulting in the ideal magnetohydrodynamics), E
is given by

E =
∇pEM
ρEMq

E
(65)

where pEM is the electron pressure gradient in the composite material, ρEM is the electron mass density in
the composite material, and qE is the electrical charge per unit mass of electron.

When a mix model such as Eq. (25) is used, directly adding the electrical force term as in Eq. (64)
is not correct. These models usually represent the turbulence effects, which is often dominated by large
scale eddies. Equation (64) would produce enhanced eddy effects, which is incorrect. Instead, modifying λc
in Eq. (25) is recommended. In the absence of a good approximation, simply multiplying λc by 1+(TE/T I)
can be used, resulting in

Bmij =
ρ̃iρ̃j
ρ

Cs

λc [1 + (TE/T I)] + αij
∣∣Lmij ∣∣ (66)

where TE and T I respectively are electron and ion temperatures. In short, Eqs. (62) and (66) should be
used, instead of Eq. (64), in this case.
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VI.3. Composite energy equation

The internal energy equation for the composite material is given by

∂ (αM ρ̃MeM )
∂t

+∇ · (αM ρ̃MeMuM ) =
∑
i

∇ · αmi kmi ∇TM −
∑
i

∇ · Jmi hmi −
∑
i

Ṁ c
i e
c
i

+WM +QVM +QFM +QTM (67)

where eM ≡
∑
i α

m
i ρ̃

m
i e

m
i /(αM ρ̃M ) is the specific energy of the composite material, Jmi ≡ αmi ρ̃mi (umi −uM )

is the diffusional mass flux of species i in the composite material, and hmi is the specific enthalpy of species i.
(Diffusion-thermo effect is now explicitely included in Eq. (67).) Compression work Wm

i , dissipation of
UKE QVM , frictional dissipation QFM , and energy exchange QTM are given by

WM = −p
[
∂αM
∂t

+∇ · (αMuM )
]

(68)

QVM =
∑
j

ζMc
MjC

V
MjαMα

c
j

(
Dc
ju

c
j

Dt
− DMuM

Dt

)
·
(
ucj − uM

)
(69)

QFM =
∑
j

ζMc
MjB

c
MjαMα

c
j

(
ucj − uM

)
·
(
ucj − uM

)
(70)

QTM =
∑
j

αMα
c
jE

c
Mj

(
T cj − TM

)
(71)

Note that there is no frictional dissipation between molcularly mixed components, since diffusion approxi-
maion is used. Specific heat used in the distribution factor ζMc

Mj for the composite material is given by

CvM =
∑
i α

m
i ρ̃

m
i C

m
vi

αM ρ̃M
(72)

Composite material properties needed in EcMj can be constructed in a similar manner.

VII. CONCLUDING REMARKS

We have presented an extension of the multifluid model to represent the temperature dependence
on the mixture morphology. The present models are based on either 2N or N + 1 materials. In the N + 1
model, all molecular mixture components are combined as a composite material. Even in the N + 1 model,
2N continuity equations are solved, requiring 2N species velocities.

The N + 1 model described in Sec. VI should require fewer computational resources. However this
may not be the case. Equations (62) or (63) are linear equations that need to be solved for all velocity
components. 2N continuity equations (Eqs. (3)) still need to be solved. Numerous equilibration procedures
required may also make the computing more challenging than having dynamically equilibrating tendencies
in energy exchange and volume fraction revolution. Furthermore, time steps would be restricted by the
diffusion limit, when Stefan-Maxwell equations are used. (When multifluid equations are solved, time step
is not restricted by the diffusion limit [23].) Therefore, selection between 2N and N + 1 should be made
with care.
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